mme.modares.ac.ir
1
2 3
* 4
5
1 -
2 -
3 -
4 -
5 -
* 1656983911
23 :
1392 1392 07 :
: 26 1393
. .
- .
.
) (
. 13
.
. .
:
Mathematical and Numerical Modeling along with the Stability Analysis of Liquid Propellant Rocket Engine Cut-off Valve
Mohammad Shafiey Dehaj1 Reza Ebrahimi2,Hassan Karimi3* Seyed Mahdi Abtahi4 Ali Kalabkhani
1- Department of Aerospace Engineering, K. N. Toosi University of Technology, Tehran, Iran 2- Department of Aerospace Engineering, K. N. Toosi University of Technology, Tehran, Iran 3- Department of Aerospace Engineering, K. N. Toosi University of Technology, Tehran, Iran
4- Department of Industrial and Mechanical Engineering, Qazvin Branch of Islamic Azad University, Qazvin, Iran 5- Department of Mechanical Engineering, University of Science and Technology, Tehran, Iran
P.O.B. 1656983911, Tehran, [email protected]
ARTICLEINFORMATION ABSTRACT
Original Research Paper Received 14 September 2013 Accepted 28 December 2013 Available Online 17 September 2014
In this work, governing equations of the feed line, cut-off valve, and the starter system are analyzed mathematically and numerically. In the mathematical solution, the stability of the valve system is considered using the Laplace transform along with the linearization of the equations of the system. According to parameter design of the feed pipe–valve system, the system demonstrates the stable behavior in the effective parameter of the valve system on the basis of the Nyquist and Bode stability criterion. In the numerical solution, the steady state behavior of the cut-off valve is simulated during the cut-command. Then the rate of the pressure variation, mass flow rate through of the valve, gas pressure of the starter system, and the upstream pressure of the valve (water hammer) are considered based on the valve's poppet motion. The comparison of the simulation results with the experimental data depicts only 13 percent error in the mass low rate through of the valve. In the last time of the closing valve, there is no variation in the mass flow rate in the valve due to the excessive loss factor of the valve when the valve approximately is closed. The results show that the closure of the cutoff valve shall be provided in accordance with allowable maximum pressure of the hydraulic shock on the established.
Keywords:
Cut-off Valve Mathematical Modeling Liquid Propellant Rocket engine Stability Analysis
1 - .
. .
[ Downloaded from mme.modares.ac.ir on 2023-12-09 ]
.
.
. ...
.
.
) ( .
.
.
.
.
. . .
. .
1 ) (
] 2 [ .
) (
.
) ( .
...
. .
) 40
%
] 3 .([
.
1- Cutoff Impulse
1 - 1 -
.
. .
1964 .
.
]
4 [.
1983 -
.
] 5 [.
1978
] 6 [.
1986 1990 .
.
] 8 [.
1987 ]
9 [ .
] 10 [.
1978 -
.
[ Downloaded from mme.modares.ac.ir on 2023-12-09 ]
. ]
11 [.
1998
] 12 13 .[
1998 ] 14 [.
2013 -
. ]
15 .[
) (
. .
.
2 - 1 .
.
1
. . )
1 ] ( 14 :[
) 1 (
2
0 c 1 2 p 1
d x2 dx
m f F kx A p p A p
dt dt
1
V1
V2
) 2 ( ) 3 ] ( 14 :[
min
mval
mout
) 4 ( ) 6 ( ] 16 :[
) 4 (
in d 2 in 1
m C A p p
) 5 ( mval Cd,val d xc 2 p1 p2
) 6 (
out d out 2 2 out
m C A p p
)
( )
7 ( ) 8 ] ( 17 [:
) 7 ( 1
p m
z A t
) 8 ( p a m2
t A z .
) 9 ( ) 11 ( :
) 9 (
j
0 0
p p
x , p
) 10 (
j
j 0
m z
m z
m ; l
) 11 (
in in 1; 1 1 2; 2 2 out p p p p p p p p p
1 8 .
) 12 ( ) 19 ( :
) 12 (
p c 0
0 1
0 2
0 0
c
A A p
m f p
k k kx
A p pkx
) 13 (
p 0
1 0 1 in val
0 0
V p A x m
E m m
) 14 (
1 0
2 val out
0
V p m
E m
) 15 (
in 1
in 2 in 2 in
m p
p p
) 16 (
1 2
val 2 1 2 1
x p pp
) 17 (
2
out 2 out
m p
p
) 18 (
0
0
m l m z p A t
) 19 (
2 0 0
a m m t Alp z
. 1
) 20 ( ) 24 ( :
) 20 (
2
1 1 2 2
1 0
m sk fk s L x K L p K L p
1-Laplace Transform
) 2 (
1 1
pdx V dp in val
A m m
dt E dt
) 3 (
2 2
val out
V dp m m E dt
[ Downloaded from mme.modares.ac.ir on 2023-12-09 ]
) 21 (
3 1 1
4 2 5 in 0
T sL xx K T s L p K L p K L p
) 22 (
3 2 2 4 1 0
K T s L p K L p
) 23 ( dL p 1
s L m dz
) 24 (
2 s L p dL m
dz
) 25 ( ) 28 ( .
) 25 ( ,
p A A A p
K kx K kx
0 p c c 0
1 2
0 0
) 26 ( ,
K K
p p p
3 4
1 in 1
1 1 1 1
2 2
) 27 (
, ml , a
K p p A l
2
5 1 2 2 1
in 0
1 2
) 28 (
, , x A x
V p V p
T T T
m E1 0 m E2 0 mp 0
1 2
0 0 0
23 24 )
29 ( ) 30 ( .
) 29 (
, , ,
p z 0 0 m z 0 0
) 30 (
, ,
, ,
, ,
m t p t p
m t p t p
in in
out out
in in
out out
23 24 )
31 ( ) 32 (
. ) 31 (
2
2 0
d L p dz p
) 32 (
2
2 0
d L m dz m
) 33 ( :
) 33 (
2 1 2 0
- /
) 34 ( ) 35 ( .
) 34 (
1cosh 2sinh
L p C z C z
) 35 (
3cosh 4sinh
L m C z C z
.
. )
36 (
) 38 ( :
) 36 (
1 0 3 0
C L p s, ;C L m s,
) 37 (
1 in
2 1 2 coth 0
sinh ,
C L m p s
) 38 (
2 in
4 1 2 coth 0
sinhL p ,
C m s
. )
39 ( :
) 39 (
in 1
in
L p atanhls
l a
L m 20
21 22 39 .
V1
V2
=0 V1
=0 V2
Ap=0
.
1=- 2 1; =0; =0; =02 x :
K K T T T
. )
40 (
) 42 ( :
) 43 ( .
) 43 (
n2
0 2 2
n n
in
tanh 2
L x lsa
W s K
L m s
) 44 :(
) 44 (
c 0
n 0 0
in 1
2 1 2
; ;
A m a
f A k x
k K
m km p
p
1
. 1
F
) 45 :(
) 45 (
0 0 0 0 0
c0 p 1 c 1 2
F kx A p A p p F )
46 (
.
) 46 ( ,
L x L F
W s W s
L F L x
1 2
W1(s)
W2(s)
.
) 9 16 (
W1
W2
) 47 ( ) 48 ( )
2 (:
) 47 (
1 2 1
W s( ) ms f s k
) 48 (
p c 1 c 2
2 A A L A L p
W s( ) L x
2 2
1-Block Diagram 2-Feedback
) 40 (
2
1 1 1 2
f 1
m s s L x K L p K L p
K K
) 41 (
3 1 4 2 5 in 0
K L p K L p K L p
) 42 (
3 2 4 1 0
K L p K L p
[ Downloaded from mme.modares.ac.ir on 2023-12-09 ]
3 -
.
1
) 3 ( .
W01 i
180
01 = 1 2
W i W i W i
.
W i1
) 49 ( :
) 49 ( 1 1 2 3
2
l j j
a a
tan , , , ,....,
) 50 (
) 50 (
0 0
p c 1 2
01 2 2
0 n
2 1
i
A A p p
W i
x m
i
= 2 -1 2; =1,2,3,....,
il a j j
i
n= k m
.
3 -
.
2
.
4 .
)
50 (
0 0
1- 2 0
p p X
.
Aval
Aout
.
Aout/Aval
0 0
1- 2 X0
p p
.
- 3
1-Nyquist 2-Bode Diagram
4 -
.
W i01
.
n
. i
= n
. i
i
.
W i01
.
V1
. )
(
.
. .
4 - 1
6
. ) 1 51
(
. .
.
) 51 ( :
) 51 (
2
c 1 2 p 1
d x2 dx
m f A p p A p p
dt dt
.
] 18 19 .[
) 52 ( ) 54 ( :
[ Downloaded from mme.modares.ac.ir on 2023-12-09 ]
5
6
7
) 52 (
2 0 1
ign
1 yy
p p ) 53 (
d0 ign
1 0
2
C y A
V RT
) 54 (
1
2 1
1
y
y y y
4 - 1 -
. )
( .
.
55 ] 20 .[
5 )
(
. . )
55 ( :
) 55 ( pmax Ua
52 54 ) 6 ( . 1
.
7 5 .
) .(
8 9 .
.
. .
8
.
.
] 16 [ .
9 .
.
5 - .
[ Downloaded from mme.modares.ac.ir on 2023-12-09 ]
8
9
.
. .
V1
. )
( .
. .
.
) (
. .
6 -
)
m2
(
A
)
ms-1
(
a
Cd
) (m
d
)
m-2
(
E
) (N
F
) (N
f
)
Nm-1
(
k
) (m
l
) (kg
m
)
kgs-1
(
m
)
kg m-1s-2
(
p
R
T
) (s
t
)
ms-1
(
u
)
m3
(
V
x
)
kgm-3
( )
kgm-1s-1
(
) (s
0
0
c f in
ign
max
n
out p val
[ Downloaded from mme.modares.ac.ir on 2023-12-09 ]
7 -
[1] K. D. Huzel, H. D. Huang Modern Engineering for Design of Liquid Propellant Rocket Engines (Progress in Astronautics and Aeronautics), American Institute of Aeronautics and Astronautics Inc Washington, pp.
23-27, 1992.
[2] G. p. Sutton, Rocket Propulsion Elements, Wiley-Inter Science Publication 7th Edition, pp. 401 409, 2000.
[3] M. Shafiey, R. Ebrahimi, H. Karimi, S. A. Jalai, A. Kalbakhani, Mathematical Modeling of Cutoff Impulse in Liquid propellant Engine, in The 12th Conference of Iranian Aerospace Society,Tehran, Iran, 2013. (In Persian) [4] V. A. Moshkin, Dynamic Process in Liquid Propellant Rocket Engines,
Moscov, Mashinostroenie, pp. 122-135, 1964.(in Russian)
[5] V. V. Prysnyakov, Dynamics of Liquid Propellant Rocket Engines and Propulsion Systems, Mashinostroenie, pp. 79-85, 1983 .(in Russian) [6] E. B. Volov, T. A. Siritsin, Static Dynamics in Liquid Propellant Rocket
Engines Systems Mashinostroenie, pp. 53-72, 1978. (in Russian) [7] A. E. Babkin, M. A. Bolov, Theoretical Fundamental of Automatic Control in
Liquid Propellant Rocket Engines Mashinostroenie, pp. 198-209, 1986. (in Russian)
[8] S. A. Rotofskei, E. V. Soloviev, Dynamic Analysis of Automatic Control in Liquid Propellant Rocket Engines Mashinostroenie, pp. 48-62, 1990. (in Russian)
[9] B. F. Glikman, Automatic Control in Liquid Propellant Rocket Engines Dynamic Systems Mashinostroenie, pp. 58-65 1987. (in Russian) [10] B. F. Glikman, Mathematical Model in in Hydraulic-Penumatic Systems
Mashinostroenie, pp. 113-129, 1986. (in Russian) [11] D. B. Diatlov, Shviyakov, A. A. Naymenkova, N. V, Theory of Automatic
Control in Liquid Propellant Rocket Engines Mashinostroenie, pp. 41-83, 1978. (in Russian)
[12] H. Karimi, B. F. Glikman, Effect of regulator parameters in Stability region of Rocket Engine, Ariatsionnaya Tkhika Journal pp. 26-35, 1998.
(in Russian)
[13] H. Karimi, B. F. Glikman, Dynamic Characteristic of Hydro-Mechanical Pressure Regulator, Ariatsionnaya Tkhika Journal pp. 41-53, 1999. (in Russian)
[14] E. C. Fitch, I.T. Hong, Hydraulic Component Design and Selection Bar Dyne Inc. Oklahoma, USA, pp. 37-43, 1998.
[15] M. Saadat Foumani, M. S. Sadooghi, Sensitivity analysis of sample flow control hydraulic servo valve, Modares Mechanical Engineering Vol. 13, No. 7, pp. 102-110, 2013. (In Persian)
[16] H. Karimi, A. Nasir harand, M. Beheshti, Dynamic and Nonlinear Simulation of Liquid propellant Engines, Journal of Propulsion and Power Vol. 19, No. 5, pp. 938 944, 2003.
[17] C. Manfletti, Transient Simulation of Liquid Rocket Engines: Step Towards More Educated propellant Choice Between Kerosene And Methane, Proceedings of the 2nd International Conference on Green Propellants for Space Propulsion (ESA SP-557). 7- June, Chia Laguna (Cagliari), Sardinia, Italy, Published on CDROM pp. 1-6, 2004.
[18] C. R. Howard, Rocket Thrust Termination Transients, ARS Journal Vol.
29, No. 6, pp. 406-409, 1958.
[19] M. J. Zucrow, J. P. Hoffman, Gas Dynamics John Wiley& Sons Inc, Volume 1,New York, 1976.
[20] M. H. chaudhry, Applied Hydraulic Transients Springer, Third Edition, New York, pp. 7-21, 2013.
[ Downloaded from mme.modares.ac.ir on 2023-12-09 ]