• Tidak ada hasil yang ditemukan

ﻓﺼﻞ ﺳﻮﻡ : ﺳﻴﺴﺘﻢ ﻫﺎﻱ ﺧﻄﻲ - ﻗﻄﺮﻱ ﺳﺎﺯﻱ ﺑﻪ ﻛﻤﻚ ﻓﺮﻡ ﺟﺮﺩﻥ

N/A
N/A
Protected

Academic year: 2024

Membagikan "ﻓﺼﻞ ﺳﻮﻡ : ﺳﻴﺴﺘﻢ ﻫﺎﻱ ﺧﻄﻲ - ﻗﻄﺮﻱ ﺳﺎﺯﻱ ﺑﻪ ﻛﻤﻚ ﻓﺮﻡ ﺟﺮﺩﻥ"

Copied!
15
0
0

Teks penuh

(1)

1

2

1

0

0

P

P

P

k

n

J

J

Jt J

t

t

t

t

t

e

e

e e

e

e

α

λ

λ

+

=

1 2

2

1 2! ( 1)!

0 1 ( 2)!

0 0 0 1

i

i

Pi i

P

i P

J t t

i

t t

t P

t t

e P e

t

λ

=

   

 

ﻱﺮﻄﻗ ﻱﺯﺎﺳ

ﻪﺑ ﻚﻤﻛ ﻡﺮﻓ

ﻥﺩﺮﺟ :

ﻞﺼﻓ ﻡﻮﺳ

: ﻢﺘﺴﻴﺳ ﻱﺎﻫ

ﻲﻄﺧ

(2)

ﻞﺼﻓ ﻡﺭﺎﻬﭼ

: ﻝﺮﺘﻨﻛ ﻱﺮﻳﺬﭘ

ﻭ ﻩﺪﻫﺎﺸﻣ ﻱﺮﻳﺬﭘ

ﺪﻧﻭﺭ ﻲﻣ ﺭﺎﻤﺷ ﻪﺑ ﺖﻟﺎﺣ ﻱﺎﻀﻓ ﻩﺯﻮﺣ ﺭﺩ ﻢﻴﻫﺎﻔﻣ ﻦﻳﺮﺘﻤﻬﻣ ﺯﺍ ﻱﺮﻳﺬﭘ ﻩﺪﻫﺎﺸﻣ ﻭ ﻱﺮﻳﺬﭘ ﻝﺮﺘﻨﻛ ﺪﻧﺍ ﻩﺪﺷ ﻲﻓﺮﻌﻣ ﻩﺎﺠﻨﭘ ﻪﻫﺩ ﻂﺳﻭﺍ ﺭﺩ ﻦﻤﻟﺎﻛ ﻂﺳﻮﺗ ﻪﻛ .

ﺮﻳﺯ ﻝﺎﺜﻣ ﻪﺑ ﺐﻠﻄﻣ ﻥﺪﺷ ﻦﺷﻭﺭ ﻱﺍﺮﺑ

ﺪﻴﻨﻛ ﻪﺟﻮﺗ :

[ ]

2 3 2 1 1

2 3 0 0 2

( ) ( ) ( )

2 2 4 0 2

2 2 2 5 1

( ) 7 6 4 2 ( )

x t x t u t

y t x t

 

 

 

= +

 

 

 

=

ﻢﻴﺳﺭ ﻲﻣ ﺮﻳﺯ ﺕﻻﺩﺎﻌﻣ ﻪﺑ ﻕﻮﻓ ﻢﺘﺴﻴﺳ ﻥﺩﺮﻛ ﻱﺮﻄﻗ ﺎﺑ :

[ ]

1 0 0 0 1

0 2 0 0 0

( ) ( ) ( )

0 0 3 0 1

0 0 0 4 0

( ) 1 1 0 0 ( )

z t z t u t

y t z t

 

 

 

= +

 

 

 

=

1 1

2 2

3 3

4 4

1 2

( ), 2 ,

3 ( ), 4 ,

( )

z z u t

z z

z z u t

z z

y t z z

= − +

 = −

 = − +

 = −

= +

(3)

ﻞﺼﻓ ﻡﺭﺎﻬﭼ

: ﻝﺮﺘﻨﻛ ﻱﺮﻳﺬﭘ

ﻭ ﻩﺪﻫﺎﺸﻣ ﻱﺮﻳﺬﭘ

1 1

2 2

3 3

4 4

1 2

( ), 2 ,

3 ( ),

4 , ( )

z z u t

z z

z z u t

z z

y t z z

= − +

 = −

 = − +

 = −

= +

ﺩﻮﺷ ﻲﻣ ﺖﻳﺅﹺﺭ ﻲﺟﻭﺮﺧ ﺭﺩ ﻭ ﺩﺮﻴﮔ ﻲﻣ ﺮﻴﺛﺄﺗ ﻱﺩﻭﺭﻭ ﺯﺍ )

ﺮﻳﺬﭘ ﻩﺪﻫﺎﺸﻣ ﻭ ﺮﻳﺬﭘ ﻝﺮﺘﻨﻛ ﺪﻣ (

ﺩﻮﺷ ﻲﻣ ﺖﻳﺅﹺﺭ ﻲﺟﻭﺮﺧ ﺭﺩ ﻲﻟﻭ ﺩﺮﻴﮔ ﻲﻤﻧ ﺮﻴﺛﺄﺗ ﻱﺩﻭﺭﻭ ﺯﺍ )

ﺮﻳﺬﭘ ﻩﺪﻫﺎﺸﻣ ﻭ ﺮﻳﺬﭘﺎﻧ ﻝﺮﺘﻨﻛ ﺪﻣ (

ﺩﻮﺷ ﻲﻤﻧ ﺖﻳﺅﹺﺭ ﻲﺟﻭﺮﺧ ﺭﺩ ﻲﻟﻭ ﺩﺮﻴﮔ ﻲﻣ ﺮﻴﺛﺄﺗ ﻱﺩﻭﺭﻭ ﺯﺍ )

ﺮﻳﺬﭘﺎﻧ ﻩﺪﻫﺎﺸﻣ ﻭ ﺮﻳﺬﭘ ﻝﺮﺘﻨﻛ ﺪﻣ (

ﺩﻮﺷ ﻲﻤﻧ ﺖﻳﺅﹺﺭ ﻢﻫ ﻲﺟﻭﺮﺧ ﺭﺩ ﻭ ﺩﺮﻴﮔ ﻲﻤﻧ ﺮﻴﺛﺄﺗ ﻱﺩﻭﺭﻭ ﺯﺍ )

ﺮﻳﺬﭘﺎﻧ ﻩﺪﻫﺎﺸﻣ ﻭ ﺮﻳﺬﭘﺎﻧ ﻝﺮﺘﻨﻛ ﺪﻣ (

1( ) z t

2( ) z t

3( ) z t

4( ) z t CO

CO

CO CO

(4)

ﻞﺼﻓ ﻡﺭﺎﻬﭼ

: ﻝﺮﺘﻨﻛ ﻱﺮﻳﺬﭘ

ﻭ ﻩﺪﻫﺎﺸﻣ ﻱﺮﻳﺬﭘ

[ ]

2 3 2 1 1

2 3 0 0 2

( ) ( ) ( )

2 2 4 0 2

2 2 2 5 1

( ) 7 6 4 2 ( )

x t x t u t

y t x t

 

 

 

= +

 

 

 

=

ﺮﮕﻳﺩ ﻪﺘﻜﻧ :

1 ( 2)( 3)( 4)

( ) ( )

( 1)( 2)( 3)( 4)

s s s

G s C sI A B

s s s s

+ + +

= =

+ + + +

( ) 1

( 1) G s = s

+

ﺮﻳﺬﭘ ﻩﺪﻫﺎﺸﻣ ﻭ ﺮﻳﺬﭘ ﻝﺮﺘﻨﻛ ﺪﻣ ﺎﻬﻨﺗ ﻪﻛ ﺩﻮﺷ ﻲﻣ ﻪﻈﺣﻼﻣ )

(CO

ﺩﺭﺍﺩ ﺮﻴﺛﺄﺗ ﻞﻳﺪﺒﺗ ﻊﺑﺎﺗ ﻦﻴﻴﻌﺗ ﺭﺩ

ﺪﻨﻫﺩ ﻲﻣ ﺶﻫﺎﻛ ﺍﺭ ﻞﻳﺪﺒﺗ ﻊﺑﺎﺗ ﻪﺒﺗﺮﻣ ﻭ ﺪﻧﻮﺷ ﻲﻣ ﺐﻄﻗ ﻭ ﺮﻔﺻ ﻑﺬﺣ ﺚﻋﺎﺑ ﺎﻫ ﺪﻣ ﺮﻳﺎﺳ ﻭ .

ﺮﻳﺬﭘﺎﻧ ﻩﺪﻫﺎﺸﻣ ﺎﻳ ﻭ ﺮﻳﺬﭘﺎﻧ ﻝﺮﺘﻨﻛ ﺪﻣ ﻚﻳ ﺩﻮﺟﻭ ﻩﺪﻨﻫﺩ ﻥﺎﺸﻧ ﺐﻄﻗ ﻭ ﺮﻔﺻ ﻪﻧﻮﮔ ﺮﻫ ﻑﺬﺣ ﺲﭘ ﺖﺳﺍ . ﻪﺘﻜﻧ : ﺪﺷﺎﺑ ﺮﺘﻤﻛ ﺖﻟﺎﺣ ﻱﺎﻫ ﺮﻴﻐﺘﻣ ﺩﺍﺪﻌﺗ ﺯﺍ ﻞﻳﺪﺒﺗ ﻊﺑﺎﺗ ﻪﺒﺗﺮﻣ ﺮﮔﺍ ,

ﺐﻄﻗ ﻭ ﺮﻔﺻ ﻑﺬﺣ ﺎﻤﺘﺣ

ﺖﺳﺍ ﺮﻳﺬﭘﺎﻧ ﻩﺪﻫﺎﺸﻣ ﺎﻳ ﻭ ﺮﻳﺬﭘﺎﻧ ﻝﺮﺘﻨﻛ ﺪﻣ ﻚﻳ ﻱﺍﺭﺍﺩ ﻢﺘﺴﻴﺳ ﺍﺬﻟ ﻭ ﻩﺩﺍﺩ ﻱﻭﺭ .

(5)

ﻞﺼﻓ ﻡﺭﺎﻬﭼ

: ﻝﺮﺘﻨﻛ ﻱﺮﻳﺬﭘ

ﻭ ﻩﺪﻫﺎﺸﻣ ﻱﺮﻳﺬﭘ

ﺮﻳﺬﭘﺎﻧ ﻝﺮﺘﻨﻛ ﻢﺘﺴﻴﺳ :

ﺩﺭﺍﺩ ﺮﻳﺬﭘﺎﻧ ﻝﺮﺘﻨﻛ ﺪﻣ ﻚﻳ ﻞﻗﺍﺪﺣ ﻪﻛ ﻲﻤﺘﺴﻴﺳ .

ﺮﻳﺬﭘﺎﻧ ﺖﻳﺅﺭ ﻢﺘﺴﻴﺳ :

ﺩﺭﺍﺩ ﺮﻳﺬﭘﺎﻧ ﺖﻳﺅﺭ ﺪﻣ ﻚﻳ ﻞﻗﺍﺪﺣ ﻪﻛ ﻲﻤﺘﺴﻴﺳ .

ﻪﺘﻜﻧ : ﺪﺷﺎﺑ ﺭﺍﺪﻳﺎﭘ ﺮﻳﺬﭘﺎﻧ ﻝﺮﺘﻨﻛ ﺪﻣ ﺮﮔﺍ ,

ﺮﻳﺬﭘﺭﺍﺪﻳﺎﭘ ﻢﺘﺴﻴﺳ )

Stabilizable

( ﻩﺪﻴﻣﺎﻧ

ﻢﻳﺭﺍﺪﻧ ﻲﻬﺟﻮﺗ ﺪﻣ ﻥﺁ ﻪﺑ ﻝﺮﺘﻨﻛ ﻢﺘﺴﻴﺳ ﻲﺣﺍﺮﻃ ﺭﺩ ﻭ ﺩﻮﺷ ﻲﻣ .

ﻪﺘﻜﻧ : ﺪﺷﺎﺑ ﺭﺍﺪﻳﺎﭘ ﺮﻳﺬﭘﺎﻧ ﺖﻳﺅﺭ ﺪﻣ ﺮﮔﺍ ,

ﺮﻳﺬﭘﺭﺎﻜﺷﺁ ﻢﺘﺴﻴﺳ )

Detectable

( ﻩﺪﻴﻣﺎﻧ

ﻢﻳﺭﺍﺪﻧ ﻲﻬﺟﻮﺗ ﺪﻣ ﻥﺁ ﻪﺑ ﺮﮕﺘﻳﺅﺭ ﻲﺣﺍﺮﻃ ﺭﺩ ﻭ ﺩﻮﺷ ﻲﻣ .

1 1

2 2

3 3

4 4

( ), 2 ,

3 ( ),

4 , ( )

z z u t

z z

z z u t

z z

y t z z

= − +

 = −

 = − +

 = −

= +

CO CO

CO CO

ﺭﺍﺪﻳﺎﭘ ﺮﻳﺬﭘﺎﻧ ﻝﺮﺘﻨﻛ ﺪﻣ

ﺭﺍﺪﻳﺎﭘ ﺮﻳﺬﭘﺎﻧ ﺖﻳﺅﺭ ﺪﻣ

ﺭﺍﺪﻳﺎﭘ ﺮﻳﺬﭘﺎﻧ ﺖﻳﺅﺭ ﻭ ﺮﻳﺬﭘﺎﻧ ﻝﺮﺘﻨﻛ ﺪﻣ

ﻢﺘﺴﻴﺳ ﻢﻫ

ﺭﺎﻜﺷﺁ ﺮﻳﺬﭘ

ﺖﺳﺍ ﺮﻳﺬﭘ ﺭﺍﺪﻳﺎﭘ ﻢﻫ

(6)

ﻞﺼﻓ ﻡﺭﺎﻬﭼ

: ﻝﺮﺘﻨﻛ ﻱﺮﻳﺬﭘ

ﻭ ﻩﺪﻫﺎﺸﻣ ﻱﺮﻳﺬﭘ

ﺪﺷﺎﺑ ﺭﺍﺪﻳﺎﭘﺎﻧ ﺮﻳﺬﭘﺎﻧ ﺖﻳﺅﺭ ﺎﻳ ﺮﻳﺬﭘﺎﻧ ﻝﺮﺘﻨﻛ ﺪﻣ ﺮﮔﺍ ,

ﻢﺘﺴﻴﺳ ﺵﺎﺸﺘﻏﺍ ﻚﻳ ﺎﺑ ﻪﻛ ﺖﺳﺍ ﻦﻜﻤﻣ

ﺪﻧﻮﺷ ﺍﺮﮔﺍﻭ ﺖﻳﺎﻬﻧ ﻲﺑ ﻪﺑ ﺎﻫ ﺖﻟﺎﺣ ﻭ ﺩﻮﺷ ﺭﺍﺪﻳﺎﭘﺎﻧ .

ﻲﻠﻛ ﺭﻮﻃ ﻪﺑ ,

ﺯﺍ ﺪﻨﺗﺭﺎﺒﻋ ﺎﻫ ﻢﺘﺴﻴﺳ ﺮﻳﺬﭘﺎﻧ ﻩﺪﻫﺎﺸﻣ ﻭ ﺮﻳﺬﭘﺎﻧ ﻝﺮﺘﻨﻛ ﻞﻣﺍﻮﻋ :

ﺶﻳﺎﻤﻧ ﻪﺑ ﺮﺠﻨﻣ ﻪﻛ ﺖﻟﺎﺣ ﻱﺎﻫ ﺮﻴﻐﺘﻣ ﻥﺍﻮﻨﻋ ﻪﺑ ﻲﻄﺧ ﻪﺘﺴﺑﺍﻭ ﻱﺎﻫﺮﻴﻐﺘﻣ ﺏﺎﺨﺘﻧﺍ ﺩﻮﺷ ﻲﻣ ﻝﺎﻤﻴﻨﻴﻣ ﺮﻴﻏ .

ﻲﻜﻴﻧﺎﻜﻣ ﻢﺘﺴﻴﺳ ﺭﺩ ﻲﻠﺧﺍﺩ ﻱﺎﻫﺭﻭﺎﺘﺸﮔ ﺎﻳ ﺎﻫﻭﺮﻴﻧ ﺩﻮﺟﻭ ﺎﻫ ﻢﺘﺴﻴﺳ ﺭﺩ ﻱﺭﺎﺘﺧﺎﺳ ﻥﺭﺎﻘﺗ ﺩﻮﺟﻭ

ﺖﻟﺎﺣ ﻱﺎﻫ ﺮﻴﻐﺘﻣ ﻱﺮﻴﮔ ﻩﺯﺍﺪﻧﺍ ﻡﺪﻋ ﻱﺎﻫﺮﻟﺮﺘﻨﻛ ﻲﺣﺍﺮﻃ ﺭﺩ ﺐﻄﻗ ﻭ ﺮﻔﺻ ﻑﺬﺣ ﺮﺑ ﻲﻨﺘﺒﻣ ﻱﺎﻬﺷﻭﺭ ﻱﺮﻴﮔ ﺭﺎﻛ ﻪﺑ ﻚﻴﺳﻼﻛ

(7)

ﻞﺼﻓ ﻡﺭﺎﻬﭼ

: ﻝﺮﺘﻨﻛ ﻱﺮﻳﺬﭘ

ﻭ ﻩﺪﻫﺎﺸﻣ ﻱﺮﻳﺬﭘ

ﻱﺮﻳﺬﭘ ﻝﺮﺘﻨﻛ ﻒﻳﺮﻌﺗ :

ﺪﻨﻳﻮﮔ ﺮﻳﺬﭘ ﻝﺮﺘﻨﻛ ﺍﺭ ﺮﻳﺯ ﻢﺘﺴﻴﺳ ,

ﻝﺮﺘﻨﻛ ﻝﺎﻨﮕﻴﺳ ﺮﮔﺍ ﺖﻟﺎﺣ ﻥﺍﻮﺘﺑ ﻪﻛ ﺪﺷﺎﺑ ﻪﺘﺷﺍﺩ ﺩﻮﺟﻭ u

ﻲﻳﺎﻬﻧ ﺖﻟﺎﺣ ﺮﻫ ﻪﺑ ﻪﻴﻟﻭﺍ ﻥﺎﻣﺯ ﺭﺩ ﻪﻴﻟﻭﺍ ﺖﻟﺎﺣ ﺮﻫ ﺯﺍ ﺍﺭ ﻢﺘﺴﻴﺳ ﻥﺎﻣﺯ ﺭﺩ x(t)

t t0 x t( )0 = x0 . ﺩﺍﺩ ﻝﺎﻘﺘﻧﺍ

( ) ( ) ( )

x t = Ax t + Bu t

ﻱﺮﻳﺬﭘ ﻝﺮﺘﻨﻛ ﻪﻴﻀﻗ :

ﻥﺎﻣﺯ ﺎﺑ ﺮﻳﺬﭘﺎﻧ ﺮﻴﻴﻐﺗ ﻲﻄﺧ ﻢﺘﺴﻴﺳ n

ﺮﻳﺯ ﻱﺪﻌﺑ

( ) ( ) ( )

x t = Ax t + Bu t

ﺖﺳﺍ ﺮﻳﺬﭘ ﻝﺮﺘﻨﻛ ﹰﻼﻣﺎﻛ ,

ﺪﺷﺎﺑ ﻞﻣﺎﻛ ﻪﺒﺗﺮﻣ ﺮﻳﺯ ﻱﺮﻳﺬﭘ ﻝﺮﺘﻨﻛ ﺲﻳﺮﺗﺎﻣ ﺮﮔﺍ ﻂﻘﻓ ﻭ ﺮﮔﺍ :

2 n 1

U = B AB A BA B U ≠ 0 . ﺪﺷﺎﺑ ﻲﻌﺑﺮﻣ ﺮﮔﺍ

(8)

ﻞﺼﻓ ﻡﺭﺎﻬﭼ

: ﻝﺮﺘﻨﻛ ﻱﺮﻳﺬﭘ

ﻭ ﻩﺪﻫﺎﺸﻣ ﻱﺮﻳﺬﭘ

[ ]

1 2 1 1 1

( ) 1 2 1 ( ) 1 1 ( ),

1 1 2 1 0

( ) 1 0 1 ( )

x t x t u t

y t x t

= +

=

ﻝﺎﺜﻣ : ﺪﻴﻨﻛ ﻦﻴﻴﻌﺗ ﺍﺭ ﺮﻳﺯ ﻢﺘﺴﻴﺳ ﻱﺮﻳﺬﭘ ﻝﺮﺘﻨﻛ :

ﻢﻴﻫﺩ ﻲﻣ ﻞﻴﻜﺸﺗ ﺍﺭ ﻱﺮﻳﺬﭘ ﻝﺮﺘﻨﻛ ﺲﻳﺮﺗﺎﻣ ﺍﺪﺘﺑﺍ :

2

1 1 2 1 4 9

1 1 2 3 4 3

1 0 2 2 4 6

U B AB A B

=  =

ﺪﺷﺎﺑ ﻞﻣﺎﻛ ﻪﺒﺗﺭ ﺲﻳﺮﺗﺎﻣ ﻦﻳﺍ ﺪﻳﺎﺑ .

ﻱﺭﻭﺁﺩﺎﻳ

ﻢﻳﺭﺍﺩ ﻲﻌﺑﺮﻣ ﺮﻴﻏ ﺲﻳﺮﺗﺎﻣ ﻚﻳ ﻱﺍﺮﺑ :

:

A∈ℜn m× Rank A( ) min( , )m n = min(3, 6) = 3

ﻢﻳﺭﺍﺩ ﻲﻄﺧ ﻞﻘﺘﺴﻣ ﺮﻄﺳ ﻪﺳ ﻥﻮﭼ , ﻢﺘﺴﻴﺳ ﻭ ﺖﺳﺍ ﻞﻣﺎﻛ ﻪﺒﺗﺭ ﺲﻳﺮﺗﺎﻣ ﺖﺳﺍ ﺮﻳﺬﭘ ﻝﺮﺘﻨﻛ .

(9)

ﻞﺼﻓ ﻡﺭﺎﻬﭼ

: ﻝﺮﺘﻨﻛ ﻱﺮﻳﺬﭘ

ﻭ ﻩﺪﻫﺎﺸﻣ ﻱﺮﻳﺬﭘ

ﻥﺩﺮﺟ ﻡﺮﻓ ﻱﻭﺭ ﺯﺍ ﻢﺘﺴﻴﺳ ﻱﺮﻳﺬﭘ ﻝﺮﺘﻨﻛ ﻦﻴﻴﻌﺗ :

ﻢﺘﺴﻴﺳ ﻱﺮﻳﺬﭘ ﻩﺪﻫﺎﺸﻣ ﻭ ﻱﺮﻳﺬﭘ ﻝﺮﺘﻨﻛ ﻦﻴﻴﻌﺗ ﻱﺯﺎﺳ ﻱﺮﻄﻗ ﻢﻬﻣ ﻱﺎﻫﺩﺮﺑﺭﺎﻛ ﺯﺍ ﻲﻜﻳ ﺖﺳﺍ :

ﻱﺎﻫ ﺲﻳﺮﺗﺎﻣ ﺮﻳﺯ ﻒﻳﺩﺭ ﻦﻳﺮﺧﺁ B

ﻚﻳِ ﻱﺍﺮﺑ ﻥﺩﺮﺟ ﻱﺎﻫ ﻙﻮﻠﺑ ﺎﺑ ﺮﻇﺎﻨﺘﻣ

ﻥﺎﺴﻜﻳ ﻩﮋﻳﻭ ﺭﺍﺪﻘﻣ ,

ﺪﻨﺷﺎﺑ ﻲﻄﺧ ﻞﻘﺘﺴﻣ .

ﺪﺷﺎﺑ ﻪﺘﺷﺍﺩ ﻥﺩﺮﺟ ﻙﻮﻠﺑ ﻚﻳ ﺎﻬﻨﺗ ﻱﺭﺮﻜﻣ ﻩﮋﻳﻭ ﺭﺍﺪﻘﻣ ﺮﮔﺍ ,

ﻒﻳﺩﺭ ﻦﻳﺮﺧﺁ

ﺭﺩ ﻥﺁ ﺮﻇﺎﻨﺘﻣ ﺲﻳﺮﺗﺎﻣ ﺮﻳﺯ B

ﺪﺷﺎﺑ ﺮﻔﺻ ﺮﻴﻏ ﺪﻳﺎﺑ .

ﻱﺎﻫ ﻒﻳﺩﺭ B

ﺪﺷﺎﺑ ﺮﻔﺻ ﺮﻴﻏ ﺪﻳﺎﺑ ﺰﻳﺎﻤﺘﻣ ﻩﮋﻳﻭ ﺮﻳﺩﺎﻘﻣ ﻱﺍﺮﺑ .

(10)

ﻞﺼﻓ ﻡﺭﺎﻬﭼ

: ﻝﺮﺘﻨﻛ ﻱﺮﻳﺬﭘ

ﻭ ﻩﺪﻫﺎﺸﻣ ﻱﺮﻳﺬﭘ

1 1 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 1

0 0 1 1 0 0 0 0 0

( ) 0 0 0 1 0 0 0 ( ) 1 0 ( ),

0 0 0 0 2 1 0 0 0

0 0 0 0 0 2 0 1 1

0 0 0 0 0 0 3 0 0

1 0 0 1 0 1 0

( ) ( )

0 0 1 1 0 0 0

x t x t u t

y t x t

= +

= 

ﻲﻄﺧ ﻞﻘﺘﺴﻣ ﺮﻳﺬﭘ ﻝﺮﺘﻨﻛ ﺪﻣ

ﺮﻳﺬﭘ ﻝﺮﺘﻨﻛ ﺪﻣ ﺮﻳﺬﭘﺎﻧ ﻝﺮﺘﻨﻛ ﺪﻣ

ﻝﺎﺜﻣ ﺪﻴﻨﻛ ﻦﻴﻴﻌﺗ ﺍﺭ ﺮﻳﺯ ﻢﺘﺴﻴﺳ ﻱﺮﻳﺬﭘ ﻝﺮﺘﻨﻛ:

:

(11)

ﻞﺼﻓ ﻡﺭﺎﻬﭼ

: ﻝﺮﺘﻨﻛ ﻱﺮﻳﺬﭘ

ﻭ ﻩﺪﻫﺎﺸﻣ ﻱﺮﻳﺬﭘ

ﺮﻳﺬﭘﺎﻧ ﻝﺮﺘﻨﻛ ﻭ ﺮﻳﺬﭘ ﻝﺮﺘﻨﻛ ﻱﺎﻫ ﻢﺘﺴﻴﺳ ﺮﻳﺯ ﻚﻴﻜﻔﺗ :

ﻢﻫ ﺯﺍ ﺍﺭ ﺮﻳﺬﭘﺎﻧ ﻝﺮﺘﻨﻛ ﻭ ﺮﻳﺬﭘ ﻝﺮﺘﻨﻛ ﻱﺎﻀﻓ ﺮﻳﺯ ﻥﺍﻮﺗ ﻲﻣ ﻱﺪﻨﻧﺎﻤﻫ ﻞﻳﺪﺒﺗ ﻱﺮﻴﮔ ﺭﺎﻛ ﻪﺑ ﺎﺑ ﺩﻮﻤﻧ ﻚﻴﻜﻔﺗ :

( ) T ( )

x t = z t :ﻱﺪﻨﻧﺎﻤﻫ ﻞﻳﺪﺒﺗ

( ) ( ) ( )

( ) ( ) ( )

x t Ax t Bu t y t Cx t Du t

= +

 = +

ˆ ˆ

( ) ( ) ( )

ˆ ˆ

( ) ( ) ( )

z t Az t Bu t y t Cz t Du t

 = +



= +



ˆ 1 , ˆ 1

ˆ , ˆ

A T AT B T B C CT D D

= =

= =

( )

ˆ ˆ12 ˆ

ˆ 0 ( )

0

ˆ ˆ

( )

C C C C

C C C

C

C C

z A A z B

z A z u t

y t C C z

z

   

   

 

= +  

    

      

=   

 

ﺮﻳﺬﭘ ﻝﺮﺘﻨﻛ ﻢﺘﺴﻴﺳ ﺮﻳﺯ ﺮﻳﺬﭘﺎﻧ ﻝﺮﺘﻨﻛ ﻢﺘﺴﻴﺳ ﺮﻳﺯ

(12)

ﻞﺼﻓ ﻡﺭﺎﻬﭼ

: ﻝﺮﺘﻨﻛ ﻱﺮﻳﺬﭘ

ﻭ ﻩﺪﻫﺎﺸﻣ ﻱﺮﻳﺬﭘ

ﺮﻳﺬﭘﺎﻧ ﻝﺮﺘﻨﻛ ﻭ ﺮﻳﺬﭘ ﻝﺮﺘﻨﻛ ﻱﺎﻫ ﻢﺘﺴﻴﺳ ﺮﻳﺯ ﻚﻴﻜﻔﺗ :

ﻞﻳﺪﺒﺗ ﺲﻳﺮﺗﺎﻣ ﻪﺒﺳﺎﺤﻣ T

:

( )

ˆ ˆ12 ˆ

ˆ 0 ( )

0

ˆ ˆ

( )

C C C C

C C C

C

C C

C

z A A z B

z A z u t

y t C C z

z

   

   

 

= +  

    

      

=   

 

ﺮﻳﺬﭘ ﻝﺮﺘﻨﻛ ﻢﺘﺴﻴﺳ ﺮﻳﺯ ﺮﻳﺬﭘﺎﻧ ﻝﺮﺘﻨﻛ ﻢﺘﺴﻴﺳ ﺮﻳﺯ

[

1 2 m m 1 n

]

T = v vv v +v

ﻥﻮﺘﺳ m ﻩﺍﻮﺨﻟﺩ

ﻞﻘﺘﺴﻣ ﻲﻄﺧ

ﺯﺍ ﺲﻳﺮﺗﺎﻣ

ﻝﺮﺘﻨﻛ ﻱﺮﻳﺬﭘ

U ﺎﺑ ﻪﻛ ﻩﺍﻮﺨﻟﺩ ﺭﺍﺩﺮﺑ n-m

ﺪﻨﺷﺎﺑ ﻲﻄﺧ ﻞﻘﺘﺴﻣ

1, 2, m ...

v v v

(13)

ﻞﺼﻓ ﻡﺭﺎﻬﭼ

: ﻝﺮﺘﻨﻛ ﻱﺮﻳﺬﭘ

ﻭ ﻩﺪﻫﺎﺸﻣ ﻱﺮﻳﺬﭘ

ﺮﻳﺬﭘﺎﻧ ﻝﺮﺘﻨﻛ ﻭ ﺮﻳﺬﭘ ﻝﺮﺘﻨﻛ ﻱﺎﻫ ﻢﺘﺴﻴﺳ ﺮﻳﺯ ﻚﻴﻜﻔﺗ :

ﻝﺎﺜﻣ ﺪﻴﻨﻛ ﻦﻴﻴﻌﺗ ﺍﺭ ﺮﻳﺯ ﻢﺘﺴﻴﺳ ﻱﺮﻳﺬﭘ ﻝﺮﺘﻨﻛ:

:

[ ]

1 1 0 0 1

( ) 0 1 0 ( ) 1 0 ( ),

0 1 1 0 1

( ) 1 1 1 ( )

x t x t u t

y t x t

= +

=

0 1 1 1

1 0 1 0 0 1 1 1 U

= 

B AB

ﻪﺘﻜﻧ :

( ) [ , , , n m ]

if Rank B = m U = B AB A B

2 3 m n

=

 =

0 1 1 1 0 0 0 1 0 T

= 

1 2 3

v v v

1 12

1 0 0 ˆ ˆ

ˆ 1 1 0

0 ˆ 0 0 1

C

C

A A A T AT

A

 

= =   = 

(14)

ﻞﺼﻓ ﻡﺭﺎﻬﭼ

: ﻝﺮﺘﻨﻛ ﻱﺮﻳﺬﭘ

ﻭ ﻩﺪﻫﺎﺸﻣ ﻱﺮﻳﺬﭘ

0 1 1 1 0 0 0 1 0 T

= 

ﻲﻄﺧ ﻞﻘﺘﺴﻣ ﻩﺍﻮﺨﻟﺩ ﻥﻮﺘﺳ m

1 2 3

v v v

1 12

1 0 0 ˆ ˆ

ˆ 1 1 0

0 ˆ 0 0 1

C

C

A A A T AT

A

 

= =   = 

1

1 0

ˆ 0 1 ˆ

0 0 0

BC

B T B

 

= =    =  

[ ]

ˆ 1 2 1 C C

C = CT = = C C

ﺯﺍ ﺖﺳﺍ ﺕﺭﺎﺒﻋ ﺮﻳﺬﭘ ﻝﺮﺘﻨﻛ ﻱﺎﻀﻓ ﺮﻳﺯ ﻪﺠﻴﺘﻧ ﺭﺩ :

[ ]

1 0 1 0

( ) ( ) ( )

1 1 0 1

( ) 1 2 ( )

C C

z t z t u t

y t z t

= +

=

(15)

ﻞﺼﻓ ﻡﺭﺎﻬﭼ

: ﻝﺮﺘﻨﻛ ﻱﺮﻳﺬﭘ

ﻭ ﻩﺪﻫﺎﺸﻣ ﻱﺮﻳﺬﭘ

ﺯﺍ ﺖﺳﺍ ﺕﺭﺎﺒﻋ ﺮﻳﺬﭘﺎﻧ ﻝﺮﺘﻨﻛ ﻱﺎﻀﻓ ﺮﻳﺯ ﻭ :

( ) ( ) ( ) ( )

C C

C

z t z t y t z t

=

=

ﻢﺘﺴﻴﺳ ﺍﺬﻟ ,ﺖﺳﺍ ﺭﺍﺪﻳﺎﭘﺎﻧ ﺮﻳﺬﭘﺎﻧ ﻝﺮﺘﻨﻛ ﻱﺎﻀﻓ ﺮﻳﺯ ﻥﻮﭼ ﺖﺴﻴﻧ ﺮﻳﺬﭘ ﺭﺍﺪﻳﺎﭘ .

Referensi

Dokumen terkait