• Tidak ada hasil yang ditemukan

ʇ|ÀÆ» ®Ì¿Z°»

N/A
N/A
Protected

Academic year: 2024

Membagikan "ʇ|ÀÆ» ®Ì¿Z°»"

Copied!
11
0
0

Teks penuh

(1)

mme.modares.ac.ir

1 2

*

3

1 -

2 -

3 -

* 143

- 14115

[email protected]

08 :

1393

06 :

1393

: 05 1394

.

. 3

2 .

.

3 .

. 4 -

. .

. .

Variable Thickness Supersonic Airfoil Post flutter with plunging and pitching free play and Non-linear Damping and Stiffness

Hamid Moosazadeh

1

Behzad Ghadiri Dehkordi

1*

Puria Zarifian

2

1- Department of Aerospace Engineering, Tarbiat Modares University, Tehran, Iran 2- Department of Aerospace Engineering, Amirkabir University, Tehran, Iran

P.O.B. 14115-143 Tehran, Iran, [email protected]

A RTICLE I NFORMATION A BSTRACT

Original Research Paper Received 29 December 2014 Accepted 25 February 2015 Available Online 25 April 2015

The application of wing and stabilizer in aerospace vehicle is vitaly important to stability and flight motion. In this study nonlinear 2D wind is estimated. Nonlinear damping and stiffness with freeplay in plunging and pitching motion is assumed. 2

nd

order Damping nonlinearity and 3

rd

order stiffness nonlinearity in pitching and plunging motion is assumed. Fully nonlinear structure with nonlinear 3

rd

order piston theory aerodynamic is assumed for the first time and result evaluated with different references. The equations are defined with Hamilton principle with the use of kinetic and potential energy and virtual work. They are solved in the state space via the ruge-kuta numerical method to determine chaotic and limit cycle oscillation motion of supersonic airfoil. The result show that as the speed increases, the behavior of 2D wing is softening type with the use of nonlinear rotational stiffness. But, It shows hardening type with the use of transversal nonlinear stiffness. The effect of transversal and rotational freeplay is more complicated than other parameters and increases instability in low speed. In other hand the stability increases with freeplay in high speed. As shown, increased velocity decrease damping effect in post flutter behavior.

Keywords:

Non-linear stiffness Non-linear damping Freeplay

Limit cycle

double-wedge airfoil

1 -

. .

. .

[ Downloaded from mme.modares.ac.ir on 2023-12-06 ]

(2)

.

.

( )

)

] (

1 .[

2 ] [

. 3 ]

[

1 2

.

3

4 ]

[

.

. .

5 ] [

( )

4

] 7 .[

2

5

3 ] 8 .[

2

3

. ] 9

] [

10 [

] 11 [ )

3

. (

6

7

12 ] [

. 13 ]

[

. CFD

. 14 ]

[

1- Singular perturbation 2- Normal form

3- Incremental balance harmonic method 4- Hopf bifurcation

5- Freeplay 6- Hysteresis 7- Actuator

. 15 ]

[

. 16 ]

[

17 ] [

. 18 ]

[

. .

19 ]

. [

20 ]

. [

.

2 3 .

.

3

8

.

9 10

11

2 -

. 1

.

x-z

. ] 21 .[

t

h b

1

h hs s

Kh

K

ˆ

h

ˆ K K

m Ch

.

C S

I L

.

M

8- Plunging 9- Pitching 10- Bifurcation 11- Chaotic

[ Downloaded from mme.modares.ac.ir on 2023-12-06 ]

(3)

.

.

23 22 ]

. [

) 1 ) ( 2 ( 24 ]

. [

) 1 (

2

1 2

(

h h

) ( ) ( ) mh S c c h h F h L t

) 2 (

2

1 2

( ) ( )

EA

( )

S h I c c G M t

3 ) 3 ( 25 ]

. [

) 3 ( ( )

a

( )

b

( )

c

( )

F h F h F h F h ( )

a

( )

b

( )

c

( )

G G G G

) 4 (

) 4 (

3

3

( ) 0 , ( ) 0 ,

ˆ

( ) 0 ,

ˆ

h h s

a b

h h s

h s s

c s s

h s s

K h K h

F h F h

K h K h

K h h h h

F h h h h

K h h h h

3

3

( ) 0 , ( ) 0 ,

ˆ

( ) 0 ,

ˆ

s

a b

s

s s

c s s

s s

K K

G G

K K

K G

K

) 5 (

) 5 ( S mx b

I m r b

2

2 - 1 - .

.

) 6 ( 29 ]

. [

) 6 (

2 ( 1)

1 1 . 2

k

k W

k

p p c

) 7 (

) 7 (

2 2

2

3

...

3

2 1 1

1 1

4

2 1 1 2 2

1 1 1

... 2 4

p k k k

p k k

p p W W

c c

k k

p k k

k k W

c )

7 (

30deg a£±

2

1

M M

) 7

) (

(

W

) 8 ( 26 ]

27 . [

) 8 (

, ,

z x t z x t

W U

t x

.

, , P U c

.

k

z

) 9

. (

) 9 (

, ( ) ( ) ( ) ( )

, ( ) ( ) ( ) ( )

u u

l l

z x t h t x ab t f x

z x t h t x ab t f x

f x ( ) .

) 9 ( )

8 ( )

10 (

) 11 ( 28 ]

. [

) 10 ( ,

( ) ( ) ( ) z x t

h t x ab t

t t

) 11 (

, ( )

( )

, ( ) ( )

u u

l l

z x t f x

x t x

z x t f x

x t x

) 12 (

ˆ 0

( )

ˆ 0

ˆ 0

( )

ˆ 0

u

l

f x b x

x b x

f x b x

x b x

) 12 ) ( 11 ( )

11 10 ) ( 9 (

) 9 ) ( 8 ( )

8 ) ( 7 ( .

L M

u l

) p p p (

) 13 (

( )

bb

( , ) L t p x t dx

) 14 (

( )

b

( , )( )

EA b

M t p x t x ab dx

2 - 2 -

) 15 (

) 15 (

* 2

*

*

, , , ˆ , ,

, 1 , ,

2

, 1 , , ,

4 ˆ ˆ

ˆ , ˆ ,

s h h

s

h h

h h

h

h h

h LF

h U t t

h

b b b b

c

c K

m I m

K m U U S

I b b mb

K

K V U

K K U

.

h

*

U

LF

[ Downloaded from mme.modares.ac.ir on 2023-12-06 ]

(4)

h

,

.

ˆ

) 16 (

) 16 ( 1

( ) 0 , ( ) 0 , 1

ˆ ( ) , 1

( ) 0 ( ) ,

ˆ ( ) , 2

s

a b

s

s

c s s

s

F F

n F

n 1

( ) 0 , ( ) 0 , 1

ˆ ( ) , 1

( ) 0 ( ) ,

ˆ ( ) , 2

s

a b

s

s

c s s

s

G G

n G

n )

16

) (

1 (

) 2 ( -

) 17 ) ( 18 (

) 17 (

2

* *

2 2 2

* * *

3 2 2 3

2 2

3 1 3

...

... 1

h h h

a b s c

n n

s s s

U e U

F F F

U U U

L

) 18 (

2

2 * *

2 2 2

* * *

3 2 2 3

...

...

2 2

1 1 1

3 1 3 1

.

a b s c

n n

s s s EA

r U U e

G G G

U U U

M

h

,

. e e

EA L

) M

19 ) ( 20 (

) 19 (

2 2 2

2 2

...

...

12 3 1 ˆ

12 1 ...3 ˆ

L a M

M

M a a

) 20 (

2 2

2 2

3 2 2

2 2

....

....

12 1

12 3

3 1 ˆ 2 1

1 ˆ

...

5 3

ˆ

M

EA

a a a

M r

M a M

a a a

a a a

) 19 ) ( 20

) (

17 ) ( 18 ( 2

- 3 -

4 24 29 ]

. [ ( , , , ) (0, ,0,0)

0

.

.

3 -

. 2 .

21 025

/0 28 ]

. [

3 .

6532 / 12 24 ]

. [

4 .

1 25 ]

. [

21000 2

) ˆ 0.025 (

3

M

7 8 9 10 11 12 13 14 15 16

8 10 12 14 16 18 20 22

-0.025 0 0.025 0.05 0.075 0.1

-0.004 -0.002 0 0.002 0.004

[ Downloaded from mme.modares.ac.ir on 2023-12-06 ]

(5)

(

ˆ 0.095

) 4 )

0, 0.5

s s

) (

ˆh 0,ˆ 10

(

1

25

/0

r

5/

0

h,

0 1/

0 1

4/

1

0 , 0

0 5

0 , 0

0

s, s

0 1

2

kgm-3

225 /1

c ms-1

340

ˆ

0

1/

0

b

m

5/

0

a

5/

0 -

, , rads-1

72

60 2/

1

ˆ ˆ,

125

4 -

4 - 1 -

.

) .

1 ) ( 2 (

.

...

4 - 2 -

. . .

.

5

15 /0 2/

0 3/

0 5/

0

. .

15 /0 .

. .

.

6 10

.

) .

1/

0 5/

1 (

.

5 )

ˆh 0,ˆ 0

(

-15 -10 -5 0 5 10 15

-0.2 -0.1 0 0.1 0.2 0.3

-1000 -750 -500 -250 0 250 500 750 1000

-100 -75 -50 -25 0 25 50 75 100

V V =0.2 V =0.3 V =0.5

-100 -50 0 50 100

-15 -10 -5 0 5 10 15

V =0.1 V =0.2 V =0.3 V =0.5

[ Downloaded from mme.modares.ac.ir on 2023-12-06 ]

(6)

. .

.

7 10

.

. )

2/

0 2/

1 (

. .

.

.

) 6 ˆ

h

10, ˆ 0 (

)

s s

0

) (

h

0 (

7 )

ˆh 0,ˆ 10

(

)

s s 0

) (

h 0

(

8 )

5

10 15 (

. 7/

0 .

.

. 5/

0 .

9 )

5 10 15 (

. 1

.

-1000 -750 -500 -250 0 250 500 750 1000

-100 -75 -50 -25 0 25 50 75 100

V V =0.2 V =0.3 V =0.5

x x

x

x

x

x

x x

x x x

x x

x

x x

x x

x

x

-10 -8 -6 -4 -2 0 2 4 6 8 10

-9 -6 -3 0 3 6 9 12 15

V =1.5 V =1 V =0.7 V =0.5 V =0.2 V =0.1

x x

x

x x x

x

x x x

x

x x x

x

x x x

x

x

x

-3 -2 -1 0 1 2 3

-0.12 -0.08 -0.04 0 0.04 0.08

0.12

V =1.2

V =1 V =0.7 V =0.5 V =0.3 V =0.2

x

x

x

x x

x

x

x x x

x

x x x

x x

x x

x

x

x

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05

V =1.2 V =1 V =0.7 V =0.5 V =0.3 V =0.2

x

[ Downloaded from mme.modares.ac.ir on 2023-12-06 ]

(7)

. .

8 .

0 7/

8 )

ˆ 5,10,15h

(

) 9

( )

8 .(

10 5 2/

0 5/

0 7/

0 .

. .

5

7/

0

.

1

9

( (

)

ˆ 5,10,15

(

7/

0

7/

0

5 ) 9

(

.

4 - 3 - .

.

. .

-15 -10 -5 0 5 10 15

-10 -7.5 -5 -2.5 0 2.5 5 7.5 10

V

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0 2 4 6 8 10 12 14

-0.9 -0.6 -0.3 0 0.3 0.6 0.9

-0.04 -0.02 0 0.02 0.04 0.06

V

0 0.2 0.4 0.6 0.8 1 1.2

0 1 2 3 4 5 6

[ Downloaded from mme.modares.ac.ir on 2023-12-06 ]

(8)

ˆ 5h

10 )

ˆh 5,ˆ 0

) (

ˆh 0,ˆ 5

(

11 2/

0 5/

0 5/

1 .

5 05

/0 1

. 2/

0 0 01 /0 02 /0

. .

5/

0 .

.

. 5/

1 .

.

0 2/

0 5/

1 5/

11

) 0,0.01,0.02

) (

h

0 (

) ˆ

h

5, ˆ 5

) (

0.05, 1

s s

(

12 01

/0 02 /0 0

.

5/

0 0

.

5 05

/0 1

0 0.04 0.08 0.12 0.16 0.2

0 0.5 1 1.5 2 2.5

V =0.7 V =0.5 V =0.2

| |

V

0 0.3 0.6 0.9 1.2 1.5

0 0.03 0.06 0.09 0.12 0.15

-0.2 -0.1 0 0.1 0.2

-0.04 -0.02 0 0.02 0.04

-1 -0.5 0 0.5 1

-0.1 -0.05 0 0.05 0.1

-9 -6 -3 0 3 6 9

-4 -3 -2 -1 0 1 2 3 4

[ Downloaded from mme.modares.ac.ir on 2023-12-06 ]

(9)

. 01

/0

20 20 -

. . 02

/0

. 20

20 -

20 -

. .

4 - 4 -

( )

0.01

0.02

12 5/

0 )

h 0

(

)

h 0

(

e

)

20,5,1, 5, 10, 20

) (

e

ˆh 5,ˆ 5

(

)

0.05, 1

s s

(

ˆh 10,ˆ 10

) 0 5/ 13

(

)

0, 0,1 ,1.5 ,2 ,2.5

s s

(

13 5/

0

10 .

.

.

14 10

0 10 .

2/

0 .

. .

5/

0 .

2/

0 5/

0 .

. .

4 - 5 -

.

.

15 1

5 5

x x

x x x

x

x

x

x

x x x

x x

x

x

x

x x x

-1 -0.5 0 0.5 1

-0.1 -0.05 0 0.05 0.1 0.15 0.2

e =20 e =5 e =1 e =-5 e =-10 e =-20

x

x x x

x

x

x x x x

x x x x x

x x

x

x

x x

-1.2 -0.8 -0.4 0 0.4 0.8 1.2

-0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

e =20 e =5 e =1 e =-5 e =-10 e =-20

x

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

-0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1

[ Downloaded from mme.modares.ac.ir on 2023-12-06 ]

(10)

0 2/

0 5/

14 2/

0 5/

0

5 .

.

5 1

.

5 - .

. 3

2

(

ˆh 0,ˆ 5

)

( ˆ

h

5, ˆ 0 )

15 1

)

ˆ 0,0.01,0.03,0.08

(

3

. .

.

- .

- .

- .

.

-

- .

.

x x x x x x

x x x x x

x x x x x x x x x

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

-0.01 -0.005 0 0.005 0.01 0.015 0.02 0.025

x

x x x

x xx

x x

x

xx x

x x

x x

x

x x x

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

-0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1

x

-1.5 -1 -0.5 0 0.5 1 1.5

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

-15 -10 -5 0 5 10 15

-10 -5 0 5 10 15

[ Downloaded from mme.modares.ac.ir on 2023-12-06 ]

(11)

- .

.

- .

6 -

a

b c

C

h

C

h

, e e F h ( ) G ( ) a , h

I K

h

K L M

m

r

S

) U ms

-1

(

V

,

s

,

s

ˆ ˆ

h

,

h

,

7 -

[1] P.Marzocca, L. Librescu, W.A. Silva, Flutter, post-flutter and control of supersonic 2-D lifting surface, Journal of Guidance, Control, and Dynamics, Vol. 25, No. 5, pp. 962-970, 2002.

[2] J.K. Liu, L.C. Zhao, Bifurcation analysis of airfoils in incompressible flow.

Journal of Sound and Vibration, Vol. 154, pp. 117-124, 1992.

[3] S.A. Morton, P. S. Beran, Effects of structural nonlinearity in the bifurcation analysis of transonic airfoil flutter, AIAA Fluid Dynamic Conference New Orlean, American Institute of Aeronautics and Astronautica, 1996.

[4] H.C. Gilliatt, T.W. Straganac, A.J. Kurdila, Nonlinear aeroelastic response of an airfoil, In Proceedings of the 35th Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 1997.

[5] Z.C. Yang, L.C. Zhao, Analysis of limit cycle flutter of an airfoil in incompressible flow, Journal of sound and vibration, Vol. 123, pp. 1-13, 1988.

[6] L. Librescu, P. Marzocca, W.A. Silva, Supersonic/Hypersonic flutter and postflutter of geometrically imperfect circular cylindrical panels, Journal of Spacecraft and Rickets, Vol. 39, No. 5, pp. 802-812, 2002.

[7] L. Librescu, Aeroelastic stability of orthotropic heterogeneous thin panels in the vicinity of the flutter critical boundary, part one: Simply supported panels, Journal of Mecanique, Vol. 4, No. 1, pp. 51-76, 1965.

[8] D.S. Woolston, H.L. Ruayan, R.E. Andrews, An investigation of effects of certain types of structural nonlinearities on wing and control surface flutter, Journal of Aeronautic Sciences, Vol. 24, No. 1, pp. 57-63, 1957.

[9] D. Tang, E.H. Dowell, Comparison of theory and experiment for non-linear flutter and stall response of helicopter blade. Journal of Sound and Vibration, Vol. 165, No. 2, pp. 251-276 1993.

[10] T. O’Neil, T.W. Strganac, Aeroelastic response of rigid wing supported by nonlinear springs, Journal of Aircraft, Vol. 35, No. 3, pp. 205-334, 1999.

[11] B.H.K. Lee, S.J. Price, Y.S. Wong, Non-linear aeroelastic analysis of airfoils bifurcation and chaos, Progress in Aerospace Sciences, Vol. 35, No. 3, 1999.

[12] Y.R. Yang, KBM method of analyzing limit cycle flutter of wing with an external store and comparison with wind-tunnel test. Journal of Sound and Vibration, Vol. 187, pp. 271-280, 1995.

[13] Y.R. Yang, L.C. Zhao, Sub-harmonic bifurcation analysis of wing with store flutter. Journal of Sound and Vibration, Vol. 157, pp. 477-484, 1992 [14] D. Dessi, F. Mastroddi, Limit-cycle stability reversal via perturbation and

wing-flap flutter. Journal of Fluid and Structures, Vol. 19, pp. 765-783, 2004.

[15] D. Dessi, F. Mastroddi, L. Morino, Limit-cycle stability reversal near Hopf bifurcation with aeroelastic applications, Journal of Sound and Vibration, Vol. 256, pp. 347-365, 2002.

[16] S.L. Lau, W.S. Zhang, Nonlinear vibration of piecewise linear systems by incremental harmonic balance method. Journal of Applied Mechanics, Vol.

59, pp. 153-160 1992.

[17] C. DengQing, N. Zhao, Active control of supersonic/hypersonic aeroelastic flutter for two-dimensional airfoil with flap, Science china Technological Sciences, Vol. 54, No. 8, pp. 1943-1953, 2011.

[18] N. Yaobin, W. Zhongwei, Z. Weihua, Flutter analysis of supersonic composite airfoil skin by using the differential quadrature method, Mechanics of Composite Materials, Vol. 48, No. 5, 2012.

[19] A. Algaba, F. Fernandez-Sanchez, M. Merino, A. Rodriguez-Luis, Comments on the paper “Chaotic motions of two-dimentional airfoil with cubic nonlinearity in supersonic flow”, Aerospace Science and Technology, Vol. 28, pp. 431-434, 2013.

[20] M. Ghorevshi, R. Cummings, Challenges in the aerodynamics modeling of an oscillating and traslating airfoil at large incidence angles, Journal of Aerospace Science and Technology, Vol. 28, pp. 176-190, 2013.

[21] Y.C. Fung, The theory of aeroelasticity, John Wily Sons, Inc, New York, 1955.

[22] G.R.Abdollahzade M. Bayat ,M. Shahidi ,G. Domairry M. Rostamian, Analysis of Dynamic Model of Structure with Nonlinear Damped Behavior, Journal of Engineering and Technology, Vol. 2, No. 2, pp. 160- 168, 2010.

[23] S.L. Han, T. Kinoshita, Nonlinear Damping Identifcationin Nonlinear Dynamic System Based on Stochastic Inverse Approach, Mathematical Problems in Engineering 2012.

[24] G. Zheng, Y. Yang, Chaotic Motions And Limit Cycle Flutter Of Two- Dimensional Wing In Supersonic Flow, Acta Mechanica Solida Sinica,Vol.

21,No. 5, pp. 441-448, 2008.

[25] L. Abbas, Q. Chen, K. O’Donnell, D. Valentine, P. Marzocca, Numerical studies of non-linear aeroelastic system with plunging and pitching freeplays in supersonic/hypersonic regimes, Aerospace Science and Technology Vol. 11, pp. 405-418, 2007.

[26] H. Ashley, G. Zartarian, Piston theory new aerodynamic tool for the aeroelastician, Journal of the Aerospace Science Vol. 23, No. 10, pp. 1109- 1118, 1956.

[27] B.J. Thuruthimattam, P.P. Friedmann, J.J. McNamara, K.G. Powell, Modeling approaches to hypersonic aeroelasticity, ASME 2002.

[28] P.P. Friedmann, J.J. McNamara, B.J. Thuruthimattam, I. Nydick, Aeroelastic analysis of Hypersonic vehicles, Journal of Fluid and Structures, Vol. 19, pp. 681-712, 2004.

[29] H. Moosazadeh, B. Ghadiri Dehkordi, M. Rasekh, 2D Curved plate Non- linear vibration and Aeroelastic analysis within-plane and Supersonic Aerodynamic load in Time domain, Mechanics Journal of Tarbiat modares Vol. 14, No. 15, pp. 405-413, 2014. (In Persian)

[ Downloaded from mme.modares.ac.ir on 2023-12-06 ]

Referensi

Dokumen terkait

Fe3O4 Design and construction of thermal conductivity measurement device and measuring of magnetic nanofluids thermal conductivity Hadi Kargarsharifabad1* Morteza

This method, based on four specifications, proper cavitation number in pumps, especially in oxidizer component, power balance between pumps and turbines, strength of material in main

: Mathematical and Numerical Modeling along with the Stability Analysis of Liquid Propellant Rocket Engine Cut-off Valve Mohammad Shafiey Dehaj1 Reza Ebrahimi2,Hassan

6 Different parameters effect on projectile velocity and maximum projectile base pressure: a initial light gas pressure and rupture disk pressure on velocity b initial light gas

Using this model and the experimental static and quasi- static results gathered from different authors in range of0.01s viscoplastic model was obtained which can predict the polymer

Rahimi, combined experimental and computational study on the melting behavior of medium temperature phase change storage material inside shell and tube heat exchanger, International

Melt Behavior and Shrinkage Force Effect of Al Melt in Al/Mg Bimetal Cast via Centrifugal Casting Morteza Sarvari, Mehdi Divandari School of Metallurgy and Materials Engineering, Iran

8 / 10 % The Effect of Cutting Parameters and Vibration Amplitude on Cutting Forces in Vibration-Assisted Side Milling Process of Al7022 Aluminum Alloy Mohammad Mahdi