Numerical methods in geomechnics
Hasan Ghasemzadeh
یدﺪ ی شور
ﮏﯿﺎﮑﻣﻮژ
http://wp.kntu.ac.ir/ghasemzadeh
ﯽ ﻮ ﻦﺪ اﺮ ﻪ اﻮ ﯽ هﺎﮕﺸاد
لﻮﺼﻓ و ﻦﻳوﺎﻨﻋ ﺖﺳﺮﻬﻓ
تﻻدﺎﻌﻣ ﻞﺣ رد يدﺪﻋ يﺎﻬﺷور
Numerical Mathematics 2000 Alfio Quarteroni Riccardo Sacco
Fausto Saleri
2 Numerical Methods inGeomechanics
يﺮﺒﺟ تﻻدﺎﻌﻣ ﻞﺣ رد يدﺪﻋ يﺎﻬﺷور
لﻮﻬﺠﻣ رد ﻪﻟدﺎﻌﻣ ود باﻮﺟ
3
11 12 1 1
21 22 2 2
a a x b
a a x b
Numerical Methods in Geomechanics
يﺮﺒﺟ تﻻدﺎﻌﻣ ﻞﺣ رد يدﺪﻋ يﺎﻬﺷور
ﺴﻳﺮﺗﺎﻣ دراﺪﻧﺎﺘﺳا ﻞﻜﺷ ﻲ
In matrix form: A x = b
يﺮﺒﺟ تﻻدﺎﻌﻣ ﻞﺣ رد يدﺪﻋ يﺎﻬﺷور
ﺐﻳاﺮﺿ ﺲﻳﺮﺗﺎﻣ
5
In matrix form: A x = b
يﺮﻄﻗ ﺲﻳﺮﺗﺎﻣ
11 12 1
21 22 2
1 2
n n
n n nn
a a a
a a a
A
a a a
11 22
0 0
0 0
0 0
nna A a
a
11 12 1
22 2
0
0 0
n n
nn
a a a
a a
A
a
11
21 22
1 2
0 0
0
n n nn
a
a a
A
a a a
Numerical Methods in Geomechanics
يﺮﺒﺟ تﻻدﺎﻌﻣ ﻞﺣ رد يدﺪﻋ يﺎﻬﺷور
ﺐﻳاﺮﺿ ﺲﻳﺮﺗﺎﻣ
6
يﺮﻄﻗ ﻪﺳ ﺲﻳﺮﺗﺎﻣ
11 12 1
21 22 2
1 2
n n
n n nn
a a a
a a a
A
a a a
11 12
21 22 23
32 33 34
43
0 0 0
0 0
0 0
0 0
0 0 0
nna a
a a a
A a a a
a
a
tridiagonal matrix
Numerical Methods in Geomechanics
يﺮﺒﺟ تﻻدﺎﻌﻣ ﻞﺣ رد يدﺪﻋ يﺎﻬﺷور
ﺐﻳاﺮﺿ ﺲﻳﺮﺗﺎﻣ
7
ﺪﻨﻛاﺮﭘ ﺲﻳﺮﺗﺎﻣ ه
11 15
21 22
33 34
41
53
0 0 0
0 0 0
0 0 0
0 0
0 0
nna a
a a
A a a
a
a a
sparse matrix
11 12 14
21 22 23 2
32 33 34
41 43 44 45
52 54 55
0 0
0
0 0
0
0 0
n
a a a
a a a a
A a a a
a a a a
a a a
يﺪﻧﺎﺑ ﺲﻳﺮﺗﺎﻣ
banded matrix
Numerical Methods in Geomechanics
يﺮﺒﺟ تﻻدﺎﻌﻣ ﻞﺣ رد يدﺪﻋ يﺎﻬﺷور
1 - ﻢﻴﻘﺘﺴﻣ فﺬﺣ يﺎﻫ شور
2 - يراﺮﻜﺗ يﺎﻫ شور ﻞﺣ رد يدﺪﻋ يﺎﻬﺷور
يﺮﺒﺟ تﻻدﺎﻌﻣ
ﻲﻄﺧ ﺮﻴﻏ تﻻدﺎﻌﻣ
ﻲﻄﺧ تﻻدﺎﻌﻣ
يﺮﺒﺟ تﻻدﺎﻌﻣ ﻞﺣ رد يدﺪﻋ يﺎﻬﺷور
1 - ﻢﻴﻘﺘﺴﻣ فﺬﺣ يﺎﻫ شور
ﺮﻣاﺮﻛ شور
9
In matrix form: A x = b
where A
jis the n*n matrix obtained by replacing column j in matrix A by the column vector b
computational cost ( n 1)( n 1)!
Numerical Methods in Geomechanics
تﻻدﺎﻌﻣ ﻞﺣ رد يدﺪﻋ يﺎﻬﺷور
تﻻدﺎﻌﻣ ﻲﻄﺧ
1 - ﻳاﺮﺿ ﺲﻳﺮﺗﺎﻣ يزﺎﺳ سﻮﻜﻌﻣ ﺐ
2 - سﻮﮔ فﺬﺣ شور
3 - ﺲﻳﺮﺗﺎﻣ ﻪﻳﺰﺠﺗ شور In matrix form: A x = b ﻢﻴﻘﺘﺴﻣ يﺎﻫ شور
10 Numerical Methods in
Geomechanics
Find A -1
Compute det(A)
Solve A x = b
Round off error makes the system singular, or numerical instability makes the answer wrong.
تﻻدﺎﻌﻣ ﻲﻄﺧ
1 - ﻳاﺮﺿ ﺲﻳﺮﺗﺎﻣ يزﺎﺳ سﻮﻜﻌﻣ ﺐ
Ax b
11 Numerical Methods in
Geomechanics
Gauss Elimination
تﻻدﺎﻌﻣ ﻲﻄﺧ
2 - سﻮﮔ فﺬﺣ شور
Multiplying first eq. by 10e6 subtracting from the second eq.
2
1.000001 1
x
1
0
x
Back substituting wrong
Pivoting and stability
LU Decomposition
LU = A
Thus A x = (LU) x = L (U x) = b
Let y = U x, then solve y in L y = b by forward substitution
Solve x in U x = y by backward substitution
3 - ﺲﻳﺮﺗﺎﻣ ﻪﻳﺰﺠﺗ شور تﻻدﺎﻌﻣ
ﻲﻄﺧ
11 11 1 11 1
1 1
0
0
n n
n nn nn n nn
l u u a a
l l u a a
Ax b
13 Numerical Methods in
Geomechanics
1- Doolittle factorization 2-Crout factorization 3-LDM T Factorization
ﺲﻳﺮﺗﺎﻣ ﻪﻳﺰﺠﺗ تﻻدﺎﻌﻣ
ﻲﻄﺧ
A LU factorization of A =
solving the following nonlinear system of n
2equations
14 Numerical Methods in
Geomechanics
Doolittle factorization
supposing that the first k − 1 columns of L and U are available and setting
equations can be solved in a sequential way with respect to the boxed variables
we thus obtain first the k-th row of U and then the k-th column of L, as follows:
for k = 1, . . . , n
computational cost
kk 1 l
تﻻدﺎﻌﻣ ﻲﻄﺧ
n
215 Numerical Methods in
Geomechanics
Crout’s Algorithm
Set for all i
computing first the k-th column of L and then the k-th row of U:
for k = 1, . . . , n
ii 1 l
تﻻدﺎﻌﻣ
ﻲﻄﺧ
LDM T Factorization
when A is symmetric M=L
computational cost
تﻻدﺎﻌﻣ ﻲﻄﺧ
11 1 11 11 1
1 1 1
0 0 0
0
T
n
n nn n n nn n nn
l d m a a
l l d m m a a
LDM
T A
3
3 n
17 Numerical Methods in
Geomechanics
Pivoting
Pivoting is essential for stability
Interchange rows to get largest u ii
Implicit pivoting (when comparing for the biggest elements in a column, use the
normalized one so that the largest coefficient in an equation is 1)
تﻻدﺎﻌﻣ ﻲﻄﺧ
18 Numerical Methods in Geomechanics
Compute A -1
Let B = A -1
then AB = I (I is identity matrix) or A [b 1 , b 2 , …,b N ] = [e 1 , e 2 , …,e N ] or A b j = e j for j = 1, 2, …, N
where b j is the j-th column of B.
I.e., to compute A -1 , we solve a linear system N times, each with unit vector e j .
تﻻدﺎﻌﻣ ﻲﻄﺧ
19 Numerical Methods in Geomechanics
Compute det(A)
Definition of determinant
Properties of determinant
Since det(LU) = det(L)det(U), thus det(A) = det(U) =
1
N
jj j
u
1 2
1, 2, ,
det( ) ( 1)
n
P
i i n i
P
A a a a تﻻدﺎﻌﻣ
ﻲﻄﺧ
Solution of linear systems, Ax = b
Least-square problem, min ||Ax-b|| 2
Eigenvalue problems, Ax =x
Singular value decomposition, A = UsV T .
Lapack is a free, high quality linear algebra solver package (downloadable at www.netlib.org/lapack/).
تﻻدﺎﻌﻣ ﻲﻄﺧ
ﺲﻳﺮﺗﺎﻣ ﻚﻳ ندﺮﻛ يﺮﻄﻗ ياﺮﺑ بﺮﺿ ﺲﭘ و بﺮﺿ ﺶﻴﭘ يﺎﻫ ﺲﻳﺮﺗﺎﻣ
21 Numerical Methods in
Geomechanics
تﻻدﺎﻌﻣ ﻞﺣ رد يدﺪﻋ يﺎﻬﺷور
1 - ﻪﻨﻳﺰﻫ :
رد ﺮﻫ ﻪﻠﺣﺮﻣ زﺎﻴﻧ ﻪﺑ ﻪﺒﺳﺎﺤﻣ هﺪﻧﺎﻤﻴﻗﺎﺑ هﺎﮕﺘﺳد
ﻲﻣ ﺷﺎﺑ ﺪ . رد درﻮﻣ
ﻚﻳ ﺲﻳﺮﺗﺎﻣ ﻞﻣﺎﻛ
ﻪﻨﻳﺰﻫ ﻪﺒﺳﺎﺤﻣ نآ ياﺮﺑ ﺮﻫ راﺮﻜﺗ زا ﻪﺒﺗﺮﻣ n 2
ﺖﺳا
ﻪﻛ ﺎﺑ شور ﻢﻴﻘﺘﺴﻣ ﻪﻛ رد نآ ﻪﻨﻳﺰﻫ
3 ﻞﻛ n 3 / ﺪﺷﺎﺒﻴﻣ 2 ﻞﺑﺎﻗ ﻪﺴﻳﺎﻘﻣ
ﺖﺳا . ﻦﻳاﺮﺑﺎﻨﺑ ﺮﮔا
داﺪﻌﺗ راﺮﻜﺗ درﻮﻣ زﺎﻴﻧ ﻲﻳاﺮﮕﻤﻫ ﻪﺘﺴﺑاو
ﺑ n ﻪ ﻲﻟو
ﺮﺘﻤﻛ زا نآ ﺪﺷﺎﺑ شور يﺎﻫ يراﺮﻜﺗ ﻲﻣ
ﺪﻨﻧاﻮﺗ ﺎﺑ يﺎﻬﺷور ﻘﺘﺴﻣ
ﻢﻴ ﺖﺑﺎﻗر
ﺪﻨﻨﻛ .
2 - هﺪﻨﻛاﺮﭘ يﺎﻬﺴﻳﺮﺗﺎﻣ :
ﺒﺳﺎﻨﻣ ﻲﻳارﺎﻛ ﻢﻴﻘﺘﺴﻣ يﺎﻬﺷور ﺪﻧراﺪﻧ ﻲ
تﻻدﺎﻌﻣ ﻞﺣ رد راﺮﻜﺗ شور ﻲﻄﺧ
22 Numerical Methods in
Geomechanics
تﻻدﺎﻌﻣ ﻞﺣ رد يدﺪﻋ يﺎﻬﺷور
تﻻدﺎﻌﻣ ﻞﺣ رد راﺮﻜﺗ شور ﻲﻄﺧ
ﻲﻣ ﻪﺘﺧﺎﺳ باﻮﺟ رادﺮﺑ ﻪﺘﺷر ﻚﻳ يراﺮﻜﺗ يﺎﻬﺷور رد دﻮﺷ
ﺪﻳآ ﻲﻣ ﺖﺳﺪﺑ باﻮﺟ ﺎﻬﻧآ ﻲﻳاﺮﮕﻤﻫ زا ﻪﻛ
ﺖﺳﺪﺑ هﺪﻧﺎﻤﻴﻗﺎﺑ لﺮﺘﻨﻛ ﺎﺑ ﻲﻳاﺮﮕﻤﻫ ﺪﻳآ ﻲﻣ
A x = b
( k )
x l i m x k
( k )
x
x n x
23 Numerical Methods in
Geomechanics
تﻻدﺎﻌﻣ ﻞﺣ رد يدﺪﻋ يﺎﻬﺷور
و راﺮﻜﺗ ﺲﻳﺮﺗﺎﻣ B زا ﻪﻛ ﺖﺳا يرادﺮﺑ f
ﺪﻳآ ﻲﻣ ﺖﺳﺪﺑ b .
A x = b
( ) ( k ) ( k )
x
0g i v e n, x
1 B x f , k 0
ﺮﮔا دﻮﺑ ﺪﻫاﻮﺧ رﺎﮔزﺎﺳ ﻪﻟدﺎﻌﻣ هﺎﮕﺘﺳد ﺎﺑ قﻮﻓ راﺮﻜﺗ شور و B
ﻪﻛ ﺪﻨﺷﺎﺑ ﻲﺗرﻮﺻ ﻪﺑ f
f ( I B ) A
1b . x B x f ﺎﻳ
ﺖﺴﻴﻧ ﻲﻳاﺮﮕﻤﻫ ﻲﻓﺎﻛ طﺮﺷ يرﺎﮔزﺎﺳ
( k ) ( k )
e x x ما k ﻪﻠﺣﺮﻣ يﺎﻄﺧ
( k )
l i m( e
k)
0 x ( )
0ﻪﻴﻟوا سﺪﺣ ﺮﻫ ياﺮﺑ ﻲﻳاﺮﮕﻤﻫ
تﻻدﺎﻌﻣ ﻞﺣ رد راﺮﻜﺗ شور
ﻲﻄﺧ
تﻻدﺎﻌﻣ ﻞﺣ رد يدﺪﻋ يﺎﻬﺷور
لﺎﺜﻣ
ﺷاد ﺪﻫاﻮﺨﻧ ﻲﻳاﺮﮕﻤﻫ ﻪﻴﻟوا سﺪﺣ ﺮﻫ ياﺮﺑ شور ﻦﻳا ﻲﻟو ﺖﺳا رﺎﮔزﺎﺳ ﺖ
x b 2
( k ) ( k )
x
1 x b راﺮﻜﺗ شور
x ( ) 0 0 x
( k )2 0 ,x
( k2 1) b, k 01 , ,. . . . x
( )0 1 b
2 اﺮﮕﻤﻫ
تﻻدﺎﻌﻣ ﻞﺣ رد راﺮﻜﺗ شور ﻲﻄﺧ
25 Numerical Methods in
Geomechanics
تﻻدﺎﻌﻣ ﻞﺣ رد يدﺪﻋ يﺎﻬﺷور
ﻲﻳاﺮﮕﻤﻫ طﺮﺷ
ﻒﻳﺮﻌﺗ : ﺲﻳﺮﺗﺎﻣ ﻲﻔﻴﻃ عﺎﻌﺷ A x = b
راﺮﻜﺗ ﻪﻟدﺎﻌﻣ
i m i
( B ) m a x ( B )
1( ) ( k ) ( k )
x
0g i v e n, x
1 B x f , k 0
ﻪﻴﻀﻗ : ﺑ ﺎﻬﺑاﻮﺟ رادﺮﺑ ﺪﺷﺎﺑ رﺎﮔزﺎﺳ راﺮﻜﺗ ﻪﻟدﺎﻌﻣ ﺮﮔا مﺎﻤﺗ يازﺎ
ﺮﮔا دﻮﺑ ﺪﻫاﻮﺧ اﺮﮕﻤﻫ ﻪﻴﻟوا يﺎﻬﺳﺪﺣ
( k )
x
( B )
1
تﻻدﺎﻌﻣ ﻞﺣ رد راﺮﻜﺗ شور ﻲﻄﺧ
26 Numerical Methods in
Geomechanics
تﻻدﺎﻌﻣ ﻞﺣ رد يدﺪﻋ يﺎﻬﺷور
ﻲﻄﺧ يراﺮﻜﺗ يﺎﻬﺷور
ﺐﺳﺎﻨﻣ ﺲﻳﺮﺗﺎﻣ ود ﻪﺑ ﻪﻳﺰﺠﺗ N , P
P ﻪﻛ دﺮﻔﻨﻣ ﺮﻴﻏ ) ﺮﻳﺬﭘ سﻮﻜﻌﻣ (
ﺖﺳا
A x = b
( k ) ( k )
P x
1 N x b A P N
k 0 B P
1N f P
1b
( k ) ( k )
x
B x f
1
تﻻدﺎﻌﻣ ﻞﺣ رد راﺮﻜﺗ شور ﻲﻄﺧ
( k ) ( k ) ( k ) ﺎﻳ و
x 1 x P 1 r
( k ) ( k )
r b A x ما k ﻪﻠﺣﺮﻣ هﺪﻧﺎﻤﻴﻗﺎﺑ
صﺎﺧ ﺖﻟﺎﺣ :
ﻢﻴﻘﺘﺴﻣ ﻞﺣ P A,N 0
27 Numerical Methods in
Geomechanics
تﻻدﺎﻌﻣ ﻞﺣ رد يدﺪﻋ يﺎﻬﺷور
ﻲﻄﺧ يراﺮﻜﺗ يﺎﻬﺷور ﻲﺑﻮﻛاژ شور -
لﺪﻳﺎﺳ سوﺎﮔ شور - يزﺎﺳ دازآ شور -
تﻻدﺎﻌﻣ ﻞﺣ رد راﺮﻜﺗ شور
ﻲﻄﺧ
تﻻدﺎﻌﻣ ﻞﺣ رد يدﺪﻋ يﺎﻬﺷور
يﺮﻄﻗ يﺎﻫ ﻪﻔﻟﻮﻣ ﺲﻳﺮﺗﺎﻣ D A
ﺗﺎﻣ يﺎﻫ ﻪﻔﻟﻮﻣ ﻪﻨﻳﺮﻗ زا ﻲﺜﻠﺜﻣ ﻦﻴﻳﺎﭘ ﺲﻳﺮﺗﺎﻣ E A ﺲﻳﺮ
A ﺲ ﻳﺮﺗﺎﻣ يﺎﻫ ﻪﻔﻟﻮﻣ ﻪﻨﻳﺮﻗ زا ﻲﺜﻠﺜﻣ ﻻﺎﺑ ﺲﻳﺮﺗﺎﻣ F
ﻲﺑﻮﻛاژ شور -
تﻻدﺎﻌﻣ ﻞﺣ رد راﺮﻜﺗ شور ﻲﻄﺧ
j i n
i i i j j
i i j
x b a x , i ,. . . ,n.
a
1
1 1
j i n
( k ) ( k )
i i i j j
i i j
x b a x , i ,. . . ,n.
a
1
1
1 1
P D, N D A E F
A D E F
29 Numerical Methods in
Geomechanics
تﻻدﺎﻌﻣ ﻞﺣ رد يدﺪﻋ يﺎﻬﺷور
زﺎﺳ دازآ ﺮﺘﻣارﺎﭘ ﻚﻳ ﻒﻳﺮﻌﺗ ﺎﺑ ﺮﺗ ﻲﻣﻮﻤﻋ ﺖﻟﺎﺣ ي
ﻲﺑﻮﻛاژ شور -
تﻻدﺎﻌﻣ ﻞﺣ رد راﺮﻜﺗ شور ﻲﻄﺧ
B
j D
1( E F ) I D
1A
:Jacobi over-relaxation method
j i n
( k ) ( k ) ( k )
i i j
i j i
i i j
x b a x ( ) x , i ,. . . ,n .
a
1
1
1 1
j j
B
B ( 1 )I
( k ) ( k ) ( k )
x
1 x D
1r ﺖﺳا رﺎﮔزﺎﺳ ﺮﻫ ياﺮﺑ شور ﻦﻳا ﺖﺳا ﻲﺑﻮﻛﺎﺟ شور نﺎﻤﻫ ﺖﻟﺎﺣ رد
0
1
JOR
Numerical Methods in Geomechanics 30
تﻻدﺎﻌﻣ ﻞﺣ رد يدﺪﻋ يﺎﻬﺷور
سوﺎﮔ شور -
ﻪﻠﺣﺮﻣ رد ﻪﻛ دراد توﺎﻔﺗ ﺮﻣا ﻦﻳا رد ﻲﺑﻮﻛﺎﺟ شور ﺎﺑ لﺪﻳﺎﺳ ما k+1
ﺮﻳدﺎﻘﻣ زا
ﺪﻧﻮﺷ ﻲﻣ هدﺎﻔﺘﺳا ﻞﺣ هار ندﺮﻛ زور ﻪﺑ ياﺮﺑ
لﺪﻳﺎﺳ سوﺎﮔ شور -
تﻻدﺎﻌﻣ ﻞﺣ رد راﺮﻜﺗ شور ﻲﻄﺧ
P D E , N F
( k )
x
i 1j i n
( k ) ( k ) ( k )
i i j
i j i
i i j
x b a x ( ) x , i ,. . . ,n .
a
1
1
1 1
B
G S ( D E )
1F
31 Numerical Methods in
Geomechanics
تﻻدﺎﻌﻣ ﻞﺣ رد يدﺪﻋ يﺎﻬﺷور
لﺪﻳﺎﺳ سوﺎﮔ شور -
تﻻدﺎﻌﻣ ﻞﺣ رد راﺮﻜﺗ شور ﻲﻄﺧ
زﺎﺳ دازآ ﺮﺘﻣارﺎﭘ ﻚﻳ ﻒﻳﺮﻌﺗ ﺎﺑ ﺮﺗ ﻲﻣﻮﻤﻋ ﺖﻟﺎﺣ
ي
SOR : Seidel over-relaxation method
i n
( K ) ( K ) ( K )
( k )
i i i j j i j j i
j j i
i i
x [ b a x a x ( ) x
a
1 1
1
1 1
1
( k ) ( k )
( I D
1E )x
1 ( 1 )I D
1F x D
1b
( k ) ( k ) ( k )
x
1 x ( 1 D E )
1r ﺖﺳا رﺎﮔزﺎﺳ ﺮﻫ ياﺮﺑ شور ﻦﻳا ﺖﺳا لﺪﻳﺎﺳ سوﺎﮔ شور نﺎﻤﻫ ﺖﻟﺎﺣ رد
0
1
( , )
0 1 under-relaxation
تﻻدﺎﻌﻣ ﻞﺣ رد راﺮﻜﺗ يﺎﻬﺷور ﻲﻄﺧ ﺮﻴﻏ
ﻦﺗﻮﻴﻧ شور -
f ( x ) 0
33 Numerical Methods in
Geomechanics
تﻻدﺎﻌﻣ ﻞﺣ رد راﺮﻜﺗ يﺎﻬﺷور ﻲﻄﺧ ﺮﻴﻏ
ﻦﺗﻮﻴﻧ شور ﻪﺑ لﺎﺜﻣ
ﻖﻴﻗد باﻮﺟ
34 Numerical Methods in Geomechanics
0.35425 1.13264 x
y
1 1 2 2
2 2 4 det
y y
J J x
detJ2 (2y x 4) 4y 1(0) 1 2 2 2 3
J 10
تﻻدﺎﻌﻣ ﻞﺣ رد راﺮﻜﺗ يﺎﻬﺷور ﻲﻄﺧ ﺮﻴﻏ
هﺪﺷ حﻼﺻا ﻦﺗﻮﻴﻧ شور -
1- Cyclic updating of the Jacobian matrix
keeping the Jacobian matrix (more precisely, its factorization) unchanged for a certain number,
2. Inexact solution of the linear systems
the maximum number of admissible iterations is fixed a priori 3. Difference approximations of the Jacobian matrix
Numerical Methods in Geomechanics 35
تﻻدﺎﻌﻣ ﻞﺣ رد راﺮﻜﺗ يﺎﻬﺷور ﻲﻄﺧ ﺮﻴﻏ
ﻲﻟاﻮﺘﻣ يزﺎﺳدازآ ﺶﻴﺑ -
The Successive-Over-Relaxation
(SOR) Method
لﻮﺼﻓ و ﻦﻳوﺎﻨﻋ ﺖﺳﺮﻬﻓ
37 Numerical Methods in
Geomechanics
∆ ƒ
ƒ
∆ u u
1
iteration
2NEWTON – RAPHSON ITERATION
∆ ƒ
ƒ
∆ u u
1 2
iteration
CONSTANT STIFFNESS ITERATION
3 4 56
Krylov Newton iteration
تﻻدﺎﻌﻣ ﻞﺣ رد راﺮﻜﺗ يﺎﻬﺷور ﻲﻄﺧ ﺮﻴﻏ
سﺎﻣﻮﺗ ﻢﺘﻳرﻮﮕﻟا -
38 Numerical Methods in
Geomechanics