• Tidak ada hasil yang ditemukan

جدایه‌های Rhizobium spp. به عنوان عوامل بیوکنترل مرگ گیاهچه لوبیا ناشی از Rhizoctonia solani

N/A
N/A
Protected

Academic year: 2023

Membagikan "جدایه‌های Rhizobium spp. به عنوان عوامل بیوکنترل مرگ گیاهچه لوبیا ناشی از Rhizoctonia solani"

Copied!
7
0
0

Teks penuh

(1)

: *

!

"#$%

: 3661843 -

E-mail: [email protected] 0912

Rhizobium spp.

Rhizoctonia solani

! !

*1

#$ % $ &' (

$ *+ 2 3

1 !" # " $%&' ( ')*

+ , "

'- (

.#

/0 1'2* !3 4 /

2 3

%#

7

)

9: ;

: 14 / 2 / 88 - A 'B ; : 24 / 3 / 90 (

- .

#

/0 F 'G % ( 4 H I 3

%J

$ !-

spp. +

Rhizobium

2*

K L $

(AG-4)

Rhizoctonia solani

M N *

G 'O $P+

" 90 ( Q

$ R2G S

!

/ ' !" $J (

O' ' % ! 9 O + ' H T L !I $ + $2U-

# V !

!

# W ': !

# G

! .

% Y

!- $

RH3 $ G!

!"

K L

% Z H[

"

( Q +

9"

.

$ !-

RH4 +

RH3) (RH6 RH6

$ A

% ' Z O'

!

#

+ W ': !

# V !

! ' '& ! .

\%#

&

]

" %#

$ R2G Q H[

$% ^(

# _

$

$ !- +

%

4!"

U

!`

a % U b& "

+

!"

' 9: G L

.

$ !-

RH4 + c: RH5

&

d G ')3 G U

% Z H[

! %"

. + $T G e d

$ !- +

%

%J '%

! ' $ N

U

" 90 Q

9 U $ R2G U

O !

!-

RH3 $ U 80

% a % 'U .

% Y

!+

' $ '

a %

$ !-

Rhizobium +

$ g $

+ U '"

2 S G !" $ 0 c

d

! . T Z Z

$ !- +

% '

' $ !

/:' ( 9 c

# h%J + O'

!

! S

$%: G

! '"

.

#/

0

solani :

Rhizoctonia Rhizobium

a % V'O' d 'O c #

'G % ( 9J

2

( )

*

$+ , ( -

Phaseolus vulgaris L.) (

./

!(

( /0 1 2 1

3 1%4 ( 5 67 "

1 8 .9

(Census of Agriculture, 2005). .

;1< 5 - 3

(*

= 3

>?

3 . 8 1? = !$ @ 5 !

= A "

- 2 % ( !(

* 3 B

* C - C D1 E(

* !FG -

5

Rhizoctonia solani Kühn. H I 8

1 .

"

(*

3 )

* ( "

2 1 1345

J % 1=K

3 L 1< 5 5 I 8

MC N1 O

(Etebarian, 2002)

.

! @ 3 G P$?Q

! C "

R + 3 *(

3 G

#$?Q - S

* B 1

* C - D1 E(

C

* B !FG

* C - B !I

* C - T( !9 D1( .

LTU -

(Agrios, 2005) (

Safaee et al..

(1999)

<

- 1(

- G 3 ( V

* 2 8

5 ? A 1C ! 3

W R + 2 + !( 2A AG-4

$ - X 1

D1 !9

C

* ( ) !FG

* . 2 1 .

8 ( , 1(

* R

(2)

? 8

% [

* 5 ( X

5 \5

% W !( ]

*

( ) E(

* 5 R/I 8 S !( . 8

1?

( "

* 3

. , 1

(Okhovvat, 1999)

. ] 1( 8

.;A Z8 G

? 2 *) -< - * * 3 G 8 3

1Y + TX9 5 1( !(

)A 2 K 3 ^ V -C

(A -C )A .98 1 5 -_

3 - * 5 1 5 3 =

. 35 98 ^ V

.

/*81% "* K L1` ZG 8 .=@ OT% 5 1

* abc% ^ V .*#*8 2 1(4 ( S !( - *

. B 35 98

8

!$ @ 2A 5 ! -

2 % !(

8 1(

( 31?8 G ( R + 2 + !(

* 8 ( 1?

* G1C 3 C

* G -

8 G 3 (*

d ) e 8

1 . ( X C

* 1 3 31?8 ( G 3

C ? A

* .

!$ @ 5 O

- G . 8

! 8 1?

3 *(

G . !?;1C 1I !@ % .

- 1(

G

. 2 9

8

R. leguminosarum !

Sinorhizobium meliloti Bradyrhizobium

japonicu

b; < !(

* . A

* M 3

$+

* ( !

* G1C 3

I K -

!( a$>?

[ @

Macrophomina3 G

Phoma

Fusarium

!(

8

(Ehteshamul-Haque & ?;

Ghaffar, 1993; Ozkoc & Deliveli, 2001)

.

X

* ,M G - 8

! 5 1C "

31?8 ( G 8 1?

3 *(

G

!(

8 - C

* 1 R : 1( .( I 3 8 ]

1< 5 "GA ) % a

*

*

(Carrillo & Del G ;

Rosario, 1992; Arora et al., 2001)

) %

*

? A - (*

% e*

(Chakraborty & Purkayastha, 1984; G

Ehteshamul-Haque & Ghaffar, 1993)

1c%

e

C

(Siddiqui et al., 2000; Siddiqui & Mahmoud, *

2001)

b) 3 . b

*

?

(Abdelaziz et al., e*

1996)

. .

bc%

*

? S !( 1_ 0 a

* ( - 5 L G !(

1

. !?;1C W

:

1 . 1(

- 1*fg%

31?8 ( G 3

Rhizobium [ @ 1(

3

R. solaniH I 1

5A J G h9 -

2 . 1(

- V1( 2 % -

! @ 3 G 1

Rhizobium -

) % spp.

* ( ? .*) G 3 K I _ -

1 J

5A G h9 -

3 . 1(

- 1*fg%

%

* ( E(

31?8 ( G

Rhizobium 3

spp.

8 ( 1?

* 3

1 1S

! Q$C J

$ 3 4

>% a*bc% "

i B

! @

!( a$>? , *( M

! C

R. etli (RH5) 3 G

R. leguminosarum bv.

phaseoli (RH3, RH4, RH6,RH7)

H I

(*

(AG-4) 1C

R. solani

8 ( !

* M - 2A 3 ( )

*

/f !(

* (

* ( ) E( M

*

$C jI M/

-

(Phaseolus vulgaris L. cv. Goli)

1I #?

.;1C .

! @ 3 G ( M

* ( H I ,

* ( ) E( 1C

*

%1% !(

* bc% ! k 5 ]

*

V b

^ 2 1=% \A

9K I 2 * X$8 -

1C

*C -X MB .+ 5 1C

1B % / lTW [

8 5 9 3 /< m(

*

>

- h9

2 1=%

.;

.

! " # !$

% $ ! "

&

'(

) O a( 7

Hagedorn et al.

(1989)

1?8 ( 3 G

!(

! W

!7b 3

!$W ; ( 5

/ 0 -?

1?

!/) 5

e?9%

3 G 1?B 3 0 3 c

*

PDAJ 8 .9 .

48

>( .+

e e ( H I 2 @ ! C1B 5

* 1C

1 8 M e?9%

3 G 1?B 3 1I .

1?B 3 G

R = % -X

H I 2 @ ! C1B 5

R. solani

.c%

Jo 1 X ( 2 . e?9%

3 G 1?B 3 3 26

!@

p * $ X

=h % ( 3

. 1(

3 b

!

C 5 ( I -

! @ G 5 R/I

* 2

!( H I !

1?B !/) 3

!$W ; G 8

$ - 31?8 ( G H I ! C1B %

5 31*C

* h

* 2 5A p 1( = A "

X

"

?0 67 1

% ( X 1h b 1C ! . 5A Z

l1< ]) I rT 8

; `%

-

% ! X .;1C , Y 1 .

(

* ( + ! , *

!- . $

/ (

!0 1

1(

3 1(

- ) % 2 %

*

* J % ;

! @ 3 G

( M

* 5A , O 5 Z

Alexander & Zuberer

(1991)

#?

. c

*

CAS J - CA e?9%

3 G

1?B 3

! -?

31?

5 % m B

.*$

G J % e

1. Potato dextrose agare 2. Chrome azurol S

(3)

5 t ) 8 .9 24

!?+

31?8 ( G W !(

!7b 3

b$%

* 6 . 31?B G 3 27

!@

p * $

X

=h % ( 3

. Y !) G 17I ./

- L 1<

31?8 ( G 17I !(

8

$ - 31?8 ( G 5 ! ) ?

-

1(

-

* h

* ( !/ c 5 ! "

X 1h

b 1C ! . 1( S !(

- ) % 2 %

* M A 5 % 1B j

J % 31?8 ( G c 5

*

SMA J ) 15 B ,1C

* 1

5 / 0 1 Q `+ ,1C 13

/ 9 CA ,1C e

)*

\A 1?

17b ( 8 .9

!7b 3 31?8 ( G 3 c "

* a( 7 J

et al. O

Maurhofer (1995)

#?

. 9%

*X R

( !) G

* L 1< u 1 8

$ - 31?8 ( G ) >; ! 9

* .

. = A 5 % 1B .

17I !( !) G 17I ./

8

$ - ( 8 1?

3

5 31*C .

G *) % 2 % "**>%

* 2d

*

*

(HCN)

J % lTW O 5 #? (

Alstrom

& Burns (1989)

1C , Y .

" !(

c 5 S

* J

*8 u (

(KB) - 0 3 4 / 4 ,1C TC

* ) 1G "

* 1?

c

* J 8 EU G 3

; W - 1 L1> $c !( !?9UA 8

]

5 8 (1 j

* B X*

1 e 5 / 0

%

#?

.

e?9%

3 G 1?B 3

; B J %

*

2 j$

X 1I % ( .

) % W

* G

* 2d

*

* 8

; W EU - ) u 5 L1> !( !?9UA

*

!( 5 !

8

(I),1

=I 3

"

=I (II)

3

%

*

(III) 1 1@A 3

v%

**

u 1 - (IV)

( .

"

Z 5A G l1< ]) I

rT 8

; `%

-

% ! X

.;1C , Y 1

* h

*

"

G 2 5A p 1(

X

?0 67 "

1

% (

X b 1h 1C ! .

"2 3

G E(

3 ( )

*

$C jI -

I ! !(

* ( !b

G

* w 8 1$

. j 5 / 2

#+ _ W -

c7 -

1? 17b \A ( =K [w

!? R

.

!(

M G S -

C =x

*

!( E( G !FG 48

1( .+

3 c

*

WA J 1

% J -X

X % ( 3

26 p * $ !@

=h 3

%

!9 1G x !K .

!?9UA S !(

5 3

!( E(

! @ 3 G C ? A

*

O 5 .

Weller & Cook

1. Skim milk agar 2. Water agar (1986)

( 8 - v%

**

#? 1 .

1(

3 S "

e

5 t ) 8 .9 48 1G !?+

e 5

! @ 3 G ( M

* ,

5A Z 3 c

* J 8

YMA .9 ) 10 ,1C

*

? 1 / 0 ,1C 8 1$

j e 1 Q `+ ,1C

2 / 0

#) ,1C

* M , 5 / 0

# ; ,1C 3

?B

* j

e ,1C 8 (1 8

$

* j 15 CA ,1C e

)*

\A 1?

17b ( T; !(

e G 3 100 -$*

31?*) 0 3 30

-$*

1?*) c 5

*

YMB J

!( Rb?

48

.+

X*

1 X .+1 ( % ( 120

I

*

!b

3 27 p * $ !@

?;1C 1I .

$ 3 G

( 8 1?

- 1? 5 #? ( d #

) !(

10 I

*

!b

6000g

(

$c ( ( \

e

;

* M d ) e I ( m; S !(

* EU $c

-

9?

.

$ 3 G ( 8 1?

- 1? ( Y d #

5 5 @ $c "

3 w

* ) $ 2 - 5

> @ ( = A

* . 109

× 1

$c e

W 8 (1 8 -

?

*

=% M) $ R

*

! . ( ) E(

* w 2 2 *

3 G

( 8 1?

-

!( [w !?Q

e .+

3

X*

.+1 ( 1 70

I

* !b 3

1I z %

?;1C .

% E(

*

$c 2 G

e W

8 (1 8 -

?

* ( I ; M) $ R 8

1?

3 !< U .

E(

1@ {1> !?9UA G 2

3 1?

9V G R e

.

=%

*

! b$% !

* H I 6

R. solani

O a( 7

Pal et

al.

(2001)

W .;1C

" !(

i B S e

5

8

I 5 ! .9

( H

* 1C 3 c

*

PDA J e

") 500 -$*

31?*) 0 3 4 D1( B ,1C

!9

( )

* 100 V 25 E( ,1C

*

% ( V [

8 T

1I .

!?#G !( ") 3

27

p * $ !@

X 1I % ( .

1VA

5 ,1C b$% !

* 5 !( RW 0 6 3

e

*8 V ,1C $

^

) %

* 1C !; _ M E( + ! 2 $C 1G

% ! ( X l1< ]) I 1 rT 8

; `%

- 8

!?

.

W `V

*

;

* M X

*

* - V

^ 5A

Z

@ 1

. A

.

3. Yeast mannitol agar 4. Yeast mannitol broth

(4)

@ 1 - W `V

*

;

* M X

*

* - V

^

#?

.

.; ( V PH ^

EC (ds/m) O.C

(%) N

(%) T.N.V

(%) P

(mg/Kg) K

(mg/Kg) Fe

(mg/Kg) Zn

(mg/Kg)

) - 6 / 7 4 / 1 6

/ 0 05 / 0 12

9 180

3 8

/ 0

2 $C W !( G e

5

* (A 4 ( 5 2

* 3

- .

!?#G ! 5 >(

!9 T !( G 5 .

\A 1

( !?

* 3 p 1( = A v% O

**

1

Kim et al. !?;

(1997)

5 ( - .;1C 1I .

b

* p G - 5 W !(

.;1C , Y 1 .

1#W

= C

* G 2 ( j) 2 G

* T+ } C )A j -

1

= 8 5 1?

10

% ( . )A !9 e

=I jV5 3

< !( !?V \ ?;A 8

5 1?

e -?

1?

3

!I <

. 2

= (*

5 1?9 10

% )A !9 jV5 ! % ( .

=I 3

< !( !?V \ ?;A 8

5 1?

e -?

1?

3

!I <

.

3

= 8 5 1?

20

%

=I jV5 ! ( . )A !9 3

! % < !( !?V \ ?;A -?

1?

3

!I <

.

4

= (*

5 1?9 20

% jV5 ! ( . )A !9

=I 3

% !?V \ ?;A

* w e*

( < !(

* 5 1?9

! -?

1?

3

!I <

.

5

= C D1

*

V 5 2 A 5 [B !FG

^

(Postemergence)

C <

*

!FG 8 i B 5 1?

-?

1?

. .

6

= B

* C - E(

C D1

* 5 2 A 5 R/I !FG

V

(Preemergence) ^ .

5 100

3

1 ×

= ==× m

) n DI (

% i

m i

( ~V

*

(DI) 3 5 #? ( W ] 01(

5 1;

1C !/ c 1 8

! - 2 % ( 8 j 8 5 2A 2 1

+ 100 W 8 ( 1?

* 3 !/ c .

ni

: C )A ~V -

C

*

!FG

:I

C

*

!FG

:m

C >%

*

!FG G 3

% X 1

1. Disease index

2 # 4 5 bc%

* b 1_ 0 a

!

* h

*

#W "

5 ( - 5A K 2 5A O !( ! Q$C h9

! 3 X

%1% !( "

*

?0 67 ] )

01 /

PG 0 (

) 05 /

PG 0 ( A l1< ]) I 3

rT 8

; `%

- (

5 #?

,1 M;

A

MSTAT C 3 )

!Q 2 / 1

h9 .)

* 9

* 2 h ( .;1C , Y

.

56 7

3 G

? !( • (1 i

Z 5A 3 G

!?;1C W

1 5A J h9

%1% !( ! Q$C

*

@ ] 2

)

?0 67 1

(%

@ 3 )

?0 67 5

(%

. 2 9

.

* 2

! @ 3 G 1(

-

@

RH3 ! 5

(*

1?9

% "

- C 5 ( -

2 H I 5

?9%

e 1?B 3

?0 67 ( V1(

1

% (

! @

RH53 G A LT?V RH6

3 - >

3 2 9

)

@ 2 .(

( 1 "

* 1h . ]$7 "

8

!

! @ 3 G

Rhizobium P$?Q b

#$?Q 1 -

5

1%

*8 K I _ / -

) %

* - 8

Arfaoui et al. .

(2006)

2 9 8

! 8

?9% 2 H I ZG e

1?B 3 (

*

!$

! @ 3 G ( 8 1?

- 5A

Z

9%

*X

!) G R C 5 ( -

- 5A 5 8 1% 2 1

*8

% / -

? A 2 K - (*

% e*

M A G j

G 3 MY%

! 8 ) $ -

M A € `Q(

J % 5 % 1B j 31?8 (

G c 2 !(

* J

8 . .9 .

- 1(

3 G

>?

3 2 9 - G 8 ) % !

*

1%

*8 f / _ !

K I - 2 F G

* G ;

? A - (*

% e*

M A G j

G 3 MY%

! 8 (

*

!$

31?8 ( G 3

Rhizobium spp. [ @

!( 1Y 8 1?

(*

G1C 3 K I -

(Ehteshamul-Haque & -

Ghaffar, 1993; Perdomo et al., 1995; Siddiqui et

.

al., 2000)

. bc%

* 1_ 0 a

* M

! @ - G 8 1S 5 !

) %

*

? A - (*

% e*

M A G ( 1%1( 5 % 1B j

= % !

(5)

1 5A J

(in vitro) h9

% - (*

1?9 3

C $@

* 1 3

1 2 9 H I 5

! Q$C J

* M

5 1?=(

! @ 3 G ( 1h

* 3 8 1?

8 1

Bardin .

et al.

(2004)

* 2 9 M 8

V1( ! -

! G 3

R. leguminosarum bv. viceae

1( T+

8 1(

!( 2

2 + 8 5

? - M;

Z

* 2 M

! @ 5 - Q

* 9 X I 1

*

% 5 G ( p -

8 ( 1?

* 3 D1

C

* B !FG

*

?

* - Q

*

? G V1( M .

* * 2d *G 5

1% 1h

*8 K I _ / -

.

! - 5 ( , C

! 3 G

*

P. putida 2d

!( 1Y

8 H I 1?

Septoria tritici (Flaishman et .

al., 1996)

. 2 5A 5 RW 0 i ?

*

! 2 % - 8

*) %

5 * * 2d *G

@ i B 31*C

!

- .( f r4 - *( M 5 -V1( !8 8

31?8 ( G 3

*( M 2 % -

*) % - E) HCN

= A 2 %

. *) 31?8 ( G 1I e* d * 3 .

" !( 9

J % ( "*) i ?

Antoun et al.

(1998)

O MC

. 2 9 2 9 0 !8

3

5 W

!

*( M 3 G 2 % -

*) % . HCN

r * f

.*) ( ? " *) % 2 %

(HCN)

@ "*(

! 3 G

2d * - *( M

* . * 2 X M .

(

! C ! 8 3

!

@

RH6 ! 0 5 8 1•

% "

-

@

RH5 ! 5

RI 0

% "

-

) ( V1(

-

!( !@ % (

- 1(

3 G

! Q$C 3 r4 ?0 !?;1C W 1% "

*8 ]

Zb 8 1?

3 8

. 1S H I 1?

5 ( 1

*

"

! @ 3 G I 3

>_

* 5 P 1S "

8 ( 1?

* 3

#%

- >

3 1h G 9 .

;1< 5 -

!( !@ % (

# 1f - G

* 2d

*

* ) ( ? 1(

* d1 j 3

!9

@ 2 -

! @ ! b Z 5A - *( M 3 G

(RH3-RH7)

-C 5 ( !) G 17I "*h * 1S 5 5 % 1B j M A *) % (mm)

) 31?8 ( - $8 17I !( !) G 17I "*h * (

; * )

-) ? 5 ! 31?8 ( - $8 17I !( !) G 17I "*h * (

2d *G * *

@ ( ! 8 1?

3 C 5 ( !) G

(mm)- M A

5 % 1B j

*

;

*

* G

* 2d

33 RH3 /

9 ±0/16A 28

/

2 ±0/10A 08B

/

±0 56 / III 1

67 RH4 /

7 ±0/15B 03

/

2 ±0/08A 09A

/

±0 79 / III 1

07 RH5 /

1 ±0/12D 03

/

0 ±0/005B 11C

/

±0 27 / I 1

33 RH6 /

5 ±0/20C 30

/

2 ±0/07 A 05C

/

±0 32 / IV 1

RH7 67

/

6 ±0/18BC 20

/

2 ±0/08A 06C

/

±0 28 / 1 III

37 LSD / 1 387

/ 0 087

/ 0

( !( 9 L 10

* A LT?V , + 1h 3

?0 67 1

% . .

@ 3 -

! @ 1*fg%

M 3 G Z 5A , *(

(RH3-RH7)

~V !FG *C D1 3 *( 1(

-$C jI *( ) 3 G

H I ‚0

R. solani

! @ 31?8 ( 1? 8 W

3 *(

3 *(

1% 25 - G , 25

!9 1%

e9V 25 , - G 3 G 25

!9 e9V

48 RH3 / 81 11

/

1 ±0/08c 10

/

3 ±0/18b 87

/

0 ±0/06b 30

/

0 ±0/04bc 07

/

0 ±0/008ab

78 RH4 / 77 33

/

1 ±0/11bc 50

/

3 ±0/15a 64

/

0 ±0/09c 35

/

0 ±0/04ab 05

/

0 ±0/004ab

63 RH5 / 79 22

/

1 ±0/09bc 52

/

3 ±0/15a 12

/

1 ±0/10a 39

/

0 ±0/03a 10

/

0 ±0/007a

22 RH6 / 72 67

/

1 ±0/16b 94

/

2 ±0/19bc 95

/

0 ±0/11ab 25

/

0 ±0/02cd 08

/

0 ±0/008ab

93 RH7 / 75 44

/

1 ±0/12bc 11

/

3 ±0/12b 03

/

1 ±0/05ab 30

/

0 ±0/03bc 08

/

0 ±0/006ab

G )A 56

/ 5 67

/

5 ±0/23a 33

/

0 ±0/06d 09

/

0 ±0/01d 04

/

0 ±0/005e 02

/

0 ±0/003b

439 LSD / 0 052

/ 0 105

/ 0 234

/ 0 052

/ 0

?0 67 3 A LT?V , + 1h *( !( 9 L 10 5

% . .

(6)

C

(Defago et al., 1990) *

! @

RH6 3 G

!( ./

1

! @ G

% - 8 1?

3 M;

25 Z

, 1%

G 3 G - +1( 2 9 V 5 X

@ [

!

$( I 5 RH5

* ( .

* 1?9 3 5 ( V1( 1S "

)

@ 3

Guerinot .(

(1991)

2 9 8

! 31?8 ( G 3

( M

* -

+ I

- 5

*

% G ; )*

8 .

(1993) Plessner et al.

2 9 8

V1( ! -

! G 3

B. japonicum

5 I

* G ; 3 ) %

* V

* G ; 3 ƒ 1h ( M

8 1?

= 3 V

^

#?

b+ !(

*

= A

% "

- -

% e C„

-

1( ./•

3

\ Q?

"

31?8 ( G 8 + 1?

R

(*

C 1C

* G - M;

$ + Z

X C 1

* 2 G

\ c .

bc%

* 1_ 0 a

*

%1% !( M

* ]

! @ 3 G

( M

*

RH4 - ) % … c) 5 RH3

*

* 5 ;

$( I

* ( .

* 1?9 3 ( V1(

. - 1(

3 G

! Q$C 3

0 jG -8 5 8 A 3 (*

1?9

"

! @ G 8 1?

(*

. 1S 1C

. 1C G 9 8

!

@

!

( M

*

RH5 - ) % 1S 5 !K1C

* -? A e*% *(

G

M A G 5 % 1B j

* 2d

*

*

*

$( I 5 G ;

* .

8 1?

3 !( ./

1

! @ G . % ( V1(

1 ( ! Q$C J

* 3 ( Q(

- 8 1?

1S 5

~V G 3 3 1?=(

? "

* Y

! 1Y . a/<

- 1(

3 G J % !?;1C W

Chakraborty &

Chakraborty (1989)

! G 3 ( M

* - 8

!

!(

!) G

C 5 ( -

>_

*

# - ( H I 5

*

?9% 2 1C e

1?B 3

1Y - X

1c% ( . "

e

* + ; j?

-

C

* ( 1( 1( 2A 5 .S; c !( 1Y

* 1C

0 b

* .b "

! M; !( 1Y G ) % Z

*

;

* ) ? X

*

"

C

* - . Q%

* 5 "

- 8

! h?

-

"

@

!

*

!( M ) "

* . R .

6

? i bc% 5 RW 0

* 0 1_ 0 a -8

% 5 -

! @ 3 G 1 - ( M

* , 8 ( 1?

* d ) e (*

3

B

* C - C D1 E(

*

!FG M 8

?

* - ( )

* . .

2 9 1 "

- G 8

!

! @ 3 G ( M

* - -

%

A 3 M e

@ 5 h

„ 3 R + 2 + !(

(*

8 1?

!( ./

( R + 1

* 8 V1( 1?

( .

4 89! :!

G 5 X 3 5A ,1?c R 1B h9

8 1?

(*

d ) e 1B [ 8 5 9 3 /< m(

*

>

- h9

1@ 2 1=%

3 bc% "

* a - - I 1X9%

1C .

REFERENCES

1. Abdelaziz, R. A., Radwansamir, M. A., Abdel-kader, M. & Barakat, M. A. (1996). Biocontrol of faba bean root-rot using VA mycorrhizae and its effect on biological nitrogen fixation. Egyptian Journal of Microbiology, (31), 273-286.

2. Agrios, G. N. (2005). Plant Pathology. (5th ed.). Academic Press, London.

3. Alexander, D. B. & Zuberer, D. A. (1991). Use of chrome azurol S reagent evaluates siderophore production by rhizosphere bacteria. Biology of Fertility Soils, (12), 39-45.

4. Alstrom, S. & Burns, R. G. (1989). Cyanide production by rhizobacteria as a possible mechanism of plant growth inhibition. Biology of Fertility Soils, (7), 232-238.

5. Antoun, H., Beauchamp, C. J., Goussard, N., Chabot, R. & Lalande, R. (1998). Potential ofRhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: Effect on radishes (Raphanus sativus L.). Plant and soil, (204), 57-67.

6. Arfaoui, A., Sifi, B., Boudabous, A., El Hadrami, I. & Cherif, M. (2006). Identification of Rhizobium isolates possessing antagonistic activity against Fusarium oxysporum f.sp ciceris, the causal agent of Fusarium wilt of chickpea. Journal of Plant Pathology, (88), 67-75.

7. Arora, N. K., Kang, S. C. & Maheshwari, D. K. (2001). Isolation of siderophores-producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes rot of groundnut. Current Science, (18), 673-677.

8. Bardin, S. D., Huang, H. C., Pinto, J., Amundsen, E. J. & Erickson, R. S. (2004). Biological control of Pythium damping-off of pea and suger beet by Rhizobium leguminosarum bv. viciae.Canadian Journal of Botany, (3), 291-296.

9. Carrillo, G. C. & Del Rosario, V. M. (1992). Comparative study of siderophore like activity of Rhizobium phaseoli and Pseudomonas fluorescens.Journal of Plant Nutrition, (15), 579-590.

10. The Ministry of Jahad-e Agriculture. (2005). Census of Agriculture. Agricultural Planning Economic and Rural Development Research Institute. Agronomy & Horticulture. 2(1). (In Farsi)

(7)

11. Chakraborty, U. & Chakraborty, B. N. (1989). Interaction of Rhizobium leguminosarum and Fusarium solani f.sp. pisi on pea-affecting disease development and phytoalexin production. Canadian Journal of Botany, (67), 1698-1702.

12. Chakraborty, U. & Purkayastha, R. P. (1984). Role of Rhizobiotoxine in protecting soybean Glycine- Max roots from Macrophomina phaseolina infection. Canadian Journal of Microbiology, (30), 285-289.

13. Defago, G., Berling, C. H., Burger, U., Haas, D., Khar, G., Keel, C., Voisard, C., Wirthener, P. H. &

Wutrich, B. (1990) Suppression of black root rot of tobacco by a Pseudomonas strain. In: D. Hornby (Ed.), Potential application and mechanisms in biological control of soil-borne plant pathogens. (pp. 93- 108).

14. Ehteshamul-Haque, S. & Ghaffar, A. (1993). Use of rhizobia in the control of root rot diseases of sunflower, okra, soybean and mungbean. Journal of Phytopathology, (138), 157-163.

15. Etebarian, H. R. (2002). Vegetable diseases and their control. (2nd ed.). Tehran University Press, Iran.

(In Farsi).

16. Flaishman, M. A., Eyal, Z., Zilberstein, A., Voisard, C. & Haas, D. (1996). Suppression of Septoria tritici blotch and leaf rust of wheat by recombinant cyanide-producing strains of Pseudomonas putida.

Molecular Plant-Microbe Interaction, (9), 642-645.

17. Guerinot, M. L. (1991). Iron uptake and metabolism in the rhizobial legume symbioses. Plant and Soil, (130), 199-209.

18. Hagedorn, C., Gould, W. D. & Bardinekkii, T. R. (1989). Rhizobacteria of cotton on their repressi on see dlingdisease pathogens. Applied Environment of Microbiology, (55), 2793-2797.

19. Kim, D. S., Cook, R. J. & Weller, D. M. (1997). Bacillus sp. L324-92 for biological control of three root diseases of wheat grown with reduced tillage. Phytopathology, (87), 551-558.

20. Maurhofer, M., Keel, C., Haas, D. & Defago, G. (1995). Influence of plant species on disease suppression by Pseudomonas fluorescens strain CHA0 with enhanced production. Plant Pathology, (44), 40-50.

21. Okhovvat, M. (1977). Study the effect of some fungicides on Kühn. Rhizoctonia solani the causal agent of bean seed rot and damping-off. Iranian Journal of Plant Pathology, 13 (1, 2), 1-8. (In Farsi)

22. Ozkoc, I. & Deliveli, M. H. (2001). In vitro inhibition of the mycelial growth of some root rot fungi by Rhizobium leguminosarum bv. phaseoli isolates. Turkish Journal of Biology, (25), 435-445.

23. Pal, K. K., Tilak, K. V. B. R., Saxena, A. K., Dey, R. & Singh, C. S. (2001). Suppression of maize root diseases caused by Macrophomina phaseolina,Fusarium moniliforme and Fusarium graminearum by plant growth promoting rhizobacteria. Microbiology Research, (156), 209-223.

24. Perdomo, F., Echaves, B. R., Ahmed, M. & Schroder, E. C. (1995). In vitro evaluation of bacteria for the biological control of Macrophomina phaseolina. World Journal of Microbiology and Biotechnology, (11), 183-185.

25. Plessner, O., Klaptch, T. & Guerinot, M. L. (1993). Siderophore utilization by Bradyrhizobium japonicum.Applied Environment Microbiology, (59), 1688-1690.

26. Safaee, N., Minasian, V., Rahimian, H. & Bani-Hashemi, Z. (1999). Isolation, recognition and study of the pathogenesis of rhizoctonia species from different plants in Khozestan. Iranian Journal of Plant Pathology, 35, 1-8. (In Farsi)

27. Siddiqui, I. A., Ehteshamul-Haque, S., Zaki, M. J. & Ghaffar, A. (2000). Greenhouse evaluation of rhizobia as biocontrol agent of root infecting fungi in Okra. Acta Botanica, (53), 13-22.

28. Siddiqui, Z. A. & Mahmoud, I. (2001). Effects of rhizobacteria and root symbionts on the reproduction of Meloidogyne javanica and growth of chickpea. Bioresource Technology, (79), 41-45.

29. Weller, D. M. & Cook, R. J. (1986). Increased growth of wheat by seed treatment with fluorescent Pseudomonas, and implication of Pythium control. Canadian Journal of Plant Pathology, (8), 328-334.

Referensi

Dokumen terkait

Rosa’s resonance theory is a sociological proposal. Therefore, commenting on the theory from a theological perspective might not do it justice, at a first glance. However,

The research result shows: 1 seven species of Trichoderma molds have different antagonism ability towards F.solani each other; 2 the antagonism mechanism observed by light microscope