• Tidak ada hasil yang ditemukan

١٤٠١ زییاپ - ۳ هرامش - ۱۲ هرود

N/A
N/A
Protected

Academic year: 2024

Membagikan "١٤٠١ زییاپ - ۳ هرامش - ۱۲ هرود"

Copied!
15
0
0

Teks penuh

(1)

12 3

1401

643 - 629

DOI:10.22059/jwim.2022.342521.986

: !

! " #$ !%

OpenFOAM

*2 1

3 3

1 .

" # $%&'(#

) * ) +, - . . ) /&'(# .( - ) 0&'(# 0 1 2 3 3

..( (

2 . 2 &'(#

.( - ) * -

) +, 5 2( 5 2( ) /&'(# ) 0&'(# 0 1 2 3 3 ..( (

3 . 2 &'(#

) +, - ) * . . ) /&'(# .( - ) 0&'(# 0 1 2 3 3

..( (

:51 7 2# 8 2 9 13

/ 02 / 1401 :51 7 = >? 8 2 9

30 / 05 / 1401

! " # $

% &'!() * + &, -& !. / 01

OpenFOAM

% '2 3 ) . / )5 ) 01

icoFoam pimpleFoam

7!1 8, 9 ( ;(< => &? + & @ A= A+ ,

&B ), * &'!() CD)

!8/ E ) < 3 . / F), 7"/

3 , '2 -

icoFoam / (5) )= "'G+

B, H ( I

&B ), JK, .AL. M D) B )1 7"/

'I 1 A8 )L 5

/ 2 E . / Q -

&. A+ , ; 3 H A+ , L1

! R)5 * / L . / &, S F)

!8/ % GH 3 , 2 . !!TH -& 9 A+ , * -&G !U A 2 &G A 2 3 V ), ! 'I 1 A

'I 1 A8 E

& 2 - AL W, ) 3 + 'I 1 A8

5 / 2 W, ) 3 + 32

< Y 2 . /

A+ , & 3 &? + & @

200

! [ + 7 /) A 2 =>

!, H & " 9 (\')D 'I 1 A8 3

& E ) H . / &, 7 @ AF. H

&. &G= < & / ]

)L 01 55

I

! 'I 1 A8 ),

& 9 A+ , < - 74

& I .

)L C'I & !. / :

-

& 9 A+ , -

!<) - + 3 , -

A8 - 'I 1 OpenFOAM .

A numerical simulation of overlay effect of rigid vegetation in a straight open channel by OpenFOAM

Komeil Samet1, Mirali Mohammadi2*, Khosrow Hosseini3, Saeed Farzin3

1. Ph.D. Student, Department of Water Eng., & Hydraulic Structures, Faculty of Civil Engineering, Semnan University, Semnan, Iran.

2. Associate Professor, Department of Civil Engineering (Water and Hydraulic Structures), Faculty of Engineering, Urmia University, Urmia, Iran, (corresponding author)

3. Associate Professor, Department of Water Eng., & Hydraulic Structures, Faculty of Civil Engineering, Semnan University, Semnan, Iran.

Received: May 03, 2022 Accepted:August 21, 2022 Abstract

In order to understand the mechanism of flow patterns in vegetated channels, the flow located in a rectangular channel was numerically investigated by using OpenFOAM software. Firstly, two solvers of that software (i.e. icoFoam and pimpleFoam) were used to calculate the velocity profiles in both longitudinal and cross-sectional directions for four selected sections in a rectangular channel with a square cylinder. By comparing the simulation results with the available data, the icoFoam solver with a better performance (six Percent Error) was selected for the next developed model. A new model was then created with two tandem square cylinders with spacing ratios of two and a half and five. Flow patterns, velocity distribution and pressure characteristics in the channel with different inlet flow velocities were investigated for two cases. It was observed that a flow field disturbance occurred in all simulations and the current changed from steady state to unsteady one at a critical velocity. This instability occurred in a distance between the cylinders for the spacing ratio of five at an average Reynolds number of eight, while for the ratio of two and a half it is occurred at an average Reynolds number of 32. The maximum values of longitudinal and transverse velocity timelines in a period of 200 seconds for four states (including two Reynolds numbers and two different spacing ratios) were plotted in two spatial ranges and fully investigated. According to the results, it can be said that the overlap has an important role on the flow characteristics in tandem arrangements and by increasing the distance ratio between the cylinders by 55 percent, the critical velocity value decreases by 74 percent.

Keywords: Critical Velocity, Numerical Modelling, OpenFOAM, Spacing Ratio, Straight Channel, Tandem Rigid Vegetation.

(2)

5 ! AB!8@ & !. /

) ) E

Kang, 2013

` 1 a` )5 , .(

5 7 b @ / ![cH A9H &= H

) A, & !.

Anjum & Tanaka, 2019

.(

!2

& !. / 3 C'U &) 3 &, = 5 5 72 , A!8YH M , -

# 5 S F'H ) -& 3

)/ & !. / .3 M]

A/ ] /

&/ H &' A < 01 -&R!, G+

& F), ) / )

Lopez & Garcia,

2001; Ghisalberti & Nepf, 2002; Zhang et al., 2010;

.

Vojoudi et al., 2020a, 2020b

& !. / / .(

3 A/

0! &G= [] & R!,

7!1 - 3 & )F/] ` -A+ , G+

) &"! !

Curran & Hession, 2013

& d(

H

L 3 & . &"H ), * e @

),

& Sf !, *! " *!,R * - . /

), ; 3 8+ A!

A, !g! !

) &. 0 &, = % =F

Perumal et al., 2012

.(

/ [ ! " h!b A5 / &,

& !.

] ) - * )5 , JK, )1 . $ i + > , & S I

. / &, !, I + ] 7 BH

Wu

et al.

(2020)

!, Q!) 5 & L 3]

C!/ j(, A1 -A+ , M] j(, C!/

&" 0 ( & !. / <( &"! ! . & !. / (b H -C! H

&H 8, 9 Sf !, *! *! "H - )/k.

)1

(CFD

@

) . !, !!BH

), * e @

A, )1 . b F), \')D )

Richardson & Panchang, 1998; Ali & Karim, 2002

.(

3 ! ! + & QH

m C ? - A8 2

), 3

) A, / % Q &B

Park et al., 1998; Nakagawa

et al., 1999; Lam et al., 2003;

.

Kharlamov, 2012;

.

Dupuis et al., 2016

* = H S B ( 3 &5 .(

/ 0 G) ), )

Sumer & Fredsøe, 1997; Cao &

Tamura, 2008; Butt & Egbers,

. .(2013

W<1 % ]

&

) 3

Park et al., 1998;

Rajani et al., 2009; Gera et al., 2010; Bai & Li, 2011;

.

Kozlov et al., 2011

0! &5 ( )F/]

/ 0 G) )

Cao & Tamura, 2008; Ong et al., 2009;

Butt & Egbers, 2013

B + &, .(

) e @ (2D

- ), *

Reichi et al.

(2005)

3 + ' )4

(Re

180 ! e "/ A8

*

& 2 - b B ( E

Rajani et

al.

(2013)

3 k. &G !U % ] G+ @

), * . / 0 G) *

Gao et al.

(2019)

!8/

3 ,

3 8+ B +

'!, / A8 ) % Q ! Re

& ), 5 ` => - 'I 1 . & , / 5

3 &5 ) .

Durao et al., 1991; Kumar &

Ray, 2018; Cao et al., 2020

-(

!8/ * + 3 ,

&B ), 3 8+

* )1 . b 7"/

= + ' * % Q ) W!9

!8/

3 , * 3 k. f 3 +

3 &5 &, B .

' ! > 72 ) J!Hf o 3 F),

6 0

) & ), 5 * 0 <( &/ f <( -(LBM

) 7!'9H '!, e @

Perumal et al., 2012;

Adeeb et al., 2018; Sarwar Abbasi et al.,

. .(2018

3 &5 ! >

!8/ . 3 ,

3 5

(3)

% ) 01 ) 3

OpenFOAM

( )1 . *G )

Gamet et

al., 2020

.(

q !L! &, 3

& r 1 s 8 ), H

3 , - $ 3 ;(< ;

&B

&. A8 7"/

t 2 ! -

3 , ! > e @ . ) 8 3 &

! S !!TH - )5 , ! " \')D ;(< j(, ... 3 &/

.A, S F)

= 3 &" 'I 1 A8 - , 3

) H

&5 W, H / ;b H

& . - /

- ) ] ![cH

&, 7 @

.A, L ] 3

F), 3

% 01 ) 3

OpenFOAM

E ) & 3

& & L 3]

/

! M D) 7 -

GH b

% ] !!TH " 01 .A, 3 ! C, H

[ B (

& / ! 'I 1 A8 7

),

&B -C'I 7"/

)L C!H H

8

)1 . b ( ) * , AL A, ) / &, + S I & 3 ! >

. / F), A+ , & 3 G 3 )=

@ 7"/ 7!() * )

- ) E (L

u + ) (H

AL ; ), * )

@ )

* (D

) ;b 25 / 1 )

! 3 A, )

(I

W, ;(< j(, +

$ !

)1 . / 7"/

) 1 ( A, / L .

! " # $ %! &

* 3 "

)9

# 8 >

( H k B B, H -A [ !, w 5

$ )1

/ )1 . .

),

&B 7"/

'

@ 9 3 W, H <)

&

. /

' 7"/

) 2 ( A, / L .

Figure 1. Definition plan of the first primitive geometry (after Breuer et al., 2000)

G ) 7"/ @ 2

& L ( A+ , - /

'L 3 s / * +

10

A5 " A+ , A, f

Uin (m/s)

/ L

& \!I H -A, . /

G . j!? H

&

) * A+ , < / (m/s

Uin

AG b W<1

!8/

& !T) % AG b 3 , . /

! & 5 FI . 3 s / 3 -A,

&B ), . / F), A+ , 7"/

3 & )

) xR? @ (D

b A= G+ A=

/ u 1 .

!,

- '

* 0 b 3 - . H

& ! 11

-

) o0T 3 s / ;b

U=V=0

'!, (

. / )1 . $

xR? @ B % GH

&B ), 7"/

) (D

t !<

E Q . / ), A, f D

15 D

! o ) . % ), A,

.A1 [ 'I 1 A8 [ &, $

), -& / 0

7I 1

G=5D

G=2.5D

)1 . b 3 ! G+ 'I 1 .

) ! f (H

20D

.A,

(4)

Figure 2. A geometric configuration of computational domain with boundary conditions

' (& )

7 1 3

blockMeshDict

% 5 )

01

OpenFOAM

( , ! H 3 2

AL &H 8, 9 3 2 7 . / F), ? 2 &H 8, 9 ( A 2 ) 13

&'!() # ' (% A 2 )

/ ', 7"/ A5 " !U A 2 &=

. / ! <H , 7!

), ] ![cH

"8/ - e @ 0! A5 " !U

),

!8/ > . . / )5 , 3 ,

A 2 / ! H

- ) B

OpenFOAM

, G

, S I

# ' - . / ! H B &+ 1

A= y0 * W<1 & Q ] 3 ) 7"/ &8B"

& ! 7!() - Z

. / + s < BH G

&) , * )

58368 BH - +

', 28800

9FI BH - + 115585

&'5 S 9FI BH + 57215

& + . /

# ' A= & ', &. ) . A8 .

&" 0 / !$ H 3

#3 H /

'I 1 A/ 3 3 )1 . H

' 72 . /

<) 3 S +R@ <) / !GzH A, %3f

&L! &" 0!1

&G 12

!U - !.

{ @ S I 72

b ), 3 ! S +R@ &,

$ 7"/

72 D .

r 1 !B +

s / A

-

1

13 -

)

(CFL

& )5 / %3f s / /

A, & G + ]

14A

& (Co)

.

A, B + *

H

* /

)

Haddadi et al., 2018; Greenshields, 2019

.(

-

&L

G A + - ? 2

!8/

3 ,

H

& + . / )/ * 3 B

', * S I

\ BH 3

&

/ :

) 1 (

| |

- ] -& 3 % .δt

|

|U

] A+ , <

',

, .A, A+ , A= ', 3 δx

&) , E -* \')D 3 )

!8/

] 3 / &, 3 ,

&

m 0

3 H

\!B? E ) 3 ~+

&1 @ 3 / H

[cH / &H 8, 9 3 01 ~+ W<1 H0 !

3 3 -A/ S 8, 9 Ab & >

&) , &H 8, 9 3 )= "'G+ ) . / M D) H

* ! + ,- "

\ BH A8

\!I H A8

(5)

), ) (D

! 'I 1 )

A, (H

3 { / :A,

) 2 ( * u + '!, &

- b !<) \ '!, (b x GQ D

/ ;(<

. )1 . $ - )1 B, H

D

C!H H H

* 20

A8 -

05 / 0

/ )1 . $ .

& Q ]3 &H 8, 9 3 2 =

B, H -A, / M D) m 0 &1 3 )1

$) A, & f ! 3

3] W / 7!

3

![cH G &

) / )/

Sohankar et al., 1998;

Etminan et al., 2011; Kanaris et al., 2011

.(

e @ 3

), (b 3 F), - +

iDL @

] -[m

- 0 W5 A+ ,

|U| - +

A+ , t !<

] [ m/s

+ ν

*!H G !, ) 3 "

15

]

m2/s

[-

3 +

) (Re

&

H S I 3

\ BH :

| | (3)

-

D

/ u 1 A [ ν

C!H H

* ) ! [ ; ) % I * - )

-%

|U| A,

3 + ]

A, S F) \')D .

Norberg (2001)

A1

H

3 +

2 160

& &b B

! H

!8/

3 ,

H 9 ] 3

. 3 % GH - A 2

B . /

)

&

B ! "

& \!I H & , + -

/

16 ) ) (St

A, S I

& \ BH 3 /

:

) 4 ( - ]

, & . J 1 F

]17

A, [1/s

; , 1 7 8H W, H )18

& 3 gD H (FFT

C ?19

20]

& A, ! . ]

Den Hartog (2013)

+ -

] < - & ) 3 + )/

22 / 0

& F), 7a Y •f GB ) - . /

3 )/ + -3 + 17

/ 0 H 19 / 0 !T)

3 •R <) F

7 / 1 H 9 / 1 .A, !T)

! Sf B + % U

B -

21J ), ) (N–S

7 / -& 5 ! -

B ) & ), ! Sf B 5

(

% ) B ) 6 (

-A, &H S i)D ) !, * A,

&

] . ‚ 8

b ƒ> AG, ! &H S i)D .

Sf B *

& H ! !, 3 "

H k -&G !U A, 3 { /

:

u = 0 (5)

u u p ν u (6) ] -A+ , u

- 3 t

) 3 " ν

&"!H G !,

p

C!H H ρ

& & > L1

& L !, M] & >

1000 % . '!

. / )1 . $ CB" )

Sf !, *! - ? 2 &L

) &H 8, 9 (CFD

OpenFOAM

Sf B 72

- ) / F), J ),

Lysenko et al., 2012;

Montelpare & Ricci, 2016

.(

& Q ]3

% 01

S I

) 3

&

0! /

A!' b

! 3 &

H

!8/

3 , 'G 3 Sf !, *! " W8H

F), &. ] D &)2 S 2 <) .

& b !

!.

. '2 x

OpenFOAM

%

icoFoam pimpleFoam

x 7 / )

PISO PIMPLE

(6)

!8/

3 ,

!8/ x . / )1 . &" - 3 ,

'2 % ]

icoFoam

)F/] % ]

'2

pimpleFoam

0!

k-ε

. / F), )F/]

icoFoam

% ] Sf B

H ) 3 F), J ), k

PISO

'G+ ! <H & G? L1)

& 72 (22 (Issa, 1985)

.

)

& PISO

"H B) !U H

• H „ ! $ B) !U & ) k. S I

s / * . 3 ! 3 W / !

pimpleFoam

) 3

PIMPLE

& F),

) 3 &8! H

PISO

)

SIMPLE

o )

G!

L1 W8H Sf B & G?

A, (23

& F), &G A 2 W / /

)

Patankar,

(1980

) .

o / "H

A 2 < Sf B AF &

% Sf B 72 $ . ) % ) & ), !

] ) .

" !

9 Q2 o &'!() &H *

24

) - 3 > K" (FVM

& G? o 3 F),

& F), % 8H % GH . !T) G . /

G!b t !<

! j(, / 3 H

001 / 0

& \b ) "H 1 - /

& & 3 % . . / B

!8/ & GH 3 ,

3 ! . / !$ H % I * 200

!8/

) / 3 ,

. / 3 !

) !, S 8, 9

Intel(R) Core(TM) i5-

4200U

3 6

/ 2 / % 0H !.

&) !.

-( ) => 3 F), ) 3 S I . / % Q S 8, 9 3 $ - ! >

3 J S 8, 9 200-000

& !), …9 "H

GH 5 3 )1

• 8 <H CPU

25 .A, A+ ,

./ 0! 1

0! 1

% \')D x , - -ico

pim_La pim_Tu

A1 % Q '2 C!H H

icoFoam

- '2

pimpleFoam

'2 % ]

pimpleFoam

. ) )F/]

Re= 100

-

A= -A+ , F † ; 3 H A+ ,) 25

) (& @

;(< A= (U

) (&? + A+ ,) 26

-(V

( 0 W5 ) ) & @ D * 7 / - " =>

-&8 D , 7!1 JK, . ] A,

A+ ,

A!Bb

! \')D

Re=100

E ) / ‡ D),

Beurer et al.

(2000)

. / <

8)+

&'5 (5 I 3 &Q , )27

(PE

F), \')D / o , "'G+ & 3 /

& \ BH 3 S I /

)

Samet et al., 2019

(:

PE = ∑ !"#"$"#%!×100 (7) - ]

&'

&(

L C!H H A+ , <

L A+ , < / A,

!8/ 3 ] 3 ,

. ) ) 7"/

3 7!1 ( F †

U

A+ ,V

!8/ < 0 W5 ) 3 ,

&Bb /

& L ) 7"/ .

-a

3 'I 1 3 A+ , (

95 / 0

&B ), ƒ> AG, 3 ) ) 7"/

H ( A, f 95

/ 1 )

! ) ] 3 H

! A,

& L ( ), ;'? / H)

10

&) ,

& )

& 3 .( / ) 7"/

3

& L (

$9

&? + A+ , ] A, 'I 1 V

05 / 1

&F 3 ] A R+ )/ b ), AL )

& !!TH A8Y

& L .

!8/ / 3 ,

! Ab A8 '!, S Q

H

AG b

!8/ <

! 3 , 3 H

(7)

) 7"/ .A, ] &Bb <

-b

3 3 H ( ;

& L &? + A= A+ ,

& L . /

!8/ 7!1 3 ,

3 B A+ , < / ),

H 95 / 0

! &G - ) ] 3 B - G 8, 9 H

< A+ , 'I 1 $ &Bb < 3 H

& 5 ! A< ( E ) -x GQ .A, )1 . . &Bb <

) 7"/

4 7!1 ( & @ A= A+ ,

7"/) -a

4 - 7"/) &? + ( -b

4 A!Bb , (

= FI \')D 9

L AL => -x

&

!8/ A 2 E ) . / 3 ,

&Bb / a & ] 0 b e B ‰ C!H H

& L .A, /

< ! & 5

!8/

3 , ), S Q &Bb < /

A 2

= FI 7!1 .A, & +x

E ) + GQ ! &"> S 1 9 ), 3

&

E ) )= -A= 2 d / A 2 = FI .A, ] A, x

(a) (b)

Figure 3. a) streamwise (U), and b) cross-sectional velocity (V) profiles at Y=0

(a) (b)

Figure 4. a) streamwise (U), and b) cross-sectional velocity (V) profiles at x=0, 4 and 8 -0.2

0.0 0.2 0.4 0.6 0.8 1.0 1.2

-10 0 10 20

U

x

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8

-10 -5 0 5 10 15 20

V

x

Breuer et al., 2000 Simulation

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

-4 -2 0 2 4

U

y

-0.4 -0.2 0.0 0.2 0.4 0.6

-4 -3 -2 -1 0 1 2 3 4

V

y

Breuer et al., 2000 Simulation

(8)

) 1 ( E ) '2 , PE

-ico pim_la

pim_tu

; 3 H 8, 9 F †

=> A+ ,

\')D D

& L .

Table 1. Results of percent error for both directions at different sections for ico, pim_la and pim_tu, respectively

Section

Direction y = 0 x = 0 x = 4 x = 8

U 8, 12, 13 7, 13, 11 6, 15, 16 8, 13, 14 V 5, 14, 14 1, 10, 8 7, 14, 14 9, 14, 15

'2 , <

&

A1 . Q!) H

ico

! ! I / PE

A8 )= "'G+

pim_la

! ! PE

13 I

pim_tu

! ! PE

13 I 8, 9

<

A+ ,

. '2 -

icoFoam

, F),

/ M D) % )1 B, H .

2 0! 1

G

@ % D

/ j!? H H -

! 'I 1 ),

B, H - &, )1

d / A 2

G=5D

% A 2

G=2.5D

/ )1 . $ .

!8/

3 , A+ , 3 -

&

A 2

&G - x / /

A 2 A+ , E H

A1 01 Hf .

& Q ]3

<

D

A [ν

) 01 Q!) -

A+ ,

<

0! 3 +

& 01 L .

3 J /

% . !!TH &+ -& 3

&+ )

R)5 ( A 2 3

iDL

&

A+ , 3

-

& V .

!!TH &+ R)5 &, !,

3 A+ , ,

! / x / A,

& 7<) A, f AG, /

.

&

AF. H

A+ , 3 ŠDL <

(& 9 A+ ,) -

& b & <) A 2

!.

! -A+ , 01

C!H H A 2

&G

&G !U

& b .

Anjum & Tanaka (2019)

0!

5 75 A5 " !U *

AG b /

), ! f & !.

L .

>

Diwivedi et al.

(2022)

'I 1 A8 B ( 5

/ 2 H 5 / 5 01

&

< ,

) 9 'I 1

&

),

! A8 A, ),

A, f L .

) E

Wang et al.

(2022)

L

M .

! ,

!' ' 7 +

! [†

A <

L1 ,

!' '5 ‡

&

9

! W )1 1 .A,

/ „ & <) A 2 A+ ,

09 / 0 V ( 3 ) ! [ ) -

& 2

A+ , % 35

/ 0 ! [ )

3 )

35 x GQ . )1 r FH ( -

L E )

01 55

I ! 'I 1 A8 ),

-

A+ , <

& 9 &)+ ,) ! ]

3

A 2

&G A 2

&G !U

& !!TH (

74 I

&

! -;b .

&) 2

& 01 '!, ! z1 H 3 -

A+ , & B )

H

& V ( E ) E )

. et al Sarwar Abbasi (2018)

. et al Wang (2021)

. & 5 ! A< (

! 7"/ 7!() A2 * -

), ] ! z1 W<1 - )L

/

&

% )

"

A2 A 2

"

/ &, (

A+ , & 3 s (5 Y 2 3 & @ 28

200

A, ] %3f . / 8, 9 !2 ! [ ! ! [ ) * A+ , )/

3 + x ! [ ) < C!H H

100

50 )/ . / )1 . $

Re G

(9)

&

u 1 "G A 2 => H I ] A 2 d )1 . % S 100 Re

-% A 2 dA, E G

100 Re G

5 / 2 % , A 2 d 50 Re

G

% => A 2 % Q , E 50 Re

G

5 / 2 A+ , & 3 s (5 Y 2 . / )1 . $

&? + & @ 200

=> ! [

/ !, H 7"/ C!H H

) 5 ) ( 6 G (

G . / ) 7"/ @

5

& L ( /

A+ , Y 2 -A 2 =>

- W5 A=

FI < * 0 &H JK, )1 )

&b 01 ] 3 J , )1

&

A, A 2 s A+ , Y 2 . A+ , S Q ;b % => * 2 W<1

-% => -7 < .A, FI 90

3 I

.A, QH FI < * 0 5 3 , L % Q!) <

A+ , < E 'I 1 A8 -

'I 1 A8 5

/ 2

& V H 3

& 5

. A< ( / „ E )

Figure 5. Timelines of velocity profiles in longitudinal direction at four cases while considering the area between two tandem cylinders

Figure 6. Timelines of velocity profiles in lateral direction at four cases while considering the area between two tandem cylinders

0 0.5 1 1.5 2

0 25 50 75 100 125 150 175 200

velocity (m/s)

time (s)

first case second case third case forth case

0 0.5 1 1.5 2 2.5

0 25 50 75 100 125 150 175 200

velocity (m/s)

time (s)

first case second case third case forth case

(10)

) 7"/

6 => &? + A+ , E ) (

& L L .

&

&? + A+ , < /

! • 8 <H '!, ! 3 'I 1 A 2 H

& 2 A, A 2 3 A+ ,

'I 1 A8 S FH & "

5 / 2

7"/ .A, H "/]

) 5 ) ( 6 / L (

A+ , < -% => A 2 0 & @

A+ , - A+ , < A8 &8

! QH H % => A 2 -;b .

& L A+ , 7 / iDL )/

( 3 +) *>

A8 ! >

& ~+ *> 'I 1 A+ , S !!TH /

*> ! A=

] ! < 3 H . /

7"/ &, x GQ )

5 ) ( 6

& ! (

A+ , < ~+ 'I 1 A8 % => A 2 -A, / A=

A+ , ! & 3 3 ‹! H "/]

.A, " QH 5

9FI - ' h!b &, % GH

W, A, / ;(< j(, ),

) / )1 . $ b

"

;(< A 2

"

s (5 Y 2 .(

S &? + & @ A+ , & 3 200

! [

!, H A 2 =>

C!H H 7"/

) -a

7 ) ( -b

7 (

& L . / L 01 /

'I 1 A8

&8 & @ A= A+ , S , - ), .A, )1 01 3 +

(a)

(b)

Figure 7. Timelines of velocity profiles at longitudinal a) and, lateral b) directions at four cases while considering a section in the middle of two cylinders

0 0.5 1 1.5 2

0 25 50 75 100 125 150 175 200

Ux (m/s)

0 0.5 1 1.5

0 25 50 75 100 125 150 175 200

Uy (m/s)

time (s) first case

second case third case forth case

(11)

<

A= A+ , 7b 2 Y 2 ) & @

Ux

(

) &? + A=

Uy

( 7b 2 Y 2 L1

) (P

(5 A 2 s

7 / & 3

"

A 2 A2

"

"

A 2

;(<

"

! ), 3

8, 9

& 3 S

200

! [

3 +

100 A, ] -

) 2 ( &F < .A, / L F †

Ux

-

h@ 3 &/ C<+

& ), 5 L

&

&F <

F †

Uy

A+ ,

A, ƒ> A=

;(<

( W5 G+)

& L .

Table 2. Maximum and minimum amounts of pressure, velocity in X and Y directions at the Re of

100 in both states (section and area)

Section Ux Uy P

Max 1.842 1.425 0.609

Min -1.715 -1.516 -1.782

Area Ux Uy P

Max 1.695 2.050 1.498

Min -1.715 -1.918 -1.816

) 7b 2 Y 2 E ) % GH 2

(

E 'I 1 A8

"

A2 A 2

"

- h'BH

"

;(< A 2

"

E ) L1 < 7b 2 Y 2

'I 1 A8 5

/ 2

& L < .

& L A 2 &8 A+ ,

&'!() !2 )1 . $ % 3 L1 &.

& V - ), ! )1 . b - , 3 .

f & @ A+ , <

"

;(< A 2

"

L

&

A8 '!, ! & ! &2 A+ , &'5 &2

; , QH H .

G - R+

W, H @

Uy

/ L

-A,

"

A2 A 2

"

A+ , Y 2 -

) &)2 &8 A=

05 / 2 3 ( ! [ )

.A, !, ( ! [ ) * ) ! <

3 1

4

&. &, - ? 2 *

/

!8/ -& !.

, &<1 3 ,

&B ;(< ), * 7 / , . / % Q 7"/

) 'I 1 A8 ![cH # $ -&8 'I 1 x -(G

5 / 2

!8/ .A1 . b B ( E - + 3 ,

, * W8H A+ , ; 3 H !g!

w 5 &8B" # ' S Q &'!() * 3

*H A 2 ) . ! H3 A [ 7"/

), -

'2 x

OpenFoam

7 /

icoFoam

) ) (PISO

pimpleFoam

) )

PIMPLE

B ( -(

'2 . / F), B +

icoFoam

!8/

3 ,

'2 % ]

pimpleFoam

!8/

3 ,

'2 3 'I 2 E ) . / )F/] % ] A+ , < 8, 9 W5 ;(< , &8 & @

= FI) ;(< * (AL => -x

= FI) (y

Beurer et al.

(2000)

L < .A1 . b & 3 &, '2

icoFoam

) (5 I "'G+ I / (PE

A8 )=

'2

pimpleFoam

(5 I 13

k d I 3 ,

), B

. / M D)

), 'I 1 A8 )L &B

5 / 2 . / ! H E A+ , ; 3 H -

&.

A+ , L1 \')D

/ L .A1 . b &, &, !, !!TH &+ - A+ , 3 01

! 3 A+ , 7!1 / x / A,

A, f AG,

& A 2

!8/ & GH - 3 ,

& 7"/

A+ , * ! R)5 . !.

Œ & 9 A 2 &G A 2 3 ] /

(12)

& !!TH &G !U &G !U A 2 x b S $9 .

A8 / $2R . / A8[ '!, ! 'I 1 -E 'I 1 3 + W, ) @

& r FH AL

& 2 - )1 'I 1 A8

5 / 2

3 ! !

32

& V 3 .

L -

! 'I 1 3 2 H & 9 3 + / 01 & ) '!, 55

'I 1 A8 I

! ), & 9 A+ , < - 74

I

&

[ Q!) Bb

& r FH & / )1

r 1 Q!) 0!

E ) 'G 3 .

Anjum &

Tanaka (2019)

-

Wu et al.

(2020)

-

Diwivedi et al.

(2022)

-

Wang et al.

(2022) Wang et al.

(2021)

& 5 & 5 .

3 + u 1

50 100 ! >

'I 1 A8 5

/ 2 . / k A 2 => -E

& " 9

D +

$ 8, 9

d / )1 .

"

;(< A 2

"

W, ;b &B(< & B

ƒ> A, 3 ), d )

"

A2 A 2

"

7"/ 7!() !2 *

/ , AL ), ! 'I 1 W<1

&

&? + & @ A+ , & 3 s (5 Y 2 . M H 200

! [ =>

E ) < . / G 8, 9 & " 9

, L L 3 +

A+ , E 'I 1 A8 A=

'I 1 A8 <

5 / 2

; ,

& V H .

~+ 'I 1 A8 L E ) - ! >

&8 & @ A= A+ , 3 A8 01 / ! cH .A, / 'I 1

&8 & @ A= A+ , S , - ), .A, )1 01 3 7"/

& -x GQ ![cH & !. / A1 . Q!) H

&. &G=

S / )L C!H H

& 'I 1 A8 01 ] .

! >

& - '!, 'I 1 A8 A+ , H

A+ ,

H

&8 & @ A=

- ] A,

! >

A 9

! . A+ , < ![cH H

5& 1

1. Computational Fluid Dynamics 2. Drag coefficient

3. Blockage ratio 4. Reynolds number 5. Wake

6. Lattice Boltzmann Method 7. Overlay effect

8. Tandem 9. Viscous flow

10. Dirichlet Boundary Condition 11. Law of wall

12. Overtake

13. Courant-Friedrichs-Lewy 14. Courant number

15. Kinematic viscosity 16. Strouhal number

17. Vortex shedding frequency 18. Fast Fourier Transform 19. Time history

20. Lift coefficient 21. Navier–Stokes

22. Pressure Implicit with Splitting of Operators 23. Semi-Implicit Method for Pressure Linked

Equations

24. Finite Volume Method 25. Streamline direction 26. Cross-sectional direction 27. Percentage Error 28. Velocity timelines

6 7 "#

‹!

. W, H ;1 u BH .

.

6

1. Adeeb, E., Haider, B. A., & Sohn, C. H.

(2018). Flow interference of two side-by-side square cylinders using IB-LBM Effect of corner radius. Results in Physics 10, 256-263.

(13)

2. Ali, K. H., & Karim, O. (2002). Simulation of flow around piers. J. Hydraul. Res., 40, 161-174.

3. Anjum, N., & Tanaka, N. (2019). Study on the flow structure around discontinued vertically layered vegetation in an open channel. J. of Hydrodynamics.

https://doi.org/10.1007/s42241-019-0040-2 4. Bai, H., & Li, J. W. (2011). Numerical

Simulation of Flow Over a Circular Cylinder at Low Reynolds Number. Advanced Material Res, 255-260: 942.

5. Breuer, M., Bernsdorf, J., Zeiser, T., & Durst, F. (2000). Accurate computations of the laminar flow past a square cylinder based on two different methods: lattice-Boltzmann and finite-volume. International Journal of Heat and Fluid Flow, 21, 186-196.

6. Butt, U., & Egbers, C. (2013). Aerodynamic Characteristics of Flow Over Circular Cylinders with Patterned Surface. International Journal of Materials, Mechanics and Manufacturing, 1(2), 121.

7. Cao, S., & Tamura, Y. (2008). Flow Around a Circular Cylinder in Linear Shear Flows at Subcritical Reynolds Number. J. of Wind Engineering and Industrial Aerodynamics, 96,10-11: 1961.

8. Cao, Y., Tamura, T., & Kawai, H. (2020).

Spanwise resolution requirements for the simulation of high-Reynolds-number flows past a square cylinder. Computers and Fluids, 196, 104320.

https://doi.org/10.1016/j.compfluid.2019.104320 9. Curran, J. C., & Hession, W. C. (2013).

Vegetative impacts on hydraulics and sediment processes across the fluvial system, J. of Hydrology, 505, 364-376.

10. Den Hartog, J. P. (2013). Mechanical Vibrations. Dover Publications. ISBN:

0486131858.

11. Diwivedi, A. R., Dhiman, A., & Sanyal, A.

(2022). Stratified Shear-Thinning Fluid Flow Past Tandem Cylinders in the Presence of Mixed Convection Heat Transfer With a Channel- Confined Configuration. J. Fluids Eng., 144(5), 051301. https://doi.org/10.1115/1.4052473 12. Dupuis, V., Proust, S., Berni, C., & Paquier, A.

(2016). Combined effects of bed friction and emergent cylinder drag in open channel flow.

Environmental Fluid Mechanics. doi:

10.1007/s10652-016-9471-2

13. Durao, D. F. G., Gouveia, P. S. T., & Pereira, J.

C. F. (1991). Velocity characteristics of the flow around a square cross section cylinder placed near a channel wall. Experiments in

Fluids, 11, 341-350.

14. Etminan, A., Moosavi, M., & Ghaedsharifi (2011). Determination of flow configuration and fluid forces acting on two tandem square cylinders in cross-flow and its wake patterns.

International Journal of Mechanics, 5(2).

15. Gamet, L., Scala, M., Roenby, J., Scheufler, H.,

& Pierson, J. L. (2020). Validation of volume-of- fluid OpenFOAM® isoAdvector solvers using single bubble benchmarks. Computers & Fluids, 213. https://doi.org/10.1016/j.compfluid.2020.104722 16. Gao, Y., Chen, W., Wang, B., & Wang, L.

(2019). Numerical simulation of the flow past six‐circular cylinders in rectangular configurations. Journal of Marine Science and Technology. https://doi.org/10.1007/s00773- 019-00676-7

17. Gera, B., Sharma, P. K., & Singh, R. K. (2010).

CFD Analysis of 2D Unsteady Flow Around a Square Cylinder. International J. of Applied Engineering Research, 1(3), 602.

18. Ghisalberti, M., & Nepf, H. M. (2002). Mixing layers and coherent structures in vegetated aquatic flows, J. Geophys. Re, 107 (C2) 1-11.

19. Greenshields, C. J. (2019). OpenFOAM User Guide version 7, OpenFOAM Foundation Ltd, CFD Direct Ltd. https://openfoam.org

20. Haddadi, B., Jordan, C., & Harasek, M. (2018).

OpenFOAM® Basic Training, 4th edition.

Institute of Chemical, Environmental &

Bioscience Engineering, Technische Universität Wien.

21. Issa, R. I. (1985). Solution of the implicitly discretized fluid flow equations by operator- splitting. J. Comput Phys, 62, 40-65.

22. Kanaris, N., Grigoriadis, D., & Kassinos, S.

(2011). Three dimensional flow around a circular cylinder confined in a plane channel. Physics of fluids, 23, 064106. doi:10.1063/1.3599703 23. Kang, H. (2013). Flow Characteristics and

Morphological Changes in Open-Channel Flows with Alternate Vegetation Zones. KSCE J. of Civil Engineering, 17(5), 1157-1165.

24. Kharlamov, A. A. (2012). Modeling of transverse self-oscillations of a circular cylinder in an incompressible fluid flow in a plane channel with circulation. J. of Applied Mechanics and Technical Physics, 53(1), 38-42.

25. Kozlov, I. M., Dobergo, K. V., & Gnesdilov, N. (2011). Application of RES Methods for Computation of Hydrodynamic Flows by an Example of 2D Flow Past a Circular Cylinder for Re = 5–200. International J. of Heat and Mass Transfer, 54(4), 887.

http://dx.doi.org/10.1016/j.ijheatmasstransfer

(14)

26. Kumar, A., & Ray, R. K. (2018). Numerical Simulation of Flow Around Square Cylinder with an Inlet Shear in a Closed Channel.

Applications of Fluid Dynamics, Proceedings

ICAFD 2016, 297-304.

https://doi.org/10.1007/978-981-10-5329-0_21 27. Lam, K., Li, J. Y., Chan, K. T., & So, R. M. C.

(2003). Flow pattern and velocity field distribution of cross-flow around four cylinders in a square configuration at a low Reynolds number.

Journal of Fluids and Structures, 17, 665-679.

28. Lopez, F., & Garcia, M. (2001). Mean flow and turbulence structure of open channel flow through non-emergent vegetation, ASCE J.

Hydraul. Eng., 127 (5), 392-402.

29. Lysenko, D. A., Ertesvag, I. S., & Rian, K. E.

(2012). Large-eddy simulation of the flow over a circular cylinder at Reynolds number 3900 using the OpenFOAM toolbox. Flow Turbulence Combust, 89(4), 491-518.

30. Montelpare, D. V. S., & Ricci, R. (2016).

Detached–eddy simulations of the flow over a cylinder at Re = 3900 using OpenFOAM.

Comput Fluids, 136(10), 152-169.

31. Nakagawa, S., Nitta, K., & Senda, M. (1999).

An experimental study on unsteady turbulent near wake of a rectangular cylinder in channel flow. Experiments in Fluids, 27, 284-294.

32. Norberg, C. (2001). Flow around a circular cylinder: Aspects of fluctuating lift. J. Fluids Struct, 15 (3-4): 459–69.

33. Ong, M. C., Utnes, T., Holmedal, L. E., Myrhaug, D., & Pettersen, B. (2009).

Numerical Simulation of Flow Around a Smooth Circular Cylinder at Very High Reynolds Numbers. Marine Structures, 22, 142. http://dx.doi.org/10.1016/j.marstruc 34. Park, J., Kwon, K., & Choi, H. (1998).

Numerical solutions of flow past a circular cylinder at Reynolds numbers up to 160. KSME International J., 12(6), 1200-1205.

35. Patankar, S. V. (1980). Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corp., Fluid dynamics, Taylor &

Francis, ISBN: 978-0-89116-522-4.

36. Perumal, D. A., Kumar, G. V. S., & Dass, A. K.

(2012). Numerical Simulation of Viscous Flow over a Square Cylinder Using Lattice Boltzmann Method. International Scholarly Research Network ISRN Mathematical Physics, Vol. 2012, Article ID 630801, doi:10.5402/2012/630801 37. Rajani, B. N., Gowda, R. V. P., & Ranjan, P.

(2013). Numerical Simulation of Flow past a Circular Cylinder with Varying Tunnel Height

to Cylinder Diameter at Re 40. International J.

of Computational Engineering Research (ijceronline.com), 3(1), 188-194.

38. Rajani, B. N., Kandasamy, A., & Majumdar, S.

(2009). Numerical Simulation of Laminar Flow Past a Circular Cylinder. Applied Mathematics Modeling, 33(3), 1228-1247.

39. Reichi, P., Hourigan, K., & Thompson, M. C.

(2005). Flow past a cylinder close to a free surface. J. Fluid Mech., 533, 269-296.

40. Richardson, E. V., & Panchang, G. V. (1998).

Three-dimensional simulation of scour- inducing flow at bridge piers. J. Hydraul. Eng., 124(5), 530-540.

41. Samet, K., Hoseini, K., Karami, H., &

Mohammadi, M. (2019). Comparison Between Soft Computing Methods for Prediction of Sediment Load in Rivers: Maku Dam Case Study. Iran. J. Sci. Technol., Trans. Civ. Eng., 43, 93-103.

42. Sarwar Abbasi, W., Islam, S. U., Faiz, L., &

Rahman, H. (2018). Numerical investigation of transitions in flow states and variation in aerodynamic forces for flow around square cylinders arranged inline. Chinese Journal of Aeronautics, 31(11), 2111-2123.

43. Sohankar, A., Norberg, C., & Davidson, L.

(1998). Low-Reynolds-number flow around a square cylinder at incidence: study of blockage, onset of vortex shedding and outlet boundary condition. International Journal for Numerical Methods in Fluids, 26, 39-56.

44. Sumer, B. M., & Fredsøe, J. (1997).

Hydrodynamics Around Cylindrical Structures.

Advanced Series on Ocean Engineering, Volume 12. World Scientific, Singapore.

45. Vojoudi Mehrabani, F., Mohammadi, M., Ayyoubzadeh, S. A., Fernandes, João N., &

Ferreira, Rui M. L. (2020a). Turbulent Flow Structure in a Vegetated Non-Prismatic Compound Channel, Proceedings, Journal of River Research and Applications, Wiley, 36, 1868-1878.

46. Vojoudi Mehrabani, F., Mohammadi, M., &

Ayyoubzadeh, S. A. (2020b). Flow Behavior in Non-Prismatic Convergent Compound Channel with Submerged Vegetation on Floodplains, Proceedings, Iranian Journal of Hydraulics, IHA, 15(1). (In Persian)

47. Wang, D., Liu, Y., Li, H., & Xu, H. (2021).

Secondary instability of channel-confined transition around dual-circular cylinders in tandem.

International Journal of Mechanical Sciences 208, 106692, https://doi.org/10.1016/j.ijmecsci.2021.106692

(15)

48. Wang, Y., Wang, L., J, Y., Zhang, J., Xu, M., Xiong, X., & Wang, C. (2022). Research on the force mechanism of two tandem cylinders in a stratified strong shear environment. Phys.

Fluids, 34, 053308. doi:10.1063/5.0089408 49. Wu, Y. J., Jing, H. F., Li, C. G., & Song, Y. T.

(2020). Flow characteristics in open channels

with aquatic rigid vegetation. Journal of Hydrodynamics, 32(6), 1100-1108.

50. Zhang, C. W. L, & Y. M. Shen, (2010). A 3D non-linear k-ε turbulent model for prediction of flow and mass transport in channel with vegetation, App. Math. Modell, 34, 1021-1031.

Referensi

Dokumen terkait