mme.modares.ac.ir
:
1 2
*
3
1 -
2 -
3 -
* :
441315875 [email protected]
1393 25 :
: 29 1393 04 : 1393
. .
50 60 70
10 ) 30 ( 12 ) 36 (
.
6 / 13 5 / 13 85
/8 17 /8 .
8 / 13 7 / 13 6
70
( )
Experimental and Numerical Study of Variable-Span-sweep Morphing Wing on the Aerodynamic Characteristics of UAV
A. Tarabi
1S. Gasemloo
2*, M. Mani
31- PhD student, Aerospace Eng., Aerospace Research Institute, Maleke-Ashtar University of Technology, Tehran, Iran 2- Aerospace Eng. Complex, Maleke-Ashtar University of Technology, Tehran, Iran
3-Prof., Aerospace Eng. Dep’t., Amirkabir University of Technology, Tehran, Iran
*P.O. B 441315875 Tehran, Iran. [email protected]
A RTICLE I NFORMATION A BSTRACT
Original Research Paper Received 16 December 2014 Accepted 19 January 2015 Available Online 24 January 201
In this research, experiment and computational fluid dynamics (CFD) are used to assess the performance of UAV with variable-span and sweep morphing wing under low speed conditions.
Both wing area and aspect ratio are changed due to variations in span and sweep, whereas structure of the variable-span and sweep morphing wing remains constant. In this study, the numerical results of Fluent software and experimental data are presented. Results are achieved under low wind speed (50, 60 and 70 m/s). In this case, full extension represents 30% (10 cm) increase in wing span and 36% (12 deg.) in sweep angle relative to the original wing, with no extension. The results of this study show that the morphing wing is capable to improved aerodynamic efficiency, increased both range and endurance, reduced induced drag and in general reduced thrust required. According to experimental and numerical results, the use of morphing wing can increase the range by 13.6% and 13.5%, also, endurance of the vehicle by approximately 8.855 and 8.17%, respectively. The results of this study show that the maximum value of lift-to-drag ratio occurred at degrees angle of attack and speed of 70m/s. These results demonstrate that the use of morphing wing improve the lift-to-drag ratio b 10%
compared to original wing. Finally, the numerical simulations are compared and show good agreement with the experimental results. This research also showed how morphing concept can be used as an alternative method for roll control instead of the traditional method of roll control (Aileron control surfaces).
Keywords:
Morphing Wing Variable Span and Sweep Numerical Method Wind tunnel
1 - .
[ Downloaded from mme.modares.ac.ir on 2023-12-10 ]
. ) (
. 1 ]
. [
.
. 2 ] .[
( )
. )
(
3 ] .[
.
. .
4 ] . [
5 ] : [
-
-
-
-
-
-
1
) .(
.
6 ] . [
1- UAV
(
) ( .
2
]
37 . [
.
-
4
)
(
58 ] . [
9 ] [
. .
131 31
. .
10 ] [ .
. 25
30
11 ] [ .
.
12 ] [ .
2/
3
5/
3 7/
54
) (
13 ] [ .
14 30 14 ]
- [
6
-
27 60 000
75000 15 ]
[ .
2- Rolling Moment 3- Aileron 4- Low-Speed Loiter 5- High-Speed Dash
6- High Altitude Long Endurance(HALE)
[ Downloaded from mme.modares.ac.ir on 2023-12-10 ]
.
16 ] [
-
. 10 4
30 .
17 ] [ . 44
%
) 22 22
. (
5/
5 18 ]
[
. .
19 ] [
. -
20 ] [ .
121 ] [
2.
. 22
%
13 %
5/
6 % 28
% 10 %
.
.
.
. .
.
) (
. .
1- Flapping Wing
2- Medium Altitude Long Endurance unmanned Air Vehicles
.
3 4
5
2 -
.
1 200 × 80
× 80
100
2/
0 .
.
. 2
. .
.
1
2
3- Range 4- Endurance 5- Thrust Required
[ Downloaded from mme.modares.ac.ir on 2023-12-10 ]
.
. .
.
- .
. 3
5/
1 .
3
22
].
[- :
. 2/
0
- :
( ) .
3/
0 .
.
- :
2/
0
. 60
) 9/
59 - 1/
60 (
3
]
22
[
3 -
.
.
. . .
"
212 64
"
) (
33
25 20
4
. .
. 4
4 -
.
( )
) .
4 24 ( .
( )
. ( )
5
5 -
.
.
. .
6
6 -
.
50 60 70
500,000 750,000
. 33
45 10
(
4 - 18 .
1- NACA64A212
[ Downloaded from mme.modares.ac.ir on 2023-12-10 ]
- -
4
- -
)
5
- 33 -
6
[ Downloaded from mme.modares.ac.ir on 2023-12-10 ]
2000
. 4
500
. 4
10 .
1 .
7 -
.
) 15
. (
. 2.4.6
.
) 85500
( .
1
- .
2
.
- .
.
( .
7
5 6 5
/ 000 / 200 /2
8 33
.
( .
.
7 .
1
)
50 60 70
) 33
45
) 1/
0
) 4
- 18
1- Sparat-Allmaras 2- Simplec
9
45 70
100 .
10 33
. .
. . 6
8 -
.
7
8
[ Downloaded from mme.modares.ac.ir on 2023-12-10 ]
9
10
2
- 8
4 - 10
50
60 70 50
70 .
.
11 33 50
100 .
.
. .
.
12 45 70
. .
. .
) 1 ( 23
].
[) 1 (
= C AR e
13 45
100
50 70 .
. .
14 45 70
100
6 .
15 45 100
50 70 .
. .
6
16
50
100
33 45
. 17
70 100
33 45
18 50 100
33 45
[ Downloaded from mme.modares.ac.ir on 2023-12-10 ]
11 14
12 15
13 16
[ Downloaded from mme.modares.ac.ir on 2023-12-10 ]
18 17
9 -
2 .
23
]:
[) 2 (
= 1 ln( )
) 3 ( ( ) =
( )
) 4 (
=
) .
3
(
.
3
.
8/
13
7/
13 6
.
) 2 ( 3
4
.
4
6/
13
5/
13 )
5 ( 23
]:
[) 5 (
= 2 2
. . . .) 5
(
( )
( ) 23
]:
[) 6 ( (
.) = (
,)
,
) 6 (
( ) .
) 5
(
5 .
5 85 /8
17 /8
2
(
311
/0 0453 /0 135
/2 -
-
-
33 404
/0 04808 /0 395 /3 30
14 /6 0
45 3547
/0 04578 /0 748 /2 54
/ 35 47
/6 36
[ Downloaded from mme.modares.ac.ir on 2023-12-10 ]
3
33
50
3/
12 6
70 8/
13
50
5/
13 6
70 7/
13
45
50
8/
9 6
70 5/
11
50
4/
10 6
70 5/
12
4
50
70
33
1/
12 6/
13
13 5/ 13 3/
45
6/
9 3/
11
2/
10 3/
12
5
50
70
33
82 /6 85
/8
76
/7 17
/8
45
53 /4 9/
7
44
/5 19
/6
10 -
.
. .
)
( .
( ) 7 ( 24
]:
[) 7 (
= × ( ) × × × × ) 7 ( 6
. 6
6 .
6
)
10 6
4
) 692 /0 667 /0 449 /0 50
33
415 /1 247 /1 917 /0 70
5/
0 3/
0 2/
0 50
98 /0 588
/0 392
/0 70
685 /0 460 /0 442 /0 50
45
045 /1 913 /0 627 /0 70
475 /0 285
/0 19
/0 50
931 /0 559
/0 372
/0 70
[ Downloaded from mme.modares.ac.ir on 2023-12-10 ]
11 -
.
.
50 60 70
500,000 750,000
.
1 - 6/
13 5/
13
85 /8 17 /8 .
2 - 8/
13
7/
13 6
70
3 -
.
4 -
5 -
12 -
b
c
C
( )
C (
C
C
E
e
R
S
V
13 -
[1] N. Kudva, Morphing Wings: From Concept to Reality, MAE RADUATE SEMINAR SERIES April 2007.
[2] P. Joshi, S. Tidwell, A. Crossley, s. Ramakrishnan, Comparison of Morphing Wing Strategies Based Upon Aircraft Performance Impacts, 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics Materials Conference, 19 22 April 2004.
[3] G.C. Chattopadyay, B. Jony, A. Acharya, An Analysis on Wing Morphing, Proceedings of the Global Engineering Science and Technology Conference 28-29 December 2012
[4] A.R. Rodriguez, Morphing Aircraft Technology Survey, 45th AIAA Aerospace Sciences Meeting and Exhibit, -11 January 2007.
[5] D. Artzi, Morphing Wing Aircraft, October 2009.
[6] I. Chopra, Review of State of Art of Smart Structures and Integrated Systems, AIAA Journal 2002.
[7] R.M. Ajaj, E.I. Saavedra Flores M.I. Friswell, G. Allegri, B.K.S. Woods, A.T.
Isikveren, W.G. Dettmer, The Zigzag wingbox for span morphing wing, Aerospace Science and Technology 18 December 2012.
[8] S. Barbarino, O. Bilgen, R.M. Ajaj, M.I. Friswell, D.J. Inman, Review of Morphing Aircraft, Journal of Intelligent MaterialSyatems and Structures Vol. 22 June 2011.
[9] D.A. Neal, M.G. Good, C.O. Johnston, H.H. Robertshaw, W.H. Mason, D.J.
Inman, Desing and Wind-Tunnel Analysis of Fully Adaptive Aircraft Configuration, 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 19-22 April, 2004.
[10] J.S. Bae, T.M. Seigler, D.J. Inman, Aerodynamic and Static Aeroelastic Characteristics of Variable-Span Morphing Wing,’ Journal of Aircraft 2005.
[11] D. Grant, M. Abdulrahim, R. Lind, Flight Dynamics of Morphing Aircraft Utilizing Independent Multiple-Joint Wing Sweep, Proceedings of AIAA Atmospheric Flight Mechanics Conference and Exhibit 21-24 August, 2006.
[12] C. Han, K. Ruy, S. Lee, Experimental Study of Telescopic Wing Inside Channel, Journal of Aircraft 2007.
[13] P. Gamboa, P. Aleixo, J. Vale, F. Lau, A. Suleman, Design and Testing of Morphing Wing for an Experimental UAV, 01 NOV 2007.
[14] M.J. Scott, J.D. Jacob,S.W. Smith,L.T. Asheghian, J.N. Kudva, Development of Novel Low Stored Volume High-Altitude Wing Design, 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, andMaterials Conference 4- May, 2009.
[15] A.Y. Sofla, S.A. Meguid, K.T. Tan, W.K.Yeo, Shape Morphing of Aircraft Wing: Status and Challenges,’’, Materials and Design 2010.
[16] J. Vale, A. Leite, F. Lau and A. Suleman, Aero-Structural Optimization and Performance Evaluation of Morphing Wing with Variable Span and Camber, Journal of Intelligent Materials, Systems and Structures 2011.
[17] R.M. Ajaj, E.I. Saavedra Flores M.I. Friswell, G. Allegri, B.K.S. Woods, A.T.
Isikveren, W.G. Dettmer, The Zigzag wingbox for span morphing wing, Aerospace Science and Technology 18 December 2012.
[18] C.S. Beaverstock, R.M. Ajaj, M.I. Friswellz, R.D. Breukerx, N.P.M. Werter, Optimizing Mission Performance for Morphing MAV, Ankara International Aerospace Conference 11-13 September 2013
[19] A. Probst, T. David, K. Kochersberger, Design and Flight Test of Morphing UAV Flight Control System, 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 07
10 January 2013
[20] G. Zi-Wu, Y.Y. Long-Liang, Study on Aerodynamics and Mechanisms of Elementary Morphing Models for Flapping Wing in Bat Forward Flight, Arshiv: 1403.6824v1 [physics. lu-dyn] 27 Mar 2014.
[ Downloaded from mme.modares.ac.ir on 2023-12-10 ]
[21] R.M. Ajaj, M.I. Friswell, E.I. Saavedra Flores, A. Keane, A.T. Isikveren, G.
Allegri, S. Adhikari, An integrated conceptual design study using span morphing technology, Journal of Intelligent Material Systems and Structures, vol. 25, No 8, PP. 989-1008, May 2014 .
22 ] [ 1390
.
[23] J.D. Anderson, Aircraft Performance and Design McGraw-Hill, pp. 199- 314, 1999.
[24] J.J. Henry, Roll Control for UAVs by Use of Variable Span Morphing Wing Master of Science, pp. 24-30, 2005.
[ Downloaded from mme.modares.ac.ir on 2023-12-10 ]