53 1
1401 ) 115 - 99
( DOI: 10.22059/ijhs.2021.294739.1758
* Corresponding author E-mail: [email protected]
:
! " #
$
"
%&
( )1
* " +"
2
. *
3
1 2 3
.
!"# $% &' (
:*+ , )
17 / 10 / 1398 - :4 56 , 17
/ 12 / 1399 (
0
8 9&
' :" ;+ < && =' >' ? ( ( < @ , 6 % A&' <% . B %
C ) Rosa canina
R. beggeriana R. orientalis
R. persica
<% ( 9&
D
%E F G% H # IJ K > + L M <% '(E % + N >' O
>' ? ( O < >' ? P
9&
D
%E ) O B) QR < % 03
/ 0 - ( 8 / 0 - (S ') 5
/ 1 - UE >!V 6 W 6 ' ( B)
F 8 P ( B 4 X 6 ( >M C <J V O ! .
< O 9& Y! *= 5' O D
%E Z % ( [ \ % . & + K
QR C (LMA)
< ]!%
9& % L ^ ' O D
%E 9& .*B _ E % D
%E Z % UE "V =' 9O IX '
(RWC) GY? `8 B a' (PI)
J ' a' * a' 9 :+ >!+ G !O JE
(MDA) R. persica
. B
<
R. canina 9&
D
%E 9O IX ' RWC
E *!+ b PI
!V (DPPH) * a' 9 :+
. BMDA
<
R. beggeriana 9&
D
%E * 9 :+ I"
E *!+ b
!V
% B
<!a . % \ V=' L ^ L ^M
<
R. orientalis 9&
D
%E . % ' L ^M &@ L !!c IX '
\ % [
R. orientalis de
R. beggeriana
9& S B <%
D
%E
>Y= ' . & VO
0
: 2
8 E *!+ b
!V J ' >!+ G . !O JE
Study of some physiological and biochemical reactions in some Iranian native roses to water deficit stress
NedaJalali1, Rohangiz Naderi2* and Azizollah Khandan-Mirkohi3
1, 2, 3. Ph. D. Candidate, Professor and Assistant Professor, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
(Received: Jan. 07, 2020- Accepted: Mar. 07, 2021) ABSTRACT
Drought stress is one of limitation factors in landscape expantion. In order to investigate response of four wild roses species (Rosa canina, R. beggeriana, R. orientalis & R. persica) to water deficit, a factorial experiment was carried out in a completely randomized block design with two factors Rosa species and water deficit at three levels (control (-0.03), -0.8 (moderate) & -1.5 (Severe) MPa). One year old plant obtained from mentioned rose sucker were subjected to water deficit treatment. Based on the results, leaf mass area (LMA) was different between species and water deficit had no effect on that. Water deficit caused decreased relative leaf water content (RWC), performance index (PI), chlorophyll content and increased electric leakage (EL) and malondialdehyde (MDA) in R. persica. In R. canina RWC, PI and free radical scavenging capacity (DPPH) decreased and EL and MDA increased. In R. beggeriana EL and DPPH increased and in other characteristics difference was invisible. In R. orientalis water deficit had no dramatic effect on traits. Based on the results R. orientalis and then R. beggeriana are more tolerable to drought stress.
Keywords: Antioxidant capacity,chlorophyll,drought, malondialdehyde.
3
% 6'72 1 3 '8 9 :; <) (= % >&
2 ? @ :/ 9:)1 6'72 92 .$ ,
.A2 / 9=B2 2 4 & CD;
,#$
)
Lee
et al., 2015
( += $ . F5
9'G'$
H') I F5 1
? J2 / =K
% >&
(=
% ':
1
L M/
'/
2 , .$
, 9'A
") (&
#'J/
N +2 9 ; DJ'
% O C2 F5
%1 J$
9A#P Q GD
%
% Q, 9
)
Lea-Cox & Ross, 2001
( .
R+ A2 1 ) F5 += $
"#3 H) 3 .$ 9 )
2 . +2 5 (= % >&
MD J! .$ 4)+
.SD! D! T U , M 6'72
%
2 ; '@ 3 973 % (= % >&
, )
Amissah
et al., 2015
.(
%V3 D 1 ) (= % >& += %
2 ,/ +3 , J! . W M2 '0 F XD/
)
Niu et
al., 2008
( . D#)1 '0 92 M2 ./ D 5 ) # .
4$
5 0,##$ Q GD (= % >& (= Y) #P .
21 % ' 5 ) $ ") (& Z/ ! % ' 5 %,#
$ , +! < $ A; 1 '/ +2 % ' 5 F5 ,M2 )
Niu
et al., 2006
(.
) 4$ ./ ' [ H'Z/ '2 ) 2 +J$
250
T'2 <J! . '/ <J! ]^ #2 ( (R D2
2 F+:72 ('/ 0,/ ('2 H' .$ +
2 ,72 _+`
.$ % +^ . , 70
,P
0,/
25 2 ? +P +J$ ,P H) # . '0
,) I .Tb:2 <) F5 H'2 3 c J2 .$ 9 d
.D + .J' ) %1 J$ e 21 1 9
(Farzam, 2009)
.
) ./+0
% 1 f =) M3 W 3
L M/
. (
]^ #2 +#
Q,#$ I 2 ,#
)
Rechinger, 1982
.(
% 1 ,) =' W ; K .T' + ,/+'I ./+
'B 3
2 ,/+
,/+'I ./ +
<) [
% g3 .D! # Q,
'B 3 1 '/
2 , )
Gault & Synge,
.(1987
9) B$
W ; ,),
%1 .$
. [ &
2 ,#
.) I ) ,#D:
.$
1 ]) ^ ,/+'I ./ + ) 1 .D& ) ,/
)
Halevy, 1986
.(
% 1 J8
% T0 Q Z)
QV)
% . +#U .) I
% ,/+'I ) _ P ./+0
% 1 +2
9J$
$ ,/
)
Tkalec et al., 2012
.(
Q1 2
_ P 0 9'
Q GD Q
1 W * 4 I ./+0 -
% J8 W ;
),;
% ,' . O ,
8 P
! ,'$ 3 2 ,##$
.
% )1 1 ./+0
%
1 .$
H 2 9
%
? GP
%,# 1 ,#
+2
Q
% ; .D& Z/
,/
.
? 'P+C!
c ; +3
./+0
% J8 1 Q, J2 Q,
9 .$
2 +3
92 M2 )1 . 6) ,U :2 /
`'72 +
`U
&
! 4$
('2 H'2 D) )1 C
W+'D/ h'
92 M2 i .
% ' W /
. H)
? GP F+T`2 .$
./+0
% J8 1 W ; ),;
3 + ,/
2 -
,#/+3 9 R MD/
. W ; ,2 +2 Q
%
"'
% 3 ; ,/ '0 )
Zlesak, 2007
.(
. j I % ': ? A `2 .D k0 % %
. '0 ) ' ' +' + +2 )*+ +)('&
4$
5
Q $ [ (0 Q1 ,/ .,/
l! ! % '0
% +D72 c'& T$ ,M2 ,#/ 2 ,/ L =3 F5 += $ F5 =:/
(RWC)
/+) 9J/
+#U . .$ (EL)
2 F+:72 Q '0 +3 c ; % 'A2 .,/+
Q('Z/
%* / Fk Q1 Q '0 . %(D# +D& % 2 / +/
(= 9 :; c'& T$ ,M2 H) # ,#
Q '0 Q '0 (D# +D& T U .$ 9 %,'T$ c2 U <)
2 ; '@ 3 973 ,
(Taiz & Zeiger, 1998)
.
Q '0 m 2+' ,' +3 % .' % ,#)5 & 1 (D# +D&
m :8 1 ) 9 . )*+ +)('& % ,#)5 & H) 3
"#3 2 `'72 % ,
(Farooq et al., 2009)
.
.Z/ ) / +3 H) # R+=; c ; ('2 <) HD
2 "#3 6) 973 (D# +D&
Z/ J/ <) ,/ +3
, Q '0 % 01
(Niu & Rodriguez, 2009)
.
H''A3 % ,'G2 H'Z/ '2 <) ('/ F5 =:/ ,M2 F5 =:/ ,M2 .9 Q '0 )*+ +)('& F5 9'An
9 J! "#3 . Z/ J/
)
Ahmadizadeh,
(2013
.
Niu & Rodriguez (2009)
.$ ,/ $ [ (0
4; 1 (D# +D& ,M2
‘Dr. Huey’
Rosa
×fortuniana R. odorata
R. multiflora
9U :
Q ^ 4$
5 (D# +D& 9& ) " $
‘Dr.
Huey’
R.×fortuniana
,M2 o RWC
3 +P 9 ) (/ ZD:=
ZD:= H) .$
R. odorata
9 +^ T$ +` .9 ,/ +
4$
R. odorata
.) I ) 1 % D $ (D# +D& ,M2
. J/
Gholami & Rahemi (2010)
" $ ('/
#A2 ,M2 H' J2 4; +3 '#'2 1 RWC
-
1 ,A 21 1 1 4$
5 .$ ,/ $ Q, J2 5
/ 64
,A 9& ) " $ c=; . 9=:/ ,P % ' 5 1
., <) (/ , . 5 ,M2 Q
Z/ J/ <) +#U . c'& T$ r# +T& JD/
9 Q, .D! # (D# +D& 1 .' ) ' ' +D&
"#3 + ? =@ % 2 $ .
r# +T& .
% '8 .! - +2 3 U ^ H'#S c'& T$
2 4 & H $ 1 H $ 4:' + D2 .,#$
O C2 ]) ^
ATP NADPH
") :$ 9'An +3 I N' -
4D:' +D& D .' Q,/ )kI J $ . II
2 ; '@ 3 973 r# +T& T U 5 R =/
,
(Ogren, 1990)
.
+2 c'& T$
1 r# +T&
De Dauw et
al.
(2013)
9'A
F1
% 1 ,'d+Th) cP 8
1
; 3
Rosa ‘Yesterday’×Rosa wichurana
%
. c 73 4$
5 l! ,M2 ,/ $ % Z K
T U @+2 2+D/5+$
4D:' +D&
II (Y(II))
Q1 ,/
% '0 .,/ $ H' Q 0 '0
"#3 Q,)
, s) D/
J2 , Q,)
l!
(Y(II))
%
() 3 1 c ; l! .A `2 5 +=/ % DU
.
Q '!t 5 ,72 973 6) 4$
5
"#3
/+' ,':$
,' +3 u+&
Q A ./+0
% V':$
"#$
0
(ROS)
<) 73 2 ,#$
.
" $ )
CO2
.D:
, ./1 ) 9' A&
F+'A2 4)(/5
N' 5 Q ZD
%
%(D# +D&
973
"#3 5 g#2
. ,' +3 ./+0
% V':$
"#$
0 ,#/ 2
O2-
H2O2
RO
-OH
2 + )
Flexas & Medrano,
2002; Lawlor & Cornic, 2002
.(
Y' [ D:0 i e+#3 + . . +3
./+0 ) J8 1 vTDX2 %
j I +2 "#3 . ) ' ' +' )*+ +)('& %
./+0 ,72 ) 2+ 1 % j I .A `2 Q +
1 .
"#3
%
`'72
% 9' Q,#) (&
]^ #2
<J!
<J! . '/
2 Q U .$ - ,
% >& % 1 .) I +#U . /5 $ 2 4:'/ 2 ) # (=
./+0 H) j I %
%,'G2 ? U ^
% _ P W ; g) 0
) ,), 1 W ; +=
4 &
2 " VI H) .,#$
"#3 '@ 3 O, 4$
5 l!
%
., W g/ ) 2+ 1 ./+0 - )*+ +)('&
4 *
Y #2 %1 J$ r) I 1 % >& " VI H) R w $ Y; 3 Q ZJ/ A'=^
1394 .
c) +D$ & ") 215 ? +P x+T _ ^ .) I
c2 $ %
1 % ./+0 R c2 U ., W g/ 3 . & C3 c2 J8 1 y` - c2
Rosa canina L.
./+0) 1 % .) I +#U . % g3 $ .$ %
( 4 (= % >&
R. orientalis Dupont ex
.Ser R. beggeriana Schrenk R. persica Michx
ex Juss.
"#3 W c2 U 4$
5 y` . c2
"#3 4$
5 ) , 03 / 0 - 6 +D2 "#3 (R I Z2
) 8 / 0 - ) ,), "#3 (R I Z2 5
/ 1 . (R I Z2
Y c72 ? U ^ .,/ + W +D$ & . (#2 % 5
R , ./+0 1
c72 ) # 1 rI .9 Q,25
./+0 "#$ I +$k2 %
'/ ) +T& 1 Q GD
H'MM72 ) ? A `2
(Samiei et al., 2010)
[+ I ,#G /5 %
1392 Y
Q 0 . % 5
A'=^ Y #2 %1 J$ r) I / =K W+TU ., Q R MD/ 3 Q ZJ/
R , 1 . Y c72 D:/ % 5
% / ) # ./+0 +2 % .A `2 .
Table 1. Collection site of Iranian rose and identification of studied species.
Species Collection site
Province Number
R. canina L.
Collection of Faculty of Agriculture Karaj
1
R. orientalis Dupont ex Ser.
Emamzadeh Davood Tehran
2
R. beggeriana Schrenk Shahroud
Semnan 3
R. persica Michx. ex Juss.
Tash Semnan
4
,A3 150 ./+0 1 [+ I ,U
,T0
% 'D I Q '
4g8 10 9J$ D'
,/, . % Q() Z# .)i <) 1 " 1 g)
,T0 v$
Q GD +2 D: .,) 0 Q GD
,T0 1 ^+TX2
x ! .SK . 2 o =$ !
. 9=:/
1:1:2 .J) t+G/ 1 % '0+T % . +
,T0 " 1 ,:/ W,U x ! . '0 ,T0 .,/, Q ; t+G/ c ; 'K y` % %
[+ I % 8
% 3 Q1 9J$
Q,
% >&
1 ;
,/, Q 0,' % , Z/ R <) ?,2 .
.,/, "#3 % '3 W g/ 1 c=; 3 4$
5 .
.,#) / , Q, MD:2 +!
Q 2
= )
R+T72 I 0 +$
c2 $ 20 NPK
- 20 - 20
W g/ %k{2() P #U % 8 ,
. Ok8 vTU
%
1 ,T0 .
? +P D
W g/
. .9& 0
+|#2 H''A3
? 'P+C!
L+TX2 D:
Q GD
Q, 1 D:
,T0 ./+ /
% W g/
./+ /
Y #2 %1 J$ r) I % ' 5 Q 0 Q ZJ) 215 . H''A3 .,/, Q R MD/ 3 Q ZJ/ A'=^
U 1 9'& } 4d 0 2VI .`M/ (FC)
(PWP)
, W g/ % J& ? 7GP Q ZD 1 Q GD R , ) 2 .(
MD +! . .$ Q1 ,/ 4 '0 W R Q, F XD/ ,#D = #2 , ,/ + .D& )
.,#D& 0 ; Q GD +2 ") 215 % c=;
1 e
") 215 +|#2 .
" $ @ 2
" 3 +/
,' +!
'X=3 y` 1 F5 x !
9; ") (& ('/
,T0 x ! ") 215
<'D I Q,/ +I
,/,
(Gholami et al., 2012)
. 1 ") 215 W g/ %
./+0 J8 1 ) - ./+0 ( +2 .
.D
,T0 20 ) 3 F XD/
., Q 0 R 3 9'& }
.U (2
%
% ' 5 .
+#U ,
F+:72 ,/,
Q 0
W W+
.D ) 973 .$ ,/ +
"#3 J!
,#D& 0 ; .
W g/ % ' 5 Y`; ? +C "#3 R U
3 W Q 0 "#3 .$ % +` , 8
/ 0 - R I Z2
3 W+ .D 5
/ 1 - % ., R U R I Z2
s# 9 +^ Q ZD 1 x ! 9 +^ ,M2 H''A3
TDR (Spectrum, FieldScout)
., Q GD 21
0 ./+ / '0 1 |/ +2 "#3 y` . ,' ,g2 Q,) "#3 '0 rh , .' 3 % ' 5 ﺍ
9J0 9'T ; 3 ,/, ./+0 % )kI
. +
,g2 % ' 5 1 ,A .DG <) 1 <) +|#2 H) ./+ /
% ., 3
!" # (LMA)
c2 $ o y` ,D 9GP H) % '0 Q1 ,/ % Y (.S0 9G ) Q ZD 1 Q GD Q, % 5
s# y`
(Delta T, England)
Q1 ,/
, % '0
5 . rh 80
D/ . ,/, Q R MD/ 0
<J! 1 c2 $ , <J! 1 ,A o (DW)
Q1 ,/
, % '0 ) .` 1 Q GD
1 o 1 (
., .= 72 y` ,8
) 1 (
LMA= (DW/LA)
$% & ' () (RWC)
#
[ o F5 =:/ % +D72
Turner (1981)
W g/
o 3 1 ., c2 $ %
Q1 ,/ (FW)
Q, % '0
) 215 O } ./ 0 , o rh ; ZJ
?,2 . .D& 0 24
.^+K `M2 F5 9U
r/ * +3 1 ,/, 1 Q 5 1 rI ,/, Q1 ,/ (TW)
5 . rh , % '0 80
.
D/
<J! 1 ,A .D& ) R MD/ 0 <J! 1 ,
., 9=@ /5 (DW)
) .` 1 Q GD RWC
2 (
., .= 72
) 2 (
RWC%= (FWDW)/(TWDW)× 100
R ,
2 . 0V)
% )('&
) ' ' x ! +2 Q GD
.
Table 2. Physical and chemical characteristics of used soil.
Permanent wilting point (PWP) Field capacity
(FC) EC (ds m-
1) Soil pH
Texture Soil composition
11.84%
30.41%
2.65 7.8
Sandy loam Garden soil, sand and leaf compost
2:1:1
* (EL)
/+) 9J/ ,M2 JK . N' 5 ('2 "g# % <) ? A`; . .' 3 0 ./+ / 1 W 0 . ,M2
D/
% D2 +JD: . 1 rI .,/, !
+ &
% 50 T'2 ,/, cMD#2 % D' 25
T'2 D'
./+ / rh ., .& n + & . Q('/+) F5 .
?,2 24 ,/, Q ; ZJ) 215 ' % 9U
.' ) D 9) , 5 1 rI
(EC1)
6 +3
EC
D2
(Metrohm 644)
Q1 ,/
./+ / rh ., % '0 .
?,2 20 % 2 .M';
120 D/ .
$+3 0
, <#! 1 ,A ,/, Q1 ,/ ,g2 /5 EC
% '0
,
(EC2)
,M2 . .` ]=^ EL
) % 3 , .= 72 (
(Eugenia et al., 2003)
.
) 3 (
EL=(EC1/EC2)×100
+ ' !, !+%
(MDA)
Q1 ,/
[ ,'h' +' ,':$ I ,M2 % '0
Hodges et al.
(1999)
D' T'2 <) ., W g/
R+T72 1 / 0
% 3 ,P . ,' <'T':$+ $ 1
/ 0 W 0
, .& n Q1 3 o ./+ / 15
W 0 F5 W 8 .M';
% 2 j) W 8 $ 1 ,A 9& 0 ; 4 . D/
?,2 . 0 10
*+'G) D/ .M';
13000 D2+D& D h , .D k0 .M';
(Shimadzu UV-160, Japan)
w+2 R+^
% 600
540 ., 9d ; D2+/ /
Fv/Fm PI
c 8 c ; D ) +T& Q ZD 1 Q GD )
Hansatech Instruments, Handy PEA, Norfolk, UK
( ,/
Q1
% '0 c'& T$ r# +T& %
Q1 ,/ ., W g/ a
") 215 Q W 3 % '0
H' 9U 10
3 12 9& 0 ? +P } 1 c=;
?,2 . ) 3 % 01 Q 20
JX .M';
+ Q, x I =K 0 1 .$ .S0 <# I 1 T U l! ? GP ., W g/
B$ ,8 (PI)
4D:' +D& 2+D/5+$ T U
II (Fv/Fm)
6
4 5 .,#D& 0 ; )1 +2
) 4 (
Fv/Fm=(Fm-F0)/Fm
F0
.' r/ +T& : B$ ,8 r/ +T& :Fm
:Fv
''{D2 r/ +T&
) 5 (
PI=RC/ABS
4D:' +D& "#$ ($ 2 :RC II
Fk ) :ABS
%* / .
-.,/ !0 '.(1 (2 '
Q1 ,/
c'& T$ % '0
a
o % ,'d+#3 $ c$ b
[ 1 Q GD
Lichtenthaler (1987)
9& 0 W g/
) 6 m 6
., .= 72 (
) 6 (
Chla = 12.25 × A663 2.79 × A645
Chlb = 21.50 × A645 5.10 × A663
Chla+b = 7.15 × A663 + 18.71 × A645
Cx+c = (1000×A4701.82×Chla85.02×Chlb)/ 198
( % *,2 3 45 !,&5
D/5 9'& } Q CU c$ / ,':$
Q 1
B#!
15 R ) 0,##$
)DPPH
1 1 -
% c'#&
- 2 -
c) 'I [ (c)1 ,'
Falchi et al.
(2006)
w+2 R+^ D2+D& D h Q ZD 1 Q GD 517
) .` 1 Q GD W g/ D2+/ / 7
.,) 0 .= 72 (
) 7 (
DPPH%= 100 [(A517 / A0) ×100]
A0
Fk : ./+ / , DPPH
A517
Fk : ./+ / DPPH
56 7 8"
!" #
Q r/ ) .)(g3 s) D/
4$ "#3 .$ J/
5
#A2 '@ 3 LMA
./+0 H' 9GP H) 2 9 ,/ %
#A2 ? G3 J/ ,P s#I R D8 y` %
R , ) 3 ,M2 H) DJ' .(
./+0 LMA R.
beggeriana
H'Z/ '2 H) D $ , Q, J2
R.
persica
c ) ,25 9 . 1
#A2 ? G3 ,#- .(
-
H' % 25 ~ 7 1 %
R. orientalis R. canina
R. beggeriana
0V) o y` 1 . +=/
o % U 9 8 ,#D: o Q1 ,/ 1 vTDX2 %
o ( ,/ w 'D8 % DJ' r2+' . 3
(Huang et al.,
2019)
,M2 . •G8 o DJ' U R+^ 3i LMA
.9 6=3 2 0,' J! 1 9} G8 ) kK +2
LMA
o ; =`/ 6) c' . i D8 3i ]^ #2 %
o 3i 4$ 3 9TU . H'#S 6) H) <J!
9 )
Riva et al., 2016
( 3i ,M2 H) .
Q, Q, J2LMA R. beggeriana
c' . i D8
N +2 .$ 9 (Q,J/ .d Q ) 0 3i 4$ 3 +2 . + 2 3i LMA R. orientalis
.Tb:2
o 4$ 4$ 3 + + ? GD2 H) ) . 9=:/
o ) <J! 1 DJ' ( )1 R+ '3+$ 4'Xn %
") (& N +2 . . +3 .,) 0 LMA
Q . #)
"#3 . +2 4$
5 2 ''{3 9 Q + Q 3+$
5 @ Q,J/ g) Q '0 D!
#A2LMA
. +=/
# $% & ' ()
Q r/ ) .)(g3 1 cP 8 s) D/
.$ J/
/5 c MD2 @ ./+0 "#3 '3 @ RWC
#A2 R , ) 9 .D % 3
4) 2 "#3 .(
./+0 .
#A2 ''{3 1 % ,M2 %
RWC
,), "#3 . / g) , . 9=:/
R. canina
30 5 ,A ,P
R. persica
28 / 21 ,P
" $ ,M2 H) DJ' , . 9=:/ " $
RWC
,M2 H) D $ ,#D H) ) . 9=:/
4$ "#3 1 % )kI '@ 3 5
R. orientalis
., Q,)
./+0 . ,A 1 <) 1 ,g2 % ' 5 1 ,A y` . =) M3 ,#D:/ +3 ,), 4) 2 "#3
c ) ,/ 0 , '0RWC
2 .(
. J8 1 (LMA) y` ,8 o 1 ./+0 @ H'Z/ '2.:) M2. 1c
Figure 1. Mean comparison effect of species on leaf mass per unit area (LMA) of wild rose.
R ,
3 . s) D/
€)(g3 r/ ) @ 3
"#
4$
5 ./+0 l!
)1 +2 % . J8 1
Table 3. Results of variance analysis effect of water deficit and species on studied parameters of wild rose.
Mean of squares Source of
variation
df LMA RWC EL MDA Fv/Fm
Water deficit (W)
6 1.44 ns 458.82** 21215.01** 240.3** 0.023**
Species (S) 3 3.89* 102.91* 14557.61** 404.98** 0.034**
W×S 18 1.22 ns 86.25** 5931.1** 86.98** 0.012**
Error 54 1.31 36.54 1211.84 18.41 0.003
CV (%) 29.28 7.91 22.07 7.18 7.67
Mean of squares Source of
variation
df PI Chl a Chl b Total Chl Carotenoids DPPH
Water deficit (W)
6 12.31** 14.79** 2.04** 26.79** 1.55** 175.55*
Species (S) 3 17.11** 24.31** 18.82** 78.06** 11.83** 2351.25**
W×S 18 6.9** 5.89** 1.15** 11.78** 1.30** 725.75**
Error 54 2.28 1.67 0.19 2.93 0.45 35.07
CV (%) 9.16 8.14 7.65 7.94 13.57 8.72
* :**
. N'3 3 ? G3
#A2 y`
R D8 5 1 ,P
.
:N'3 3 . ? GP vGX2)
y` ,8 o 1 LMA
F5 =:/ %+D72RWC
/+) 9J/EL
,' , 5 % + 2MDA Fv/Fm
4D:' +D& 2+D/5+$ )5 $ B$,8
II
%(D# +D& T U l! PI
c'& T$ ,M2Chl
c$ /,':$ D/5 9'& }DPPH (
**:Significantly difference at 5% and 1% probability level; respectively. (Traits abbreviations: LMA, leaf mass per unit area; RWC, relatively water content; EL, electric leakage; MDA, malondialdehyde; Fv/Fm, maximum quantum efficiency of photosystem II; PI, performance Index; Chl, chlorophyll; DPPH, free radical scavenging capacity).
ab ab
a
b
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
R. canina R. orientalis R. beggeriana R. persica LMA (µg mm-2(
Rosa Species
Gholami & Rahemi (2010)
#A2 " $
,M2 1 F5 Y`; 1 ,A , . 9=:/ RWC
.,/ $ [ (0 H' J2 4; +3 '#'2
Niu &
Rodriguez (2009)
,), "#3 .$ ,/ $ [ (0
4$
5 .) I RWC
/5 .9& ) " $ 1 %
.) I .$ ,/ $ Q, J2 %
‘Dr. Huey’
.:) M2
.) I ) .9& ) " $ % DJ' 9U RWC
Handerson-Cole & Davies (1993)
,/ $ [ (0
,M2 .$
1 '/ 15 % >& 1 4; RWC
.Z/ . 1 '/ 1 4; . 9=:/ 4$ % , Z/
%
Q,/+ 'X=3 y` 9TU /5 ., •G8 DJ' i 7` .)i D -+$ G#2 o Q1 ,/ D $
W M2 6=3 2 'X=3 . 1 '/ " $ .g'D/ 3
.,#D:/
c ; R ,D2 l! <) o RWC
9' :8 ,M2 y) J3 % DU 1 . '0
2 F5 9 ,
)
Sanchez-Rodriguez et al.,
(2010
./+0 H' . +2 J8 1 %
n 8 .A `2
R. orientalis
y` R+ '3+$ .)i %
4'Xn ./+0 ) . 9=:/ % 3 2 |/ . +
,
9 1 Y/ 2 Q $ c U , <) +#U . .)i H) •G8 F5 )1 HD&
% +D72 .9 Q, DJ' RWC
9' A& ) (/ +^ . o F5 =:/
%
ZD:= x ! F5 9'An Q '0 )*+ +)('&
(Ozkur et al., 2009)
% DU c ; 0V) <)
‚'3+/* % Z K . W M2 %
4$
5 2 F :8 . ,)5
)
Rachmilevitch et al., 2006
(.
+ * '
!,6!+%
4$ "#3 ./+0 5
? G3 /5 c MD2 @ 1 %
#A2 ,M2 % R , ) ,#D EL
3 H) DJ' .(
,M2 4$ "#3 EL
./+0 ,), 5
R. canina
R. persica
) M2 N'3 3 . 11
/ 40 38 / 41 ,P
4$ . 9=:/ /5 D $ c 73 Q,# J/ .$ + 5
./+0 9
R. beggeriana
/+) 9J/ ,M2 4
) 04 / 31
#A2 ") (& , . 9=:/ ,), "#3 ( ./+0 /+) 9J/ ,M2 .9
R. orientalis
9'An
5 ,M2 9 3 GD2 . 9=:/ 4) 2 "#3
4$ "#3 9 " $ , 5 ,M2 ,), 5
./+0 . ., : ) % 25 |/ 1 , % ' 5
.,) 0 '0 ,g2 4'2 3 9J0 N= ,g2
J!"#3 MD , C .) J8 1 F5 =:/ % +D72 5 4$"#3 ./+0c MD2 @ H'Z/ '2.:) M2. 2c ƒ6 +D2 ƒ J! ,), "#3 SD
./+ / MR
%
<) 1 rI 1
% ' 5 ƒ6 +D2 J! "#3 ,g2 % ./+ / SR
ƒ,), J! "#3 ,g2 % ' 5 1 rI 1 <) ƒ6 +D2 J! "#3 ,g2 % ' 5 1 rI .DG <) % ./+ / MW
./+ / SW
%
<) .DG rI 1
% ' 5 ,), J! "#3 ,g2 (.
Figure 2. Mean comparison interaction effect of species and water deficit on relatively water content of wild rose. ( C, control; MD, mild water stress; SD, severe water stress; MR, sampling one day after re-watering in mild water stress; SR, sampling one day after re-watering in severe water stress, MW, sampling one week after re-watering in
mild water stress; SW, sampling one week after re-watering in severe water stress).
abc abc abc abc
c
a
bc
abc
e
bc c
d
abc ab
abc abc
abc abc abc
bc
abcabc abcabc abc abc
abc abc
0 10 20 30 40 50 60 70 80 90 100
R. canina R. orientalis R. beggeriana R. persica
RWC (%)
Rosa Species
C MD SD MR SR MW SW
,#-
R. beggeriana R. persica
1 <)
.DG <) 2 + i 4 1 /+) 9J/ ,), "#3 1 ,A c ) 9& ) " $ /+) 9J/ ,M2 ,g2 % ' 5 1 ,A 3
"#3 B$ .T 8 O, H' +T % JK .(
%
2 D:)1 'K Q +) ? =@ Z- h ) •G8 .,
. W M2 '0 0V) <) "#3 6) 973 +T 4$
5 2 , )
Bajji et al., 2002b
.(
J! "#3
"X >A .)i % ,'h' +G:& %
9 8 JK %
2 kG#2 JK D! "
.g'D/ +
2 „ R+T c! +2 9J/
g'D/ , "#3 .
4$
5 " $ %,'h' +' ,':$ I ") (& N=
2 +T % JK % ,) I +
(Mirjalili, 2005)
.
4; +Z/
"#3 _+` ") (& ,'G ./
4$
5 …U
, /+) 9J/ ('2 ") (&
)
Soukhtesaraee et al.,
(2017
m 0+T $ D#$ H - +T Q +) % ,) I . 973 ('/
9& ) " $ 9U . J! "#3 6)
(Wang & Huang, 2004)
"#3 . 92 M2 . 4$
5
vTDX2 % +'D +$ H' +T % JK ? =@ )1 6) 973 4$
5 2 g) () 3 " $ ,#$
ZD:= "#3 973 , =:/ ,M2
(Premachandra et al., 1989)
.
Dhanda et al.
(2004)
9 :; +T % JK ? =@ .$ ,/ $ ' 1 o %
"#3 4 I W * % Z K % ? 'P+C! H) D 2 4$
5 2 .,
21 4$
5 W M2
%1 Q +) +T u G3
2 ,D&
.$
9'& } 6:
+T
%
•G8 J&
m 25 2
,
") (&
2 , )
Neuman,
.(1995
'0
"#3 Q,)
" $ 9J/
/+)
J/
Q,#
Y g3 DJ' 9' +
2 , .$
c':/ DI
%(
" $ 9'& }
.Z/
% F5
") (&
2 , )
Sperdouli & Moustakas, 2012
.(
" $ 9J/
/+) i D8 . ) ,#)5 &
.$
? =@
JK
•G8 2 ,##$
L+ 2 9
4'|#3
%(
Q +) +T L =3 )
Kocheva et
al., 2014
.(
N' 5 D $ . JK 2 ,/ +3
") (&
9'& } Y g3 ,#;
o
^
"#3 5
L =3 .D
, . ,#;
. QV)
%
% ,) $
'8 Q,J/
,#/ 2 1 $
% 3 1+
JK +T
%
") (&
? =@
.)i
%,'h' m 3 ,/
)
! ./+0 .(
SD ƒ6 +D2 J!"#3 MDƒ, C) . J8 1 /+) 9J/ 5 4$"#3 ./+0c MD2 @ H'Z/ '2.:) M2. 3 c
"#3 ,), ƒ J!
./+ / MR
%
<) 1 rI 1
% ' 5 ,g2
"#3 J!
ƒ6 +D2 ./+ / SR
%
<) 1 rI 1
% ' 5 ,g2
"#3 J!
ƒ,), ./+ / MW
%
<) .DG rI 1
% ' 5 ,g2
"#3 J!
ƒ6 +D2 ./+ / SW
%
<) .DG rI 1
% ' 5 ,g2
"#3 J!
,), ( .
Figure 3. Mean comparison of interaction effects of species and water deficit on electric leakage (EL) of wild rose.
(C, control; MD, mild water stress; SD, severe water stress; MR, sampling one day after re-watering in mild water stress; SR, sampling one day after re-watering in severe water stress, MW, sampling one week after re-watering in
mild water stress; SW, sampling one week after re-watering in severe water stress).
h-l
a-c
kl g-l e-k
h-l
g-l
d-j a-d
b-g b-h
a-f
g-l
a
e-k c-h
f-l
e-k
a-e a-f
h-l
a
j-l
g-l l
h-l
l
i-l
0 10 20 30 40 50 60
R. canina R. orientalis R. beggeriana R. persica
EC (%)
Rosa Species
C MD SD MR SR MW SW
4:'/ 2 D} G8
H) +2 c8 Q,/+
1+#
.
D .D! # Q,J/
9 2 .S/5 lXJ2 9
J!
R+ T2 ) .$
A'=^ 9 8 Q 0
,'h' +G:&
.D +'I ,#D:
,#;
H)(Z)
2 ,/+
H) e+n+2 2 ,/ +3 1 .T8 2
=/
''{3
c' J3 .#2
%,'h' .$
) / +3 c' J3 c:'2
%
m+ A2 ,/
N +2
") (&
9J/
/+) 2 ,/+
% '0+T ) ,#$
Bajji et al., 2002a
.(
,M2 ") (&
/+) 9J/
R. orientalis
. i D8 4) 2 "#3
W M2 .$ 9 L+ 2 c)i H' +T Q +) %1
4$ . +2 .T8 2 H) .9 .D& 0 W g/ 5
+ 2
% +' ,':$ I ?i+C72 1 ) ,' , 5
"#3 . +3 c ; Z/ J/ <) 9 %,'h' 2 /+' ,':$
,M2 k , DJ' MDA
9 6=3 2 3i /+' ,':$ "#3 . )
Al
Hassan et al., 2015
( J/ 1 cP 8 s) D/ .
"#3 '3 .$
4$
5
#A2 @ ./+0 %
.D MDA
R , ) ,/
3 ,M2 .(
'3 MDA
./+0 ,), "#3 %
R. canina R. persica
% ' 5 1 ,A J/ ") (& , . 9=:/
"#3 . 9=:/ ,/ ,g2 4$
5 J $ ,/
#A2 , J3 G3 ,#- ,#D . +
./+0 %
R. orientalis R. beggeriana
''{3
#A2 c ) ,J/ Q, J2 , . 9=:/ % 4
.(
,M2 ") (&
o MDA
. +0 % &
973 Z/
"#3 6) 4$
5 ' J) .9 Q, [ (0
% JK Z- h ) ,'h' +' ,':$ I .$ ,/ $ 2 N) X3 +T o 2 N= 9) / ,#$
R+T
2 ,M2 ") (& Z) <) . +
MDA
‚'3+/*
. m :8 % 4$
5 . +0
#A2 Z/ &
+
(Kusvuran & Dasgan, 2017)
,M2 . '0 MDA
"#3 . m :8 4$
5 2 ") (&
") (& H) , )
./+0 c' J3 V':$ R A& %
(ROS)
L =3
‚'3+/*
%1 :$ I ) / +3 vTDX2 % .T M2 ) ROS
,#3 GD2 Z), ) +' ,':$
)
Mansori et
al., 2015
(.
Fv/Fm PI
Q r/ ) .)(g3 ./+0 "#3 '3 .$ J/
#A2 @ /5 c MD2 @ l! %
PI
Fv/Fm
R , ) ,#D 3
4$ "#3 % '3 .(
5
,M2 " $ N=
./+0 . PI
H) ,#- ,
#3 " $
R. beggeriana
% 25 ~ 7 1
#A2 . +
"#3 SDƒ, C .) J8 1 ,' , 5% + 2 % ' 5 4$ ./+0c MD2 @ H'Z/ '2.:) M2 .4c ,),
ƒ J!
SW
./+ /
%
<) .DG rI 1
% ' 5 ,g2
"#3 J!
,), (.
Figure 4. Mean comparison interaction effect of species and water deficit on malondialdehyde of wild rose. (C, control; SD, severe water stress; SW, sampling one week after re-watering in severe water stress).
d d
bc
d a
d
bc bc
ab
d
a
cd
0 10 20 30 40 50 60 70 80 90
R. canina R. orientalis R. beggeriana R. persica
MDA (nmol per g of DW)
Rosa Species
C SD SW
? ''{3 ./+0 PI
R. orientalis
Q R+^
./+0 ) 1 D $ ") 215 [+XD D $ +
9J0 ,/ ., , . 9=:/ ? ''{3 % )kI
./+0
R. canina
H') I ,g2 % ' 5 1 ,A 1 <)
Q '0 $ ''{3 .DG <) 1 ,A ,/ H) 2 +
! T U % ,8 3 9:/ +3 c=; . 9=:/ +
l! 4) 2 "#3 .$ %,8 3 ,JX +=
9J01 , T U l! ,M2 . T U c ) 5 .(
l!
Fv/Fm
#A2 @ ,#- J/ %
./+0 H' , cd ; () 3 % O D! H) ,/ 2 c ) +=/ N #2 & $ 6
? (0 s) D/ H) .(
De Dauw et al.
(2013)
H) 1 /5 9 9M `2
9'A H' % Z K % l!
F1
"#3 . W M2
4$
D2 I l! H) ,/ + Q $ Q GD 5 ('/ H) .,#D:/ ,/ 1 % DU c ; 2+D/5+$ T U B$ ,8 l! .$ , 9 @ 4D:' +D&
II (Fv/Fm)
= #2 l!
%
Q1 ,/
/ 1 "#3 ,M2 % '0 l! .,
Fv/Fm
) ' ' %* / . k +/ c),=3 ,M2 , 2 J/
(Rostamabadi et al., 2016)
% ':
.T 1 ZJ VI 1
Kocheva et al.
(2004)
Strauss et al.
(2006)
.$ ,#D& ) +! ? A `2
''{3 . l! H) Q +=/ m :8 ,#- `'72 ?
.T M2 W ; "#)(0 % % =DA2 'A2
"#3 / J `'72 % T U l! 2 .,)5
4 & %(D# +D& T U .=/ . .)(g3 Q1 2 +3+& Fk ) $ H' L =3 9GP H) . 5
4D:' +D& .DX'Z/ %* / O C3 ,A3 4$ 3 II
1 ,A . D R MD/ R D8 J#$ ($ 2 +#'$+D I J/ .DX'Z/ %* / 6 +3 A
2 ,
(Goncalves & Santos, 2005)
.
-.,/ ,,78 '.(1 (2 '
4$ "#3 ./+0 5
#A2 @ J8 1 % %
c'& T$ ,M2
a
J/ ,'d+#3 $ ,M2 c$ b
#A2 '@ 3 ('/ '3 c MD2 @ H'#S ,/
%
R , ) 9 /5 3
J/ H'Z/ '2 ? :) M2 .(
./+0 . c'& T$ ,M2
? G3 , . 9=:/ a
#A2 4$ "#3 ^ % 25 ~ 7 1 % .9 ,/ 5
c 5 . .:) M2 H'Z/ '2 @ c MD2 ./+0 % ' 5 4$
%(D# +D& T U l!
1 (PI) J8 . ) ƒ, C
"#3 MD
J!
ƒ6 +D2
"#3 SD ,), ƒ J!
./+ / MR
%
<) 1 rI 1
% ' 5 ,g2
"#3 J!
ƒ6 +D2 ./+ / SR
%
<) 1 rI 1
% ' 5 ,g2
"#3 J!
ƒ,), ./+ / MW
%
<) .DG rI 1
% ' 5 ,g2
"#3 J!
ƒ6 +D2 ./+ / SW
%
<) .DG rI 1
% ' 5 ,g2
"#3 J!
,), ( .
Figure. 5. Mean comparison interaction effect of species and water deficit on performance index (PI) of wild rose.
(C, control; MD, mild water stress; SD, severe water stress; MR, sampling one day after re-watering in mild water stress; SR, sampling one day after re-watering in severe water stress, MW, sampling one week after re-watering in
mild water stress; SW, sampling one week after re-watering in severe water stress).
a-d a-e
ab
a-f d-i
b-i
a-e
f-i
b-g b-i
c-i c-i
hi
a-e
g-i
d-i
i
a-e a-e
g-i a-e
b-h
a-c
b-h e-i
c-i
a
c-i
0 1 2 3 4 5 6 7 8
R. canina R. orientalis R. beggeriana R. persica
PI
Rosa Species
C MD SD MR SR MW SW
c 6 . .:) M2 H'Z/ '2 @ c MD2 ./+0
% ' 5 4$
4D:' +D& 2+D/5+$ T U B$ ,8
II (Fv/Fm)
1 J8 . ) ƒ, C
"#3 MD
J!
ƒ6 +D2
"#3 SD
,), ƒ J!
./+ / MR
%
<) 1 rI 1
% ' 5 ,g2
"#3 J!
ƒ6 +D2
./+ / SR
%
<) 1 rI 1
% ' 5 ,g2
"#3 J!
ƒ,), ./+ / MW
%
<) .DG rI 1
% ' 5 ,g2
"#3 J!
ƒ6 +D2 ./+ / SW
%
<) .DG rI 1
% ' 5 ,g2
"#3 J!
,), ( .
Figure 6. Mean comparison interaction effect of species and water deficit on maximum quantum efficiency of photosystem II (Fv/Fm) of wild rose. (C, control; MD, mild water stress; SD, severe water stress; MR, sampling one day after re-watering
in mild water stress; SR, sampling one day after re-watering in severe water stress, MW, sampling one week after re- watering in mild water stress; SW, sampling one week after re-watering in severe water stress).
,g2 % ' 5
R. canina
<) ,), "#3
.$ J/ %,), " $ ,/ % ' 5 1 ,A 1 .9& ) += c'& T$ ,M2 ,A .DG <)
R.
persica
c'& T$ ,M2 ,g2 % ' 5 ^ ('/
1 a
c ) 9 " $ 4 7
c'& T$ ,M2 .(
b
./+0 %
R. canina R. orientalis
,), "#3
, . 9=:/
#A2 ") (&
./+0 2 .9 %
#A2 ? G3 Z) ,g2 % ' 5 .9 ,/ %
c'& T$ ,M2 ./+0 . b
( .
R. persica
#A2 ? G3 , 5 ,M2 4'2 3 9 ,/
c ) , W g/
8 "#3 ^ c$ c'& T$ ,M2 .(
,),
R. canina R. orientalis
9=:/
, .
#A2 ") (&
" $ ,g2 % ' 5 9 %
,/, , % 25 ~ 7 . ,#D
R.
beggeriana R. persica
#A2 ? G3 Q,) %
,g2 % ' 5 .,J/
R. beggeriana
9! +# ) ,/
2 9 .2 ''{3 ,
R. persica
. 9=:/
,) " $ , c ) , Q
9 ,'d+#3 $ ,M2 .(
#3
R. canina
$ ''{3 ") 215 c8 2 ^
#A2 ") (& , . 9=:/ ,), "#3 %
c ) 9& 0 ; y` H) 3i 9 10
) .(
"#3 ? @ 1 4$
5 " $ +T 4':M3 " $
9 I T$ ,A3 .g'D/ .$ 9 R+T Q1 ,/
2 ,'I ") (& y` ,8 ,M2 H) # ,#$
2 )1 4 c'& T$
+
(Rahman, 2004)
s) D/ .
. ) M) &5 H - 7) Q '0 j I J2 9 Q, Q, J2 J!
(Moghadam et al.,
2015; Taheri et al., 2017)
"#3 2 H) c' .
,M2 ") (& N +2 .$ Q + ?,2 Q 3+$ J!
%,'d+$ '3 % JK 1 9} G8 H) # ,'d+#3 $ c'& T$ N) X3 1 % '0+T ") (& e+n+2 H) ,
•G8 . $ g) "#3 R U c'& T$ ,M2 1 "#3 6) 973 o c'& T$
l!
%
m+:72 ''{3 W,U .9 "#3 . 92 M2 )*+ +)('&
"#3 973 c'& T$ ,M2 4$
5 6 +3 =;
Pérez-
Pérez et al.
(2017) Carrizo citrange
H'#S
Toscano et al.
(2014)
.SD!
.J' D#)1 %
Q, [ (0 † , '0 =/+3 #I * <X'2 + o + U 9 "#3 Q 3+$ D=:/ Q ('/ 5 9T 4$
5 '
.9 Q, 4;
R. persica
4$ "#3 ,M2 5
c'& T$
a
c$ b
" $ , . 9=:/ ,'d+#3 $
#A2 4$ "#3 c'& T$ ,M2 " $ .9 5
ab a a ab
a-c a-c a-c
bc
a-c a-c
a-c a-c
d
ab
a-c a-c
d
ab a-c
c
aba-c a-ca-c ab a-c
a-c a-c
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
R. canina R. orientalis R. beggeriana R. persica
Fv/Fm
Rosa Species
C MD SD MR SR MW SW
.T 1 % )1 '0
Vaccinium myrtillus
(Tahkokorpi et al., 2007)
+Z/ 4; ,#-
(Soukhtesaraee et al., 2017)
) ‡/ T0
Jaleel et al.,
Z D&5 (2008 (Kiani et al., 2008)
Q, [ (0
. 9 H 2 c'& T$ ,M2 " $ H'#S .9 R ) Y g3 1 '& T$ 4)(/5 ('2 ") (& c' %
) , Q,##$,':$ "#3 1 / 15
Loggini et al.,
2 ,'d+#3 $ c'& T$ ,M2 " $ .(1999
<) ,/ +3
4$ "#3 =/ )1 ? @ . U & j I ) , 5
Farooq
et al., 2009
.(
'8 ,g2 % ' 5 1 ,A .$ / '0
/ +2 ,' +3 Q '0 c 73 W,U c' . i D8 ,/+
.D= .9 (D# +D& v;+3 ,8 >2 1 M'; v) A3
9J0 . 9 Q,J/ .d +#$ 3 (D# +D& % )kI
)
Miyashita et al., 2005
.(
"#3 SD ƒ6 +D2 J!"#3 MDƒ, C) . J8 1 a c'& T$ % ' 5 4$ ./+0c MD2 @ H'Z/ '2.:) M2. 7 c ,), ƒ J!
./+ / MR
%
<) 1 rI 1
% ' 5 ,g2
"#3 J!
ƒ6 +D2 ./+ / SR
%
<) 1 rI 1
% ' 5 ,g2
"#3 J!
ƒ,), ./+ / MW
%
<) .DG rI 1
% ' 5 ,g2
"#3 J!
ƒ6 +D2 ./+ / SW
%
<) .DG rI 1
% ' 5 ,g2
"#3 J!
,), ( .
Figure 7. Mean comparison interaction effect of species and water deficit on chlorophyll a of wild rose (C, control;
MD, mild water stress; SD, severe water stress; MR, sampling one day after re-watering in mild water stress; SR, sampling one day after re-watering in severe water stress, MW, sampling one week after re-watering in mild water
stress; SW, sampling one week after re-watering in severe water stress).
"#3 SD ƒ6 +D2 J!"#3 MDƒ, C) . J8 1 b c'& T$ % ' 5 4$ ./+0c MD2 @ H'Z/ '2.:) M2 .8 c ,), ƒ J!
./+ / MR
%
<) 1 rI 1
% ' 5 ,g2
"#3 J!
ƒ6 +D2 ./+ / SR
%
<) 1 rI 1
% ' 5 ,g2
"#3 J!
ƒ,), ./+ / MW
%
<) .DG rI 1
% ' 5 ,g2
"#3 J!
ƒ6 +D2 ./+ / SW
%
<) .DG rI 1
% ' 5 ,g2
"#3 J!
,), .(
Figure 8. Mean comparison interaction effect of species and water deficit on chlorophyll b of wild rose. (C, control;
MD, mild water stress; SD, severe water stress; MR, sampling one day after re-watering in mild water stress; SR, sampling one day after re-watering in severe water stress, MW, sampling one week after re-watering in mild water
stress; SW, sampling one week after re-watering in severe water stress).
ab
c-g c-g b-e
b-g b-g b-g
gh a
b-d
c-g e-g
b-f b-e b-e
gh c-g d-g c-g
h e-g
b-g bc
f-h c-g
b-e
gh
h
0 5 10 15 20 25
R. canina R. orientalis R. beggeriana R. persica
Chlorophyll a (µg g-1FW)
Rosa Species
C MD SD MR SR MW SW
b
f-k i-m d-i
b-d c-h
i-l k-n
a
b-c
j-n g-k
b-d b-d
e-i h-k
b-e b-e
k-n n
b-g b-f
e-j
k-n
b-d b-e
mn l-n
0 1 2 3 4 5 6 7 8 9 10
R. canina R. orientalis R. beggeriana R. persica
Chlorophyll b (µg g-1FW)
Rosa Species
C MD SD MR SR MW SW