• Tidak ada hasil yang ditemukan

یدﺪ ی شور ﮏﯿ ﺎﮑﻣﻮ ژ

N/A
N/A
Protected

Academic year: 2024

Membagikan "یدﺪ ی شور ﮏﯿ ﺎﮑﻣﻮ ژ"

Copied!
13
0
0

Teks penuh

(1)

Numerical methods in geomechnics

Hasan Ghasemzadeh

یدﺪ ی شور ﮏﯿﺎﮑﻣﻮژ

http://wp.kntu.ac.ir/ghasemzadeh

ﯽ ﻮ ﻦﺪ اﺮ ﻪ اﻮ ﯽ هﺎﮕﺸاد

تﺎﻴﻠﻛ شور

يﺎﻫ يدﺪﻋ رد

ﻚﻴﻧﺎﻜﻣﻮﺋژ

- ﻲﭘ و كﺎﺧ رد تﻻدﺎﻌﻣ يدﺪﻋ يﺎﻬﺷور تﺎﻴﻠﻛ -

يدﺪﻋ يﺎﻬﺷور عاﻮﻧا -

يدﺪﻋ تﺎﺒﺳﺎﺤﻣ يروآدﺎﻳ -

ﺎﻄﺧ ناﺰﻴﻣ -

ﺮﻠﻴﺗ ﻪﻴﻀﻗ -

يژﺮﻧا لﻮﺻا -

(2)

3

- ﻲﭘ و كﺎﺧ رد تﻻدﺎﻌﻣ يدﺪﻋ يﺎﻬﺷور تﺎﻴﻠﻛ -

يدﺪﻋ يﺎﻬﺷور عاﻮﻧا -

يدﺪﻋ تﺎﺒﺳﺎﺤﻣ يروآدﺎﻳ -

ﺎﻄﺧ ناﺰﻴﻣ - ﺮﻠﻴﺗ ﻪﻴﻀﻗ - يژﺮﻧا لﻮﺻا -

Numerical Methodes in Geomechnics

تﺎﻴﻠﻛ شور

يﺎﻫ يدﺪﻋ رد

ﻚﻴﻧﺎﻜﻣﻮﺋژ

Methods for solving Nonlinear Equations

o Bisection Method

o Newton-Raphson Method

o Secant Method

o Fixed-Point Method

solution analytic

0 No 5

2

2

9





x

e x

x x

(3)

5

Methods for solving Nonlinear Equations

o Bisection Method

o Newton-Raphson Method

o Secant Method

o Fixed-Point Method

solution analytic

0 No 5

2

2

9





x

e x

x x

Numerical Methodes in Geomechnics

( ) 0 ( )

f x   g xx

1 ( )

i i

xg x

1 2

Cramer's Rule can be used to solve the system

3 1 1 3

5 2 1 5

1, 2

1 1 1 1

1 2 1 2

But Cramer's Rule is not practical for large problems.

To solve N equations in N unknowns we need (N 1)(N 1)N!

multiplications.

x   x  

 

To solve a 30 by 30 system, 2.3 10 multiplications are needed. 35

Solution of Systems of Linear Equations

1 2

1 1 3

1 2 5

x x

(4)

7

Methods for solving Systems of Linear Equations

o

Naive Gaussian Elimination

o

Gaussian Elimination with Scaled Partial pivoting

o

Algorithm for Tri-diagonal Equations

Numerical Methodes in Geomechnics

Curve Fitting

Given a set of data

Select a curve that best fit the data. One choice is find the curve so that the sum of the square of the error is minimized.

x 0 1 2

y 0.5 10.3 21.3

(5)

9

Interpolation

Given a set of data

find a polynomial P(x) whose graph passes through all tabulated points.

xi 0 1 2 yi 0.5 10.3 15.3

table in the

is )

( i i

i P x if x

y 

Numerical Methodes in Geomechnics

Methods for Curve Fitting

o

Least Squares

o Linear Regression

o Nonlinear least Squares Problems

o

Interpolation

o Newton polynomial interpolation

o Lagrange interpolation

(6)

11

Methods for Numerical Integration

o

Upper and Lower Sums

o

Trapezoid Method

o

Romberg Method

o

Gauss Quadrature

2

0

? no analytical solutions

a

e

x

dx 

Numerical Methodes in Geomechnics

Solution of Partial Differential Equations

Partial Differential Equations are more difficult to solve than ordinary differential equations

) sin(

) 0 , ( , 0 ) , 1 ( )

, 0 (

0

2 2

2 2

2

x x

u t

u t

u

t u x

u

 

 

Numerical Solution ?

(7)

13

- ﻲﭘ و كﺎﺧ رد تﻻدﺎﻌﻣ يدﺪﻋ يﺎﻬﺷور تﺎﻴﻠﻛ -

يدﺪﻋ يﺎﻬﺷور عاﻮﻧا - يدﺪﻋ تﺎﺒﺳﺎﺤﻣ يروآدﺎﻳ -

ﺎﻄﺧ ناﺰﻴﻣ -

ﺮﻠﻴﺗ ﻪﻴﻀﻗ - يژﺮﻧا لﻮﺻا -

Numerical Methodes in Geomechnics

تﺎﻴﻠﻛ شور

يﺎﻫ يدﺪﻋ رد

ﻚﻴﻧﺎﻜﻣﻮﺋژ

Normalized Floating Point Representation

Standard Representations

Normalized Floating Point Representation

Advantage Efficient in representing very small or very large numbers

1 2 3 4

0. 10

sign mantissa exponent

d d d d n

 

3 1 2 1 2 . 4 5 1 5 sign integral part fraction part

(8)

15

Significant Digits

Significant digits are those digits that can be used with confidence.

48.9

Numerical Methodes in Geomechnics

Accuracy and Precision

Accuracy is related to closeness to the true value

Precision is related to the closeness to other estimated values

(9)

17

Rounding and Chopping

Rounding: Replace the number by the nearest machine number

Chopping: Throw all extra digits

Numerical Methodes in Geomechnics

Error Definitions

if the true value is known

100 value *

true

ion approximat value

true

Error Relative

Percent Absolute

ion approximat value

true

Error True

Absolute

t

 

 E

t

True Error

(10)

19

Error Definitions

When the true value is not known

100 estimate *

current

estimate prevoius

estimate current

Error Relative

Percent Absolute

Estimated

estimate prevoius

estimate current

Error Absolute Estimated

 

a

E

a

Estimated error

Numerical Methodes in Geomechnics

Notation

the estimate is correct to n decimal digits if

the estimate is correct to n decimal digits roundedif

n

 10 Error

n

 10

2

Error 1

(11)

21

- ﻲﭘ و كﺎﺧ رد تﻻدﺎﻌﻣ يدﺪﻋ يﺎﻬﺷور تﺎﻴﻠﻛ -

يدﺪﻋ يﺎﻬﺷور عاﻮﻧا - يدﺪﻋ تﺎﺒﺳﺎﺤﻣ يروآدﺎﻳ - ﺎﻄﺧ ناﺰﻴﻣ -

ﺮﻠﻴﺗ ﻪﻴﻀﻗ -

يژﺮﻧا لﻮﺻا -

Numerical Methodes in Geomechnics

تﺎﻴﻠﻛ شور

يﺎﻫ يدﺪﻋ رد

ﻚﻴﻧﺎﻜﻣﻮﺋژ

Taylor Series

( )

0 0

0

( )

0 0

0

1 ( ) ( )

!

if the series converge we can write

( ) 1 ( ) ( )

!

k k

k

k k

k

Taylor Series f x x x k

f x f x x x

k

 

 

( ) x ( ) ?

f xef  

-3 -2 -1 0 1 2 3 4

x

x-x3/3!

x-x3/3!+x5/5!

sin(x)

3 5 7

sin( ) ....

3! 5! 7!

x x x

x  x 0.5

1 1.5 2 2.5 3

1 1+x 1+x+0.5x2 exp(x)

!

k

x x

e

(12)

23

Convergence of Taylor Series

(Observations, Example 1)

The Taylor series converges fast (few terms are needed) when xis near the point of expansion. If |x-c| is large then more terms are needed to get good approximation.

How many terms are needed to get good approximation???

These questions will be answered using Taylor Theorem

Numerical Methodes in Geomechnics

Taylor Theorem

h x x where

n h h f

k x h f

x f

x c h x x

c x where

c x n f

c f k x

c x f

f

n n n

k k k

n n n

k k k

 

 

and between is

)!

1 (

) (

! ) ) (

(

, and between is

) )! (

1 (

) ) (

! ( ) ) (

(

) 1 1 ( 0

) (

) 1 1 ( 0

) (

Error

(13)

25

Example 1

  0 . 2 8 . 14268 05 )!

1 (

) )! (

1 (

) (

1

)

( )

(

1 4 2

. 0 1

) 1 1 ( 1

2 . 0 )

( )

(

 

 

E n E

E e

c n x

E f

k for e

f e

x f

n n

n n n

k x

k

How large is the error if we replaced ( ) by the first 4 terms (n 3) of its Taylor series expansion

about 0 0.2?

f x ex

c when x

 

Numerical Methodes in Geomechnics

Referensi

Dokumen terkait

estimated stock value based on comparables and the takeover premium..  Step 2: Calculate various relative value measures based on the current market prices of companies in

상품 무역의 추계 총괄표당해년 가격 : 1910-1944 Estimating Exports and Imports At Current Prices : 1910-1944 원 통계 A 비무역품 B 과소신고 C 중계무역 D 최종 추계치 A-B+C-D Estimated value of transit trade Final