• Tidak ada hasil yang ditemukan

ʇ|ÀÆ» ®Ì¿Z°»

N/A
N/A
Protected

Academic year: 2024

Membagikan "ʇ|ÀÆ» ®Ì¿Z°»"

Copied!
8
0
0

Teks penuh

(1)

mme.modares.ac.ir

1

2 3

* 4

5

1 -

2 -

3 -

4 -

5 -

* 1656983911

[email protected]

23 :

1392 1392 07 :

: 26 1393

. .

- .

.

) (

. 13

.

. .

:

Mathematical and Numerical Modeling along with the Stability Analysis of Liquid Propellant Rocket Engine Cut-off Valve

Mohammad Shafiey Dehaj1 Reza Ebrahimi2,Hassan Karimi3* Seyed Mahdi Abtahi4 Ali Kalabkhani

1- Department of Aerospace Engineering, K. N. Toosi University of Technology, Tehran, Iran 2- Department of Aerospace Engineering, K. N. Toosi University of Technology, Tehran, Iran 3- Department of Aerospace Engineering, K. N. Toosi University of Technology, Tehran, Iran

4- Department of Industrial and Mechanical Engineering, Qazvin Branch of Islamic Azad University, Qazvin, Iran 5- Department of Mechanical Engineering, University of Science and Technology, Tehran, Iran

P.O.B. 1656983911, Tehran, [email protected]

ARTICLEINFORMATION ABSTRACT

Original Research Paper Received 14 September 2013 Accepted 28 December 2013 Available Online 17 September 2014

In this work, governing equations of the feed line, cut-off valve, and the starter system are analyzed mathematically and numerically. In the mathematical solution, the stability of the valve system is considered using the Laplace transform along with the linearization of the equations of the system. According to parameter design of the feed pipe–valve system, the system demonstrates the stable behavior in the effective parameter of the valve system on the basis of the Nyquist and Bode stability criterion. In the numerical solution, the steady state behavior of the cut-off valve is simulated during the cut-command. Then the rate of the pressure variation, mass flow rate through of the valve, gas pressure of the starter system, and the upstream pressure of the valve (water hammer) are considered based on the valve's poppet motion. The comparison of the simulation results with the experimental data depicts only 13 percent error in the mass low rate through of the valve. In the last time of the closing valve, there is no variation in the mass flow rate in the valve due to the excessive loss factor of the valve when the valve approximately is closed. The results show that the closure of the cutoff valve shall be provided in accordance with allowable maximum pressure of the hydraulic shock on the established.

Keywords:

Cut-off Valve Mathematical Modeling Liquid Propellant Rocket engine Stability Analysis

1 - .

. .

[ Downloaded from mme.modares.ac.ir on 2023-12-09 ]

(2)

.

.

. ...

.

.

) ( .

.

.

.

.

. . .

. .

1 ) (

] 2 [ .

) (

.

) ( .

...

. .

) 40

%

] 3 .([

.

1- Cutoff Impulse

1 - 1 -

.

. .

1964 .

.

]

4 [.

1983 -

.

] 5 [.

1978

] 6 [.

1986 1990 .

.

] 8 [.

1987 ]

9 [ .

] 10 [.

1978 -

.

[ Downloaded from mme.modares.ac.ir on 2023-12-09 ]

(3)

. ]

11 [.

1998

] 12 13 .[

1998 ] 14 [.

2013 -

. ]

15 .[

) (

. .

.

2 - 1 .

.

1

. . )

1 ] ( 14 :[

) 1 (

2

0 c 1 2 p 1

d x2 dx

m f F kx A p p A p

dt dt

1

V1

V2

) 2 ( ) 3 ] ( 14 :[

min

mval

mout

) 4 ( ) 6 ( ] 16 :[

) 4 (

in d 2 in 1

m C A p p

) 5 ( mval Cd,val d xc 2 p1 p2

) 6 (

out d out 2 2 out

m C A p p

)

( )

7 ( ) 8 ] ( 17 [:

) 7 ( 1

p m

z A t

) 8 ( p a m2

t A z .

) 9 ( ) 11 ( :

) 9 (

j

0 0

p p

x , p

) 10 (

j

j 0

m z

m z

m ; l

) 11 (

in in 1; 1 1 2; 2 2 out p p p p p p p p p

1 8 .

) 12 ( ) 19 ( :

) 12 (

p c 0

0 1

0 2

0 0

c

A A p

m f p

k k kx

A p pkx

) 13 (

p 0

1 0 1 in val

0 0

V p A x m

E m m

) 14 (

1 0

2 val out

0

V p m

E m

) 15 (

in 1

in 2 in 2 in

m p

p p

) 16 (

1 2

val 2 1 2 1

x p pp

) 17 (

2

out 2 out

m p

p

) 18 (

0

0

m l m z p A t

) 19 (

2 0 0

a m m t Alp z

. 1

) 20 ( ) 24 ( :

) 20 (

2

1 1 2 2

1 0

m sk fk s L x K L p K L p

1-Laplace Transform

) 2 (

1 1

pdx V dp in val

A m m

dt E dt

) 3 (

2 2

val out

V dp m m E dt

[ Downloaded from mme.modares.ac.ir on 2023-12-09 ]

(4)

) 21 (

3 1 1

4 2 5 in 0

T sL xx K T s L p K L p K L p

) 22 (

3 2 2 4 1 0

K T s L p K L p

) 23 ( dL p 1

s L m dz

) 24 (

2 s L p dL m

dz

) 25 ( ) 28 ( .

) 25 ( ,

p A A A p

K kx K kx

0 p c c 0

1 2

0 0

) 26 ( ,

K K

p p p

3 4

1 in 1

1 1 1 1

2 2

) 27 (

, ml , a

K p p A l

2

5 1 2 2 1

in 0

1 2

) 28 (

, , x A x

V p V p

T T T

m E1 0 m E2 0 mp 0

1 2

0 0 0

23 24 )

29 ( ) 30 ( .

) 29 (

, , ,

p z 0 0 m z 0 0

) 30 (

, ,

, ,

, ,

m t p t p

m t p t p

in in

out out

in in

out out

23 24 )

31 ( ) 32 (

. ) 31 (

2

2 0

d L p dz p

) 32 (

2

2 0

d L m dz m

) 33 ( :

) 33 (

2 1 2 0

- /

) 34 ( ) 35 ( .

) 34 (

1cosh 2sinh

L p C z C z

) 35 (

3cosh 4sinh

L m C z C z

.

. )

36 (

) 38 ( :

) 36 (

1 0 3 0

C L p s, ;C L m s,

) 37 (

1 in

2 1 2 coth 0

sinh ,

C L m p s

) 38 (

2 in

4 1 2 coth 0

sinhL p ,

C m s

. )

39 ( :

) 39 (

in 1

in

L p atanhls

l a

L m 20

21 22 39 .

V1

V2

=0 V1

=0 V2

Ap=0

.

1=- 2 1; =0; =0; =02 x :

K K T T T

. )

40 (

) 42 ( :

) 43 ( .

) 43 (

n2

0 2 2

n n

in

tanh 2

L x lsa

W s K

L m s

) 44 :(

) 44 (

c 0

n 0 0

in 1

2 1 2

; ;

A m a

f A k x

k K

m km p

p

1

. 1

F

) 45 :(

) 45 (

0 0 0 0 0

c0 p 1 c 1 2

F kx A p A p p F )

46 (

.

) 46 ( ,

L x L F

W s W s

L F L x

1 2

W1(s)

W2(s)

.

) 9 16 (

W1

W2

) 47 ( ) 48 ( )

2 (:

) 47 (

1 2 1

W s( ) ms f s k

) 48 (

p c 1 c 2

2 A A L A L p

W s( ) L x

2 2

1-Block Diagram 2-Feedback

) 40 (

2

1 1 1 2

f 1

m s s L x K L p K L p

K K

) 41 (

3 1 4 2 5 in 0

K L p K L p K L p

) 42 (

3 2 4 1 0

K L p K L p

[ Downloaded from mme.modares.ac.ir on 2023-12-09 ]

(5)

3 -

.

1

) 3 ( .

W01 i

180

01 = 1 2

W i W i W i

.

W i1

) 49 ( :

) 49 ( 1 1 2 3

2

l j j

a a

tan , , , ,....,

) 50 (

) 50 (

0 0

p c 1 2

01 2 2

0 n

2 1

i

A A p p

W i

x m

i

= 2 -1 2; =1,2,3,....,

il a j j

i

n= k m

.

3 -

.

2

.

4 .

)

50 (

0 0

1- 2 0

p p X

.

Aval

Aout

.

Aout/Aval

0 0

1- 2 X0

p p

.

- 3

1-Nyquist 2-Bode Diagram

4 -

.

W i01

.

n

. i

= n

. i

i

.

W i01

.

V1

. )

(

.

. .

4 - 1

6

. ) 1 51

(

. .

.

) 51 ( :

) 51 (

2

c 1 2 p 1

d x2 dx

m f A p p A p p

dt dt

.

] 18 19 .[

) 52 ( ) 54 ( :

[ Downloaded from mme.modares.ac.ir on 2023-12-09 ]

(6)

5

6

7

) 52 (

2 0 1

ign

1 yy

p p ) 53 (

d0 ign

1 0

2

C y A

V RT

) 54 (

1

2 1

1

y

y y y

4 - 1 -

. )

( .

.

55 ] 20 .[

5 )

(

. . )

55 ( :

) 55 ( pmax Ua

52 54 ) 6 ( . 1

.

7 5 .

) .(

8 9 .

.

. .

8

.

.

] 16 [ .

9 .

.

5 - .

[ Downloaded from mme.modares.ac.ir on 2023-12-09 ]

(7)

8

9

.

. .

V1

. )

( .

. .

.

) (

. .

6 -

)

m2

(

A

)

ms-1

(

a

Cd

) (m

d

)

m-2

(

E

) (N

F

) (N

f

)

Nm-1

(

k

) (m

l

) (kg

m

)

kgs-1

(

m

)

kg m-1s-2

(

p

R

T

) (s

t

)

ms-1

(

u

)

m3

(

V

x

)

kgm-3

( )

kgm-1s-1

(

) (s

0

0

c f in

ign

max

n

out p val

[ Downloaded from mme.modares.ac.ir on 2023-12-09 ]

(8)

7 -

[1] K. D. Huzel, H. D. Huang Modern Engineering for Design of Liquid Propellant Rocket Engines (Progress in Astronautics and Aeronautics), American Institute of Aeronautics and Astronautics Inc Washington, pp.

23-27, 1992.

[2] G. p. Sutton, Rocket Propulsion Elements, Wiley-Inter Science Publication 7th Edition, pp. 401 409, 2000.

[3] M. Shafiey, R. Ebrahimi, H. Karimi, S. A. Jalai, A. Kalbakhani, Mathematical Modeling of Cutoff Impulse in Liquid propellant Engine, in The 12th Conference of Iranian Aerospace Society,Tehran, Iran, 2013. (In Persian) [4] V. A. Moshkin, Dynamic Process in Liquid Propellant Rocket Engines,

Moscov, Mashinostroenie, pp. 122-135, 1964.(in Russian)

[5] V. V. Prysnyakov, Dynamics of Liquid Propellant Rocket Engines and Propulsion Systems, Mashinostroenie, pp. 79-85, 1983 .(in Russian) [6] E. B. Volov, T. A. Siritsin, Static Dynamics in Liquid Propellant Rocket

Engines Systems Mashinostroenie, pp. 53-72, 1978. (in Russian) [7] A. E. Babkin, M. A. Bolov, Theoretical Fundamental of Automatic Control in

Liquid Propellant Rocket Engines Mashinostroenie, pp. 198-209, 1986. (in Russian)

[8] S. A. Rotofskei, E. V. Soloviev, Dynamic Analysis of Automatic Control in Liquid Propellant Rocket Engines Mashinostroenie, pp. 48-62, 1990. (in Russian)

[9] B. F. Glikman, Automatic Control in Liquid Propellant Rocket Engines Dynamic Systems Mashinostroenie, pp. 58-65 1987. (in Russian) [10] B. F. Glikman, Mathematical Model in in Hydraulic-Penumatic Systems

Mashinostroenie, pp. 113-129, 1986. (in Russian) [11] D. B. Diatlov, Shviyakov, A. A. Naymenkova, N. V, Theory of Automatic

Control in Liquid Propellant Rocket Engines Mashinostroenie, pp. 41-83, 1978. (in Russian)

[12] H. Karimi, B. F. Glikman, Effect of regulator parameters in Stability region of Rocket Engine, Ariatsionnaya Tkhika Journal pp. 26-35, 1998.

(in Russian)

[13] H. Karimi, B. F. Glikman, Dynamic Characteristic of Hydro-Mechanical Pressure Regulator, Ariatsionnaya Tkhika Journal pp. 41-53, 1999. (in Russian)

[14] E. C. Fitch, I.T. Hong, Hydraulic Component Design and Selection Bar Dyne Inc. Oklahoma, USA, pp. 37-43, 1998.

[15] M. Saadat Foumani, M. S. Sadooghi, Sensitivity analysis of sample flow control hydraulic servo valve, Modares Mechanical Engineering Vol. 13, No. 7, pp. 102-110, 2013. (In Persian)

[16] H. Karimi, A. Nasir harand, M. Beheshti, Dynamic and Nonlinear Simulation of Liquid propellant Engines, Journal of Propulsion and Power Vol. 19, No. 5, pp. 938 944, 2003.

[17] C. Manfletti, Transient Simulation of Liquid Rocket Engines: Step Towards More Educated propellant Choice Between Kerosene And Methane, Proceedings of the 2nd International Conference on Green Propellants for Space Propulsion (ESA SP-557). 7- June, Chia Laguna (Cagliari), Sardinia, Italy, Published on CDROM pp. 1-6, 2004.

[18] C. R. Howard, Rocket Thrust Termination Transients, ARS Journal Vol.

29, No. 6, pp. 406-409, 1958.

[19] M. J. Zucrow, J. P. Hoffman, Gas Dynamics John Wiley& Sons Inc, Volume 1,New York, 1976.

[20] M. H. chaudhry, Applied Hydraulic Transients Springer, Third Edition, New York, pp. 7-21, 2013.

[ Downloaded from mme.modares.ac.ir on 2023-12-09 ]

Referensi

Dokumen terkait

This method, based on four specifications, proper cavitation number in pumps, especially in oxidizer component, power balance between pumps and turbines, strength of material in main

In this study creep fracture mechanic parameter value of a CT specimen made of P91 steel was derived by application of Norton and Liu- Murakami creep behavior models and results were

Modeling and optimization of the quasi-steady operation of Solar Power Plant equipped with thermal energy storage system Vahid Khalilzadeh Bavil, Javad Mahmoudimehr Department of

Lin, Numerical simulation of 3D bubbles rising in viscous liquids using a front tracking method, Journal of Computational Physics, Vol.. Tryggvason, A DNS study of laminar bubbly flows

Karimi, Numerical investigation of heat transfer enhancement in a pipe partially filled with a porous material under local thermal non-equilibrium condition, International Journal of

Hutchings, Numerical studies of the influence of the dynamic contact angle on droplet impacting on dry surface, Journal of Physics of Fluids Vol.. Ganesan, On the dynamic contact angle