1
2
1
0
0
P
P
P
k
n
J
J
Jt J
t
t
t
t
t
e
e
e e
e
e
α
λ
λ
+
=
1 2
2
1 2! ( 1)!
0 1 ( 2)!
0 0 0 1
i
i
Pi i
P
i P
J t t
i
t t
t P
t t
e P e
t
λ
−
−
−
= −
ﻱﺮﻄﻗ ﻱﺯﺎﺳ
ﻪﺑ ﻚﻤﻛ ﻡﺮﻓ
ﻥﺩﺮﺟ :
ﻞﺼﻓ ﻡﻮﺳ
: ﻢﺘﺴﻴﺳ ﻱﺎﻫ
ﻲﻄﺧ
ﻞﺼﻓ ﻡﺭﺎﻬﭼ
: ﻝﺮﺘﻨﻛ ﻱﺮﻳﺬﭘ
ﻭ ﻩﺪﻫﺎﺸﻣ ﻱﺮﻳﺬﭘ
ﺪﻧﻭﺭ ﻲﻣ ﺭﺎﻤﺷ ﻪﺑ ﺖﻟﺎﺣ ﻱﺎﻀﻓ ﻩﺯﻮﺣ ﺭﺩ ﻢﻴﻫﺎﻔﻣ ﻦﻳﺮﺘﻤﻬﻣ ﺯﺍ ﻱﺮﻳﺬﭘ ﻩﺪﻫﺎﺸﻣ ﻭ ﻱﺮﻳﺬﭘ ﻝﺮﺘﻨﻛ ﺪﻧﺍ ﻩﺪﺷ ﻲﻓﺮﻌﻣ ﻩﺎﺠﻨﭘ ﻪﻫﺩ ﻂﺳﻭﺍ ﺭﺩ ﻦﻤﻟﺎﻛ ﻂﺳﻮﺗ ﻪﻛ .
ﺮﻳﺯ ﻝﺎﺜﻣ ﻪﺑ ﺐﻠﻄﻣ ﻥﺪﺷ ﻦﺷﻭﺭ ﻱﺍﺮﺑ
ﺪﻴﻨﻛ ﻪﺟﻮﺗ :
[ ]
2 3 2 1 1
2 3 0 0 2
( ) ( ) ( )
2 2 4 0 2
2 2 2 5 1
( ) 7 6 4 2 ( )
x t x t u t
y t x t
− − −
= +
− − −
− − − − −
=
ﻢﻴﺳﺭ ﻲﻣ ﺮﻳﺯ ﺕﻻﺩﺎﻌﻣ ﻪﺑ ﻕﻮﻓ ﻢﺘﺴﻴﺳ ﻥﺩﺮﻛ ﻱﺮﻄﻗ ﺎﺑ :
[ ]
1 0 0 0 1
0 2 0 0 0
( ) ( ) ( )
0 0 3 0 1
0 0 0 4 0
( ) 1 1 0 0 ( )
z t z t u t
y t z t
−
−
= +
−
−
=
1 1
2 2
3 3
4 4
1 2
( ), 2 ,
3 ( ), 4 ,
( )
z z u t
z z
z z u t
z z
y t z z
= − +
= −
= − +
= −
= +
ﻞﺼﻓ ﻡﺭﺎﻬﭼ
: ﻝﺮﺘﻨﻛ ﻱﺮﻳﺬﭘ
ﻭ ﻩﺪﻫﺎﺸﻣ ﻱﺮﻳﺬﭘ
1 1
2 2
3 3
4 4
1 2
( ), 2 ,
3 ( ),
4 , ( )
z z u t
z z
z z u t
z z
y t z z
= − +
= −
= − +
= −
= +
ﺩﻮﺷ ﻲﻣ ﺖﻳﺅﹺﺭ ﻲﺟﻭﺮﺧ ﺭﺩ ﻭ ﺩﺮﻴﮔ ﻲﻣ ﺮﻴﺛﺄﺗ ﻱﺩﻭﺭﻭ ﺯﺍ )
ﺮﻳﺬﭘ ﻩﺪﻫﺎﺸﻣ ﻭ ﺮﻳﺬﭘ ﻝﺮﺘﻨﻛ ﺪﻣ (
ﺩﻮﺷ ﻲﻣ ﺖﻳﺅﹺﺭ ﻲﺟﻭﺮﺧ ﺭﺩ ﻲﻟﻭ ﺩﺮﻴﮔ ﻲﻤﻧ ﺮﻴﺛﺄﺗ ﻱﺩﻭﺭﻭ ﺯﺍ )
ﺮﻳﺬﭘ ﻩﺪﻫﺎﺸﻣ ﻭ ﺮﻳﺬﭘﺎﻧ ﻝﺮﺘﻨﻛ ﺪﻣ (
ﺩﻮﺷ ﻲﻤﻧ ﺖﻳﺅﹺﺭ ﻲﺟﻭﺮﺧ ﺭﺩ ﻲﻟﻭ ﺩﺮﻴﮔ ﻲﻣ ﺮﻴﺛﺄﺗ ﻱﺩﻭﺭﻭ ﺯﺍ )
ﺮﻳﺬﭘﺎﻧ ﻩﺪﻫﺎﺸﻣ ﻭ ﺮﻳﺬﭘ ﻝﺮﺘﻨﻛ ﺪﻣ (
ﺩﻮﺷ ﻲﻤﻧ ﺖﻳﺅﹺﺭ ﻢﻫ ﻲﺟﻭﺮﺧ ﺭﺩ ﻭ ﺩﺮﻴﮔ ﻲﻤﻧ ﺮﻴﺛﺄﺗ ﻱﺩﻭﺭﻭ ﺯﺍ )
ﺮﻳﺬﭘﺎﻧ ﻩﺪﻫﺎﺸﻣ ﻭ ﺮﻳﺬﭘﺎﻧ ﻝﺮﺘﻨﻛ ﺪﻣ (
1( ) z t
2( ) z t
3( ) z t
4( ) z t CO
CO
CO CO
ﻞﺼﻓ ﻡﺭﺎﻬﭼ
: ﻝﺮﺘﻨﻛ ﻱﺮﻳﺬﭘ
ﻭ ﻩﺪﻫﺎﺸﻣ ﻱﺮﻳﺬﭘ
[ ]
2 3 2 1 1
2 3 0 0 2
( ) ( ) ( )
2 2 4 0 2
2 2 2 5 1
( ) 7 6 4 2 ( )
x t x t u t
y t x t
− − −
= +
− − −
− − − − −
=
ﺮﮕﻳﺩ ﻪﺘﻜﻧ :
1 ( 2)( 3)( 4)
( ) ( )
( 1)( 2)( 3)( 4)
s s s
G s C sI A B
s s s s
− + + +
= − =
+ + + +
( ) 1
( 1) G s = s
+
ﺮﻳﺬﭘ ﻩﺪﻫﺎﺸﻣ ﻭ ﺮﻳﺬﭘ ﻝﺮﺘﻨﻛ ﺪﻣ ﺎﻬﻨﺗ ﻪﻛ ﺩﻮﺷ ﻲﻣ ﻪﻈﺣﻼﻣ )
(CO
ﺩﺭﺍﺩ ﺮﻴﺛﺄﺗ ﻞﻳﺪﺒﺗ ﻊﺑﺎﺗ ﻦﻴﻴﻌﺗ ﺭﺩ
ﺪﻨﻫﺩ ﻲﻣ ﺶﻫﺎﻛ ﺍﺭ ﻞﻳﺪﺒﺗ ﻊﺑﺎﺗ ﻪﺒﺗﺮﻣ ﻭ ﺪﻧﻮﺷ ﻲﻣ ﺐﻄﻗ ﻭ ﺮﻔﺻ ﻑﺬﺣ ﺚﻋﺎﺑ ﺎﻫ ﺪﻣ ﺮﻳﺎﺳ ﻭ .
ﺮﻳﺬﭘﺎﻧ ﻩﺪﻫﺎﺸﻣ ﺎﻳ ﻭ ﺮﻳﺬﭘﺎﻧ ﻝﺮﺘﻨﻛ ﺪﻣ ﻚﻳ ﺩﻮﺟﻭ ﻩﺪﻨﻫﺩ ﻥﺎﺸﻧ ﺐﻄﻗ ﻭ ﺮﻔﺻ ﻪﻧﻮﮔ ﺮﻫ ﻑﺬﺣ ﺲﭘ ﺖﺳﺍ . ﻪﺘﻜﻧ : ﺪﺷﺎﺑ ﺮﺘﻤﻛ ﺖﻟﺎﺣ ﻱﺎﻫ ﺮﻴﻐﺘﻣ ﺩﺍﺪﻌﺗ ﺯﺍ ﻞﻳﺪﺒﺗ ﻊﺑﺎﺗ ﻪﺒﺗﺮﻣ ﺮﮔﺍ ,
ﺐﻄﻗ ﻭ ﺮﻔﺻ ﻑﺬﺣ ﺎﻤﺘﺣ
ﺖﺳﺍ ﺮﻳﺬﭘﺎﻧ ﻩﺪﻫﺎﺸﻣ ﺎﻳ ﻭ ﺮﻳﺬﭘﺎﻧ ﻝﺮﺘﻨﻛ ﺪﻣ ﻚﻳ ﻱﺍﺭﺍﺩ ﻢﺘﺴﻴﺳ ﺍﺬﻟ ﻭ ﻩﺩﺍﺩ ﻱﻭﺭ .
ﻞﺼﻓ ﻡﺭﺎﻬﭼ
: ﻝﺮﺘﻨﻛ ﻱﺮﻳﺬﭘ
ﻭ ﻩﺪﻫﺎﺸﻣ ﻱﺮﻳﺬﭘ
ﺮﻳﺬﭘﺎﻧ ﻝﺮﺘﻨﻛ ﻢﺘﺴﻴﺳ :
ﺩﺭﺍﺩ ﺮﻳﺬﭘﺎﻧ ﻝﺮﺘﻨﻛ ﺪﻣ ﻚﻳ ﻞﻗﺍﺪﺣ ﻪﻛ ﻲﻤﺘﺴﻴﺳ .
ﺮﻳﺬﭘﺎﻧ ﺖﻳﺅﺭ ﻢﺘﺴﻴﺳ :
ﺩﺭﺍﺩ ﺮﻳﺬﭘﺎﻧ ﺖﻳﺅﺭ ﺪﻣ ﻚﻳ ﻞﻗﺍﺪﺣ ﻪﻛ ﻲﻤﺘﺴﻴﺳ .
ﻪﺘﻜﻧ : ﺪﺷﺎﺑ ﺭﺍﺪﻳﺎﭘ ﺮﻳﺬﭘﺎﻧ ﻝﺮﺘﻨﻛ ﺪﻣ ﺮﮔﺍ ,
ﺮﻳﺬﭘﺭﺍﺪﻳﺎﭘ ﻢﺘﺴﻴﺳ )
Stabilizable
( ﻩﺪﻴﻣﺎﻧ
ﻢﻳﺭﺍﺪﻧ ﻲﻬﺟﻮﺗ ﺪﻣ ﻥﺁ ﻪﺑ ﻝﺮﺘﻨﻛ ﻢﺘﺴﻴﺳ ﻲﺣﺍﺮﻃ ﺭﺩ ﻭ ﺩﻮﺷ ﻲﻣ .
ﻪﺘﻜﻧ : ﺪﺷﺎﺑ ﺭﺍﺪﻳﺎﭘ ﺮﻳﺬﭘﺎﻧ ﺖﻳﺅﺭ ﺪﻣ ﺮﮔﺍ ,
ﺮﻳﺬﭘﺭﺎﻜﺷﺁ ﻢﺘﺴﻴﺳ )
Detectable
( ﻩﺪﻴﻣﺎﻧ
ﻢﻳﺭﺍﺪﻧ ﻲﻬﺟﻮﺗ ﺪﻣ ﻥﺁ ﻪﺑ ﺮﮕﺘﻳﺅﺭ ﻲﺣﺍﺮﻃ ﺭﺩ ﻭ ﺩﻮﺷ ﻲﻣ .
1 1
2 2
3 3
4 4
( ), 2 ,
3 ( ),
4 , ( )
z z u t
z z
z z u t
z z
y t z z
= − +
= −
= − +
= −
= +
CO CO
CO CO
ﺭﺍﺪﻳﺎﭘ ﺮﻳﺬﭘﺎﻧ ﻝﺮﺘﻨﻛ ﺪﻣ
ﺭﺍﺪﻳﺎﭘ ﺮﻳﺬﭘﺎﻧ ﺖﻳﺅﺭ ﺪﻣ
ﺭﺍﺪﻳﺎﭘ ﺮﻳﺬﭘﺎﻧ ﺖﻳﺅﺭ ﻭ ﺮﻳﺬﭘﺎﻧ ﻝﺮﺘﻨﻛ ﺪﻣ
ﻢﺘﺴﻴﺳ ﻢﻫ
ﺭﺎﻜﺷﺁ ﺮﻳﺬﭘ
ﻭ
ﺖﺳﺍ ﺮﻳﺬﭘ ﺭﺍﺪﻳﺎﭘ ﻢﻫ
ﻞﺼﻓ ﻡﺭﺎﻬﭼ
: ﻝﺮﺘﻨﻛ ﻱﺮﻳﺬﭘ
ﻭ ﻩﺪﻫﺎﺸﻣ ﻱﺮﻳﺬﭘ
ﺪﺷﺎﺑ ﺭﺍﺪﻳﺎﭘﺎﻧ ﺮﻳﺬﭘﺎﻧ ﺖﻳﺅﺭ ﺎﻳ ﺮﻳﺬﭘﺎﻧ ﻝﺮﺘﻨﻛ ﺪﻣ ﺮﮔﺍ ,
ﻢﺘﺴﻴﺳ ﺵﺎﺸﺘﻏﺍ ﻚﻳ ﺎﺑ ﻪﻛ ﺖﺳﺍ ﻦﻜﻤﻣ
ﺪﻧﻮﺷ ﺍﺮﮔﺍﻭ ﺖﻳﺎﻬﻧ ﻲﺑ ﻪﺑ ﺎﻫ ﺖﻟﺎﺣ ﻭ ﺩﻮﺷ ﺭﺍﺪﻳﺎﭘﺎﻧ .
ﻲﻠﻛ ﺭﻮﻃ ﻪﺑ ,
ﺯﺍ ﺪﻨﺗﺭﺎﺒﻋ ﺎﻫ ﻢﺘﺴﻴﺳ ﺮﻳﺬﭘﺎﻧ ﻩﺪﻫﺎﺸﻣ ﻭ ﺮﻳﺬﭘﺎﻧ ﻝﺮﺘﻨﻛ ﻞﻣﺍﻮﻋ :
ﺶﻳﺎﻤﻧ ﻪﺑ ﺮﺠﻨﻣ ﻪﻛ ﺖﻟﺎﺣ ﻱﺎﻫ ﺮﻴﻐﺘﻣ ﻥﺍﻮﻨﻋ ﻪﺑ ﻲﻄﺧ ﻪﺘﺴﺑﺍﻭ ﻱﺎﻫﺮﻴﻐﺘﻣ ﺏﺎﺨﺘﻧﺍ ﺩﻮﺷ ﻲﻣ ﻝﺎﻤﻴﻨﻴﻣ ﺮﻴﻏ .
ﻲﻜﻴﻧﺎﻜﻣ ﻢﺘﺴﻴﺳ ﺭﺩ ﻲﻠﺧﺍﺩ ﻱﺎﻫﺭﻭﺎﺘﺸﮔ ﺎﻳ ﺎﻫﻭﺮﻴﻧ ﺩﻮﺟﻭ ﺎﻫ ﻢﺘﺴﻴﺳ ﺭﺩ ﻱﺭﺎﺘﺧﺎﺳ ﻥﺭﺎﻘﺗ ﺩﻮﺟﻭ
ﺖﻟﺎﺣ ﻱﺎﻫ ﺮﻴﻐﺘﻣ ﻱﺮﻴﮔ ﻩﺯﺍﺪﻧﺍ ﻡﺪﻋ ﻱﺎﻫﺮﻟﺮﺘﻨﻛ ﻲﺣﺍﺮﻃ ﺭﺩ ﺐﻄﻗ ﻭ ﺮﻔﺻ ﻑﺬﺣ ﺮﺑ ﻲﻨﺘﺒﻣ ﻱﺎﻬﺷﻭﺭ ﻱﺮﻴﮔ ﺭﺎﻛ ﻪﺑ ﻚﻴﺳﻼﻛ
ﻞﺼﻓ ﻡﺭﺎﻬﭼ
: ﻝﺮﺘﻨﻛ ﻱﺮﻳﺬﭘ
ﻭ ﻩﺪﻫﺎﺸﻣ ﻱﺮﻳﺬﭘ
ﻱﺮﻳﺬﭘ ﻝﺮﺘﻨﻛ ﻒﻳﺮﻌﺗ :
ﺪﻨﻳﻮﮔ ﺮﻳﺬﭘ ﻝﺮﺘﻨﻛ ﺍﺭ ﺮﻳﺯ ﻢﺘﺴﻴﺳ ,
ﻝﺮﺘﻨﻛ ﻝﺎﻨﮕﻴﺳ ﺮﮔﺍ ﺖﻟﺎﺣ ﻥﺍﻮﺘﺑ ﻪﻛ ﺪﺷﺎﺑ ﻪﺘﺷﺍﺩ ﺩﻮﺟﻭ u
ﻲﻳﺎﻬﻧ ﺖﻟﺎﺣ ﺮﻫ ﻪﺑ ﻪﻴﻟﻭﺍ ﻥﺎﻣﺯ ﺭﺩ ﻪﻴﻟﻭﺍ ﺖﻟﺎﺣ ﺮﻫ ﺯﺍ ﺍﺭ ﻢﺘﺴﻴﺳ ﻥﺎﻣﺯ ﺭﺩ x(t)
t t0 x t( )0 = x0 . ﺩﺍﺩ ﻝﺎﻘﺘﻧﺍ
( ) ( ) ( )
x t = Ax t + Bu t
ﻱﺮﻳﺬﭘ ﻝﺮﺘﻨﻛ ﻪﻴﻀﻗ :
ﻥﺎﻣﺯ ﺎﺑ ﺮﻳﺬﭘﺎﻧ ﺮﻴﻴﻐﺗ ﻲﻄﺧ ﻢﺘﺴﻴﺳ n
ﺮﻳﺯ ﻱﺪﻌﺑ
( ) ( ) ( )
x t = Ax t + Bu t
ﺖﺳﺍ ﺮﻳﺬﭘ ﻝﺮﺘﻨﻛ ﹰﻼﻣﺎﻛ ,
ﺪﺷﺎﺑ ﻞﻣﺎﻛ ﻪﺒﺗﺮﻣ ﺮﻳﺯ ﻱﺮﻳﺬﭘ ﻝﺮﺘﻨﻛ ﺲﻳﺮﺗﺎﻣ ﺮﮔﺍ ﻂﻘﻓ ﻭ ﺮﮔﺍ :
2 n 1
U = B AB A B A − B U ≠ 0 . ﺪﺷﺎﺑ ﻲﻌﺑﺮﻣ ﺮﮔﺍ
ﻞﺼﻓ ﻡﺭﺎﻬﭼ
: ﻝﺮﺘﻨﻛ ﻱﺮﻳﺬﭘ
ﻭ ﻩﺪﻫﺎﺸﻣ ﻱﺮﻳﺬﭘ
[ ]
1 2 1 1 1
( ) 1 2 1 ( ) 1 1 ( ),
1 1 2 1 0
( ) 1 0 1 ( )
x t x t u t
y t x t
− −
= − − + −
− −
=
ﻝﺎﺜﻣ : ﺪﻴﻨﻛ ﻦﻴﻴﻌﺗ ﺍﺭ ﺮﻳﺯ ﻢﺘﺴﻴﺳ ﻱﺮﻳﺬﭘ ﻝﺮﺘﻨﻛ :
ﻢﻴﻫﺩ ﻲﻣ ﻞﻴﻜﺸﺗ ﺍﺭ ﻱﺮﻳﺬﭘ ﻝﺮﺘﻨﻛ ﺲﻳﺮﺗﺎﻣ ﺍﺪﺘﺑﺍ :
2
1 1 2 1 4 9
1 1 2 3 4 3
1 0 2 2 4 6
U B AB A B
− −
= = − − −
− −
ﺪﺷﺎﺑ ﻞﻣﺎﻛ ﻪﺒﺗﺭ ﺲﻳﺮﺗﺎﻣ ﻦﻳﺍ ﺪﻳﺎﺑ .
ﻱﺭﻭﺁﺩﺎﻳ
ﻢﻳﺭﺍﺩ ﻲﻌﺑﺮﻣ ﺮﻴﻏ ﺲﻳﺮﺗﺎﻣ ﻚﻳ ﻱﺍﺮﺑ :
:
A∈ℜn m× Rank A( ) ≤ min( , )m n = min(3, 6) = 3
ﻢﻳﺭﺍﺩ ﻲﻄﺧ ﻞﻘﺘﺴﻣ ﺮﻄﺳ ﻪﺳ ﻥﻮﭼ , ﻢﺘﺴﻴﺳ ﻭ ﺖﺳﺍ ﻞﻣﺎﻛ ﻪﺒﺗﺭ ﺲﻳﺮﺗﺎﻣ ﺖﺳﺍ ﺮﻳﺬﭘ ﻝﺮﺘﻨﻛ .
ﻞﺼﻓ ﻡﺭﺎﻬﭼ
: ﻝﺮﺘﻨﻛ ﻱﺮﻳﺬﭘ
ﻭ ﻩﺪﻫﺎﺸﻣ ﻱﺮﻳﺬﭘ
ﻥﺩﺮﺟ ﻡﺮﻓ ﻱﻭﺭ ﺯﺍ ﻢﺘﺴﻴﺳ ﻱﺮﻳﺬﭘ ﻝﺮﺘﻨﻛ ﻦﻴﻴﻌﺗ :
ﻢﺘﺴﻴﺳ ﻱﺮﻳﺬﭘ ﻩﺪﻫﺎﺸﻣ ﻭ ﻱﺮﻳﺬﭘ ﻝﺮﺘﻨﻛ ﻦﻴﻴﻌﺗ ﻱﺯﺎﺳ ﻱﺮﻄﻗ ﻢﻬﻣ ﻱﺎﻫﺩﺮﺑﺭﺎﻛ ﺯﺍ ﻲﻜﻳ ﺖﺳﺍ :
ﻱﺎﻫ ﺲﻳﺮﺗﺎﻣ ﺮﻳﺯ ﻒﻳﺩﺭ ﻦﻳﺮﺧﺁ B
ﻚﻳِ ﻱﺍﺮﺑ ﻥﺩﺮﺟ ﻱﺎﻫ ﻙﻮﻠﺑ ﺎﺑ ﺮﻇﺎﻨﺘﻣ
ﻥﺎﺴﻜﻳ ﻩﮋﻳﻭ ﺭﺍﺪﻘﻣ ,
ﺪﻨﺷﺎﺑ ﻲﻄﺧ ﻞﻘﺘﺴﻣ .
ﺪﺷﺎﺑ ﻪﺘﺷﺍﺩ ﻥﺩﺮﺟ ﻙﻮﻠﺑ ﻚﻳ ﺎﻬﻨﺗ ﻱﺭﺮﻜﻣ ﻩﮋﻳﻭ ﺭﺍﺪﻘﻣ ﺮﮔﺍ ,
ﻒﻳﺩﺭ ﻦﻳﺮﺧﺁ
ﺭﺩ ﻥﺁ ﺮﻇﺎﻨﺘﻣ ﺲﻳﺮﺗﺎﻣ ﺮﻳﺯ B
ﺪﺷﺎﺑ ﺮﻔﺻ ﺮﻴﻏ ﺪﻳﺎﺑ .
ﻱﺎﻫ ﻒﻳﺩﺭ B
ﺪﺷﺎﺑ ﺮﻔﺻ ﺮﻴﻏ ﺪﻳﺎﺑ ﺰﻳﺎﻤﺘﻣ ﻩﮋﻳﻭ ﺮﻳﺩﺎﻘﻣ ﻱﺍﺮﺑ .
ﻞﺼﻓ ﻡﺭﺎﻬﭼ
: ﻝﺮﺘﻨﻛ ﻱﺮﻳﺬﭘ
ﻭ ﻩﺪﻫﺎﺸﻣ ﻱﺮﻳﺬﭘ
1 1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 1
0 0 1 1 0 0 0 0 0
( ) 0 0 0 1 0 0 0 ( ) 1 0 ( ),
0 0 0 0 2 1 0 0 0
0 0 0 0 0 2 0 1 1
0 0 0 0 0 0 3 0 0
1 0 0 1 0 1 0
( ) ( )
0 0 1 1 0 0 0
x t x t u t
y t x t
−
−
−
= − +
−
−
−
=
ﻲﻄﺧ ﻞﻘﺘﺴﻣ ﺮﻳﺬﭘ ﻝﺮﺘﻨﻛ ﺪﻣ
ﺮﻳﺬﭘ ﻝﺮﺘﻨﻛ ﺪﻣ ﺮﻳﺬﭘﺎﻧ ﻝﺮﺘﻨﻛ ﺪﻣ
ﻝﺎﺜﻣ ﺪﻴﻨﻛ ﻦﻴﻴﻌﺗ ﺍﺭ ﺮﻳﺯ ﻢﺘﺴﻴﺳ ﻱﺮﻳﺬﭘ ﻝﺮﺘﻨﻛ:
:
ﻞﺼﻓ ﻡﺭﺎﻬﭼ
: ﻝﺮﺘﻨﻛ ﻱﺮﻳﺬﭘ
ﻭ ﻩﺪﻫﺎﺸﻣ ﻱﺮﻳﺬﭘ
ﺮﻳﺬﭘﺎﻧ ﻝﺮﺘﻨﻛ ﻭ ﺮﻳﺬﭘ ﻝﺮﺘﻨﻛ ﻱﺎﻫ ﻢﺘﺴﻴﺳ ﺮﻳﺯ ﻚﻴﻜﻔﺗ :
ﻢﻫ ﺯﺍ ﺍﺭ ﺮﻳﺬﭘﺎﻧ ﻝﺮﺘﻨﻛ ﻭ ﺮﻳﺬﭘ ﻝﺮﺘﻨﻛ ﻱﺎﻀﻓ ﺮﻳﺯ ﻥﺍﻮﺗ ﻲﻣ ﻱﺪﻨﻧﺎﻤﻫ ﻞﻳﺪﺒﺗ ﻱﺮﻴﮔ ﺭﺎﻛ ﻪﺑ ﺎﺑ ﺩﻮﻤﻧ ﻚﻴﻜﻔﺗ :
( ) T ( )
x t = z t :ﻱﺪﻨﻧﺎﻤﻫ ﻞﻳﺪﺒﺗ
( ) ( ) ( )
( ) ( ) ( )
x t Ax t Bu t y t Cx t Du t
= +
= +
ˆ ˆ
( ) ( ) ( )
ˆ ˆ
( ) ( ) ( )
z t Az t Bu t y t Cz t Du t
= +
= +
ˆ 1 , ˆ 1
ˆ , ˆ
A T AT B T B C CT D D
− −
= =
= =
( )
ˆ ˆ12 ˆ
ˆ 0 ( )
0
ˆ ˆ
( )
C C C C
C C C
C
C C
z A A z B
z A z u t
y t C C z
z
= +
=
ﺮﻳﺬﭘ ﻝﺮﺘﻨﻛ ﻢﺘﺴﻴﺳ ﺮﻳﺯ ﺮﻳﺬﭘﺎﻧ ﻝﺮﺘﻨﻛ ﻢﺘﺴﻴﺳ ﺮﻳﺯ
ﻞﺼﻓ ﻡﺭﺎﻬﭼ
: ﻝﺮﺘﻨﻛ ﻱﺮﻳﺬﭘ
ﻭ ﻩﺪﻫﺎﺸﻣ ﻱﺮﻳﺬﭘ
ﺮﻳﺬﭘﺎﻧ ﻝﺮﺘﻨﻛ ﻭ ﺮﻳﺬﭘ ﻝﺮﺘﻨﻛ ﻱﺎﻫ ﻢﺘﺴﻴﺳ ﺮﻳﺯ ﻚﻴﻜﻔﺗ :
ﻞﻳﺪﺒﺗ ﺲﻳﺮﺗﺎﻣ ﻪﺒﺳﺎﺤﻣ T
:
( )
ˆ ˆ12 ˆ
ˆ 0 ( )
0
ˆ ˆ
( )
C C C C
C C C
C
C C
C
z A A z B
z A z u t
y t C C z
z
= +
=
ﺮﻳﺬﭘ ﻝﺮﺘﻨﻛ ﻢﺘﺴﻴﺳ ﺮﻳﺯ ﺮﻳﺬﭘﺎﻧ ﻝﺮﺘﻨﻛ ﻢﺘﺴﻴﺳ ﺮﻳﺯ
[
1 2 m m 1 n]
T = v v v v + v
ﻥﻮﺘﺳ m ﻩﺍﻮﺨﻟﺩ
ﻞﻘﺘﺴﻣ ﻲﻄﺧ
ﺯﺍ ﺲﻳﺮﺗﺎﻣ
ﻝﺮﺘﻨﻛ ﻱﺮﻳﺬﭘ
U ﺎﺑ ﻪﻛ ﻩﺍﻮﺨﻟﺩ ﺭﺍﺩﺮﺑ n-m
ﺪﻨﺷﺎﺑ ﻲﻄﺧ ﻞﻘﺘﺴﻣ
1, 2, m ...
v v v
ﻞﺼﻓ ﻡﺭﺎﻬﭼ
: ﻝﺮﺘﻨﻛ ﻱﺮﻳﺬﭘ
ﻭ ﻩﺪﻫﺎﺸﻣ ﻱﺮﻳﺬﭘ
ﺮﻳﺬﭘﺎﻧ ﻝﺮﺘﻨﻛ ﻭ ﺮﻳﺬﭘ ﻝﺮﺘﻨﻛ ﻱﺎﻫ ﻢﺘﺴﻴﺳ ﺮﻳﺯ ﻚﻴﻜﻔﺗ :
ﻝﺎﺜﻣ ﺪﻴﻨﻛ ﻦﻴﻴﻌﺗ ﺍﺭ ﺮﻳﺯ ﻢﺘﺴﻴﺳ ﻱﺮﻳﺬﭘ ﻝﺮﺘﻨﻛ:
:
[ ]
1 1 0 0 1
( ) 0 1 0 ( ) 1 0 ( ),
0 1 1 0 1
( ) 1 1 1 ( )
x t x t u t
y t x t
= +
=
0 1 1 1
1 0 1 0 0 1 1 1 U
=
B AB
ﻪﺘﻜﻧ :
( ) [ , , , n m ]
if Rank B = m ⇒ U = B AB A − B
2 3 m n
=
=
0 1 1 1 0 0 0 1 0 T
=
1 2 3
v v v
1 12
1 0 0 ˆ ˆ
ˆ 1 1 0
0 ˆ 0 0 1
C
C
A A A T AT
A
−
= = =
ﻞﺼﻓ ﻡﺭﺎﻬﭼ
: ﻝﺮﺘﻨﻛ ﻱﺮﻳﺬﭘ
ﻭ ﻩﺪﻫﺎﺸﻣ ﻱﺮﻳﺬﭘ
0 1 1 1 0 0 0 1 0 T
=
ﻲﻄﺧ ﻞﻘﺘﺴﻣ ﻩﺍﻮﺨﻟﺩ ﻥﻮﺘﺳ m
1 2 3
v v v
1 12
1 0 0 ˆ ˆ
ˆ 1 1 0
0 ˆ 0 0 1
C
C
A A A T AT
A
−
= = =
1
1 0
ˆ 0 1 ˆ
0 0 0
BC
B T B−
= = =
[ ]
ˆ 1 2 1 C C
C = CT = = C C
ﺯﺍ ﺖﺳﺍ ﺕﺭﺎﺒﻋ ﺮﻳﺬﭘ ﻝﺮﺘﻨﻛ ﻱﺎﻀﻓ ﺮﻳﺯ ﻪﺠﻴﺘﻧ ﺭﺩ :
[ ]
1 0 1 0
( ) ( ) ( )
1 1 0 1
( ) 1 2 ( )
C C
z t z t u t
y t z t
= +
=
ﻞﺼﻓ ﻡﺭﺎﻬﭼ
: ﻝﺮﺘﻨﻛ ﻱﺮﻳﺬﭘ
ﻭ ﻩﺪﻫﺎﺸﻣ ﻱﺮﻳﺬﭘ
ﺯﺍ ﺖﺳﺍ ﺕﺭﺎﺒﻋ ﺮﻳﺬﭘﺎﻧ ﻝﺮﺘﻨﻛ ﻱﺎﻀﻓ ﺮﻳﺯ ﻭ :
( ) ( ) ( ) ( )
C C
C
z t z t y t z t
=
=
ﻢﺘﺴﻴﺳ ﺍﺬﻟ ,ﺖﺳﺍ ﺭﺍﺪﻳﺎﭘﺎﻧ ﺮﻳﺬﭘﺎﻧ ﻝﺮﺘﻨﻛ ﻱﺎﻀﻓ ﺮﻳﺯ ﻥﻮﭼ ﺖﺴﻴﻧ ﺮﻳﺬﭘ ﺭﺍﺪﻳﺎﭘ .