12 2
1401
229 - 213
DOI:10.22059/jwim.2022.332573.931
: !"
! " #
1 2
* 3
1 . ! " # $ % &'
!(
'() ( % *' +, - . / 0 1$ 2
. (3
2 .
% &' !(
'() ( % *' +, - . / 0 1$ 2
. (3
3 . '405 6 1$ 7 /3 ", 0 7 -0
. (3
:"9 +: ; 3 26
/ 07 / 1400 :"9 A B ; 3
16 / 10 / 1400
!"
#$ % &$ '($
# # ) * + . - .
/
0& 1 2 ! 3 " 1 !"
4 3 " 1 5 64 7 8 9 : 4 . 3 " 1 ($
!"
; < #=* & >1 ? MODFLOW
#&-
# @& A . B 64 ( ;
0& 1 %& A* 64
4 C &
>1 <A " &
D !"
#- .
#&- : E $ #$ 3 ! <A " (;
3 .& # >1 % 15
E& H = C & 4 3 .& I 3 " 1 C & 4 3 .& + 55
H 87 3.& . E .L H
# 3 " 1 4 M &&N
M H
O
! E& 3 " 1 & E" #$ % P Q + $ R .&
-S %& Q +
O T C$ #=* + . 4 S
E&
3 " 1 % E $ &UV + : . 64
#
% 1
# #W 3 " 1 4
3 B E $ 4
&4 64 3 ! <A "
# %&( # #W .& L 8 .
0& 1 XY # #W 3 " 1 % T E" 3 ! : . Z&AD #=* [* \& B 64 ] ) ^] &
E&
0& 1 3.& + 0& 1 3 .& & >1 3 W %SW 64
.% # L E $ 64
0& 1 B3 " 1:
B 64
B3 " 1 4 B !"
.
Assessment of the Groundwater Resources Balancing Using Sustainability Indicators
Pedram Karimiyan1, Mojtaba Shourian2*, Hamid Kardan Moghaddam3
1. M.Sc. Graduate, Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University, Tehran, Iran.
2. Assistant Professor, Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University, Tehran, Iran.
3. Research Assistant Professor, Water Research Institute, Ministry of Energy, Tehran, Iran.
Received: October 18, 2021 Accepted: January 06, 2022 Abstract
One of the approaches to equilibrium assessment is the use of quantitative and qualitative indicators that can be a good tool. In this study, in order to evaluate the equilibrium scenarios in Hashtgerd aquifer, two indicators of intrinsic vulnerability of the aquifer and quantitative stability index of the aquifer were used. Five scenarios were defined based on the groundwater resources balancing scheme in the region and simulated using the MODFLOW numerical model. Equilibrium was calculated by combining three indicators of reliability, vulnerability and desirability of groundwater system stability index in different scenarios. The simulation results and application of different scenarios showed that by reducing the water withdrawal by 15 percent, the highest level of stability is created in the aquifer system and the system stability rate increases from 55 percent to 87 percent. The extent of changes in the aquifer stability index as a distribution in the observation wells also indicates that the middle part of the aquifer has the highest status of improving the stability index. This region, with its high density of exploitation wells, is most affected by the reduction of aquifer withdrawals. The results obtained from the aquifer stability index, considering the spatial distribution, show the feasibility of implementing different scenarios. On the other hand, due to the importance of development and the use of vulnerability indicators, the drastic index was analyzed at the regional level. The results showed that the upstream part of the aquifer has the highest level of vulnerability due to hydrogeological characteristics and the level of vulnerability has decreased in the direction of groundwater flow.
Keywords: Groundwater, Hashtgerd aquifer, MODFLOW, Vulnerability.
& >1 ? CS
? + +& V
>1
\! @8
# Y D* >1 -($ #$ R
B% #W )
Malmir et al., 2021
-($ + .(
E $ S C & 0- (&Aa
( X &b&4 >1 ? X &b&4 .
C &
S $ >1 ? 3
#
& >1 ? .
!a 2
S # & c; X 3 6X >1 #
#Q ; % ( & \ +
# >1 Q =
. + # /
#W
#
%L
[*
>1 B &
%
% +
? $ [*
%
&
CS
&
!"
3 " 1 +& V
+ d
7 * .
%
>1
&
3 SW M &&N B%& (W
>1 B
e a -
; ( W ( R
0 B>1 Z "
% )
Frija et al., 2015
.(
3 >1 d e B L 8
#
!$ E" .
# Y \! @8
?- S #$
+& V %L 0- B & ? 31
3 " 1 ) %
Kayhomayoon et al.,
!$ >1 3 &) c; P Q + .(2021
7 8 !"
3 & >1 3 D %L
#^ . #^ g + $ %SW %SW <A "
6X U 3 .& # #W 3 !"
( 3 " 1 4 -S 0W
> O O . 3 " 1 %
#^ <A "
>1 ? %& &$ %&($ cD 7 8 &
% %&( .^ R & !"
#
# X #$
%SW CS . . &X a 7 8
B X !"
.%
% 1 & \
#$
2 &
&N O \ - M &&N
% .
%& Q
&
C B Z ;
&UV
g 6X
C &
(e B
&
C X&
)
%
>1 3 &) C L
)
Juwana et al., 2010
.(
? %& Q Z&AD %SW
- # $ & & >1
&N
# 3 " 1 &$ ($ %& Q M &
31 \($
a . &X #
& >1 ? # &
2007 # g
D ZA 3 >1
% (R 1
+& j ]1 AA()
( ] +& +(I B2
3 $ ] ) ^] & AA()
k I ) %
Lipponen, 2007
(.
) & >1 4 g (GSII
Pandey et
al.
(2011)
#
4 . 3 ;
? >1
% < &
.
Shahedy & Talebi (2014)
B#Q R 64 I >1 l + ) L SO Q m$ R B 64 I >1 # L e >1 %-
# > L Q [* I > L 3 ;
#Q R 4 # >1 ?
a . $ L k a
Bui et al.
(2016)
g&D
%SW & >1 ? 4
. a
Shahbazi et al.
(2020)
#&-
2 ! 3 " 1
MODFLOW
#&- =
7n
MODPATH
#&- : . k I
<A " (;
I #$ 3 ! !"
% D
S O
#=* I &o
7 8 & >1 ? !"
.
Rezaei et al.
(2021)
) -S ( # Z ( &) &
S E" \ D !$ (I % ; #
3 " 1 !"
. S !&4
Kardan Moghaddam
et al.
(2021)
d * k S 3 " 64
# 3 " 1 &$ '($ 4 B M H
B 64 ( ; # @& A . #^ ( &
0& 1 3 " 1 & >1 %& A* 64
#
# M H
;
'($ 4 3
0& 1
# %& A* 64
4 3 ;
# ) * : .%L X a L 3 " 1 &$
+ #$ 3 ! S 1 +(Q
# & >1 M &&N 0 %&A a M H
+ %SW -
$ >1 ? !"
#^ &
# & A " M ) * .
< & >1 ? !"
#A(W 31 #$ % # L X k I X 7 8
# &S B ; e # 6N
#&- g & >1 3 W
Rezaei et al.
(2021)
# &S %!$ 2) <
S Za R PSO
g & >1 ?
Akbari et al.
(2021)
.%
# L X k I # # #W
k .) 2 ! W S # &
+& V >1 4
S CIR c; #=* + >
P Q + # E .L 3 " 1 + >1 ? .& &$ Mn ! 3 " 1 %L 0- #$ > O O \ + 6) . #=* + &
3 " 1 &$ ($ %& Q -
#^
# 3 ;
? . \
) #=* + & >1
Samani et al., 2021
.(
3 " 1 4 <A " M ) * S 1
.^ R & P Q + #$ 3 !
'($ % %&(
(; 3 " 1 %& Q $
# ) * + .% Q !"
4 &X / 3 " 1 !"
3 " 1 ($
# M H
4
0& 1 \& 64 a
+ .
# ) * # %- # ) *
Kardan Moghaddam et al.
(2016)
%&( c&R + 0& 1 cD #$
64
# L X a #W # ) * + .& 3 " 1 5 .%
C 3 M &&N E" #$
% p & >1 @(;
+(Q
7 8 %& Q & >1 ? !"
0& 1 . a / .& 3 " 1 64 C
+& O
4 #^
<A "
!"
D
D
% UV
&
# M H '($
#^
B + 6)
3 " 1 %& Q -
& >1 ? D g $
. #^ !"
) * D
2 ! %
6 / 1170
&$
%R L 1 3 " 1 \ ? A
7 / 410
3 $ # .% ? A&$
CS >1 ?- +
j4 # L X #(!O ) ( E" #=* + D*
$ @8 -;
t W E" % .
S k (; . g #=* + >1 ?
O k I #=*
# T #$
328 3 &A&
% 3 " 1 >1 0 #$
E&
3 " 1 .% !$ E" 31 d e L 1
% 2 ! Q
v "
# L P
1
$
# #
%(
> W 3 " 1 O T
#
&$
&
%
>1
&
# T 1 # T S B+ 9 -D
) Z .%
1 #=* %& a (
# ) *
4
&
#$ !"
.% 3 ! B L #
E&
d e
>1
%&) L # v 2 ! 3 " 1 [*
?a 3 " 1 .$ E" #$ % !$
Mn ! 3 " 1 + & >1 %L % &$ ($
% ! cD &
.& +&
# W
% 1
)
Shemshakli et al.,
(2011
) * D + 6) . S /
?
&R k .) T %& R & >1 .% %&( .^ R & >1 ? !"
($ %& Q B# ) * + d # #W (; %D 2 ! 3 " 1 !"
;
MODFLOW
#&-
# '($ / !" U 3 .& 3 $
3 " 1 ($ 4 <A "
0& 1 3 " 1 \& 64 .
3 " 1 ($ 4 3 .& # #W % S
0& 1 - =
B\& 64
% )
!"
.
) Z 2 E ( E Y4 + ZR (
.%
#&- & >1 3 W
MODFLOW 2005
k #$ % .L
GMS
a v10
# 2 2O . &X 3
B3 " 1 3n&
C= %DH S
E&4 %D 3 " 1 1 %& Q &
<A "
] ) &
# d 3 ; 3 " 1 \ ;
L )
Kayhomayoon et al., 2021
.(
Figure 1. Location of the study area and wells used in water balancing scenarios
Figure 2. Flowchart of the research
3 " 1 S Bd + 9 9
S . < #=* & >1 ? 3n&
3 " 1 # W M W 3n& 9 4 #- D
&
#&- %SW
#S-W Z 3 " 1 g . <
3 " 1 L X B3 " 1 W >1 [* B L X 4 ) w
# 6N 3 .& B(
>1 ? #&A" B D* > X 5 4 ... 3 " 1 & & 0 Q B3 " 1
Z& ! 3 " 1 S + .%
) W #^ 3n& 9 2 ! 1
9 (
P k X 90
- 1389 .&) 1 a
.%L X + >1 d e ? 3n& + 1 # #W
k X +&) B3 " 1 S
1389 > "
# 3 ;
#W . < X k X
#&- k X #
% \ B
: 4 #$ #)
S I
%DH
#&- % I > "
.
# -
;
# /
#&- ZR
& >1 3 W MT 250
× 250 ?
<
. '($
4 9 3 " 1
< & >1 3n&
14
! O #=AR
# 3 ;
.%L X k I %a v =
#S-W 3 " 1 # W & >1
P D 9 GHB
3 " 1 & >1
"!
# M H
< S # \
S 3 .& . # 0) a & >1 ?
# < S Well
CS 3 ; 4 +
!X >1 3 .& . < 3 " 1 W A " d e
$ %& a # #W <
<A "
# 5 H 3 .& + L X /
Recharge
C . < S # # - # #W +& O
# 3 " 1 # +& E $ B 2 ! 3 " 1 Z&)
(^ k ;
# # 3
[* # 6N M H
#
Recharge
3 .& # L X / # - #&A$
#=* 3n& # #W # L 5 >1 CIR # 6N
P a 9 3 " 1 . (;
) S & >1 B+& [* (DEM
1389
# #&) g 3 ; 3 " 1 w
\ .&L ^] : Z&AD
MODFLOW
. <
Table 1. Summary of the annual water balance in the Hashtgerd aquifer (MCM) [Ministry of Energy, 2011]
Area (km2) Recharge
Discharge Volume
changes G.W
Input Infiltration from
heights Surface
flow Return
flow Agri Return
flow Sum
In Discharge from wells ET from
G.W G.W
outlet Sum
out
410.7 96.6 27.3
58.8 106.6
18.3 307.6 306.8
0 20.5 327.3 -19.7
1 j4 31 M ;n8 S
#&- 31 j4 X %) R
% X &o
#&- k I .%L X k I #)
4 I M 5 # #W X %) R
I j4 .%L X k I 3 " 1 &) & % %a
#&- B X %) R X &o
%DH Y 1 4 I
D I
#&- E&4 .%L X k I 1 &
!"#$
%
# & >1 # 8 Y
15
3 " 1 \& CIR E $ 0- &
# !$
3 .&
75 1 3 4 0 &A&
91 - 1390 %
B>1 ? % %$ ) 1393
CIR E $ + .(
35
Z-a % #L Q 0 &A&
76 1 110
% 0 &A&
& >1
>1 3 " $ %& Q + .% # &
\! 0-
# B & >1 ? & 3 B
>T >1 ? &$ %L B !$ Q M o B
E& n B+& % ! B &
250000 A&$
M W S B 1 # - R
&#
!
&
%& 3 L * # B
&4 ] d e E .L B &
% #
&R # ) B !$ & >1 ? !"
1393 # .(
< & >1 ? !"
15
# A 3n$ ] 4 \& CIR %!X $ /
] 4 + 3n$ d . < & >1
1 ? % E $
E .L & >
+ .% d * & >1 ? # 6N CIR 3n& %& Q # ) * #=* # #W 9
S E $ # 3 " 1 >1 ?
.2 W 3 " 1 % T ; e # 6N B &
O >1 ? > >1 >1 ? # &
$ # #W .%L X a < D*
? >1 % E $ 3 .& 2 ! 3 " 1 3."
# & >1
O M H
#=* !$
B: 4 E $ %) R # 10
15 >1 % H
) # L X / BS1
S2
.(S3
+
# #W .& !$ d e !X >1 3 .&
#&- # L X / H 3 .&
- #$
z .X # #W . #- D % & >1 3n&
3 " 1 & >1 ? ; e # 6N 7 8 S
3 3 $ #
"! n&
CIR #$
30 W ; e # 6N Z& 4 0 3 &A&
R BCIR + #$
7 / 8 # 6N 0 3 &A&
# k I 3 " 1 3 ;
. +&& S4
S # #W E" & >1 ?
B W 2 ! 2 ! S W >1 +& V
3 .& # 20 3 &A&
31 .2 W 3 =) 8 0
#
# .& & >1 ? W 3 ;
L S5
#&- & >1 ? M ) * # #W .
7 8 2 ! %
<A "
+ !"
&4 : 4 . > " #=* 3 " 1
S CIR 3 " 1 $ # #W >1 ?
# % E $ B &
# X > "
C$ [* # 3 " 1 $ 3 .& #$
$
> " 3 " 1 $ E& $ { - = B3 " 1
2 .
+& V M ) * d 9 .&
+ .% > " 2 ! W S >1
# 3 ;
# D + !"
M H
) W
2 .% #^ (
%& ' ( #$) * + !$ ,
( #$) - %& ' (/
& >1 C & 4
) #* @ * & >1 C & 4 1
(
)
Kardan Moghaddam et al., 2021
+ .(
>1 ? 4 %& Q 2 &
%&A a #$ % 3 " 1 \ [* &
. .& <A "
) 1 (
3 EL. EL.(1 EL)
EL
>1 C & 4 #* +
B &
B 64 ( ;
%& A*
0& 1
%- .% 64
T & >1 #$
# Z$ # ( ) > A*
3 ;
) 64 ( ; L (
#* ) 2 .(
0& 1 3 .&
%- % 3 " 1 ($ 64
k X & >1 3 .&
+& 4 #$
>1 #AH L Z$ 3 .& # > A*
) > A* # %- &
#* ) ( 3
.(
3 .&
3 ! 3 " 1 ($ %& A*
H 3 .&
W %& Q # %- & >1 E .L ) % #* ) (
4 .(
) 2 (
EL EL
EL
N
n
) 3 (
n
i t n
i
t s EL
W W
W W
1
Pr 1
) ( .
) (
) 3 ( )
(
* 100
pr EL
EL EL
EL R R
r R
& >1 #$ g +
( ) > A* T
NEL
Z$
.%
Wt
k X > A* & >1
B
Ws
#&- & >1
B
WPr
(; 3 & >1
+& 4 & >1 #$ n
a > A*
& >1 #$ * . &X
= > A* T
(Ws – Wt)
H
# L X / C .
+& O
rEL
& >1 2 &
B%L j4
REL
> A* & >1
Rpr
>1
&
! E&4
&
W 3 )
.% ( !"
< # & 3 " 1 4 #- D # #W #$ % & >1 > A* #- D
M ) *
Kardan Moghaddam et al.
(2019)
+ B
d # #W
"
%SW 3 " 1 !
X #&) g # & >1 %!X )
Ministry of Power, 2014
.(
Table 2. Equilibrium scenarios considered in the Hashtgerd aquifer Scenario
S1 S2
S3 S4
S5
5% reduction in the operation of agricultural wells 10% reduction in the
operation of agricultural wells 15% reduction in the
operation of agricultural wells Artificial recharge
along the Kordan River Drinking water supply from
Taleghan Dam and replacement of underground resources
2 & 3 " 1 & >1 M &&N L .% & >1 > A* < g
# L D L \ + M H
D % U %L L + M H
L # #W . *
O 3 " 1 d X &
!
#* ) # L D 5
& >1 > A* (
#- D .
) 5 (
cos sin
B#* +
? F(x)
&
B 2
a0
&
2
j $ L H
?
&
$
&
B
?
.
0 ) %& ' (1 2 3-
1 M -;
&
0 64
&
] ) ^]
)&
+
g
Margat
1970 # L X a
.%
1
&
0 64 3 " 1 E" 5 3
X )1 [*
&
-8 3 " >1 [* # +
&
-8 g
&
<
$ )
Aller, 1985
.(
0& 1 %& Q >1 ? 64
.% P Q + B &
0& 1 \& 64
# 3 ;
&
(
1
&
0 64 >1 ?
&
X )1 # %- + .% #^
2 2O L k I
)&
% 4 >1 ? E
&
\ #=*
a &X
)
Yousefi et al., 2021
.(
4
&
X )1 Z >1
&
@(; 4 % +
[*
6N B D B ) #
&
D B3 " 1 g
&
g l B
L X 4 D B
&
o g
&
P -
%
&
)&
3 " 1 %SW
) 1
&
1 .
&
64 0 3 " 1
a ) W . &X 4
C& = ( /
0& 1 .% #^ 3 " 1 [* 64
Table 3. Classification of the DRASTIC index based on vulnerability
Class Classification
Vulnerability Class
Classification Vulnerability
137-184 High vulnerability
46>
Can be ignored
>185 Very high vulnerability 47-92
Low vulnerability
93-136 Medium vulnerability
[* 1 9 & >1 [* @(; 4
O >1
!
# S4 3 " 1 S 1
#
% l 645 B0& #!= # #W . 1 #- D E" 3 " 1 # 6N 3 .& #=* z
| ) . # #=* R
l 4
3 " 1 g&D B D* # T
t " P - &o g&D j} .
+ &
| )
# S4 B R
#-
+&& 4 .
# / B0& 4 1
g&D 0& #!= #=* ; a t " GIS
.
4 $ 5 67
! ,2 , 1) ( 28 !$ ,
#&- j4 3 " 1 & >1 3 W #&)
9 X %) R I B 2 !
&) & % 4 &&N & >1 3n&
Za R d & >1 +& dn 3 .&
!
#&-
| ) .%L X k I
1 ] }(4 E 1 : B#=* W R +& P B = %&A a M ) *
+&!&4
# 3 ;
%a I ?
#&- j4 . > " X %) R B X %) R 4 B X &o I
>1 Y
I >1 ($ I .
\& z * M H # &
%( # %$ R #$ 3 ! : .%L X k I PEST
1 &) & % 3 .& B3 " 1 W # $ Y
#$
: + j W
+&
#!= .% M -U Z a .&
Y 1 &) & % 4 2 ! 3 " 1
# M H ) Z
3 .% #^ (
# /
#&- * 3 .&
9
#&- & >1 3 .&
.&) 1 !
@ * *
) W
4 X &o B X %) R # (
%DH I 9 . .&) 1 I
14
! O #=AR + .%L X k I #=*
14
O #=AR
O # #W
! B
Z&( E $ 4 3
.& > "
S 1 ) Z .%
4 d X & (
#&- v 3 " 1 31 # =
.% # = 3 " 1 !
Table 4. Groundwater flow simulation error analysis (m) Error parameters Steady
model
Un steady model Calibration Verification
Mean Error -0.185 -0.274 -0.033
Abs Error 0.789 1.28 1.9
RMSE 0.932 1.76 2.4
b) Specific yield (%) a) Hydraulic conductivity (m/day)
Figure 3. Calibration distribution parameters in the Hashtgerd aquifer
Figure 4. Comparison of the aquifer hydrograph simulation results with the observed data
9 -
! $
! ,2 , 1) 7 6 ) , 2 :
+ L X / # #W 3 " 1 ($ 4
+ 3 " 1 %& Q !"
: 4 \ 2 !
W # #)
E&4 &
E&4 + . 1 3 4 &
1401 - 1400
(&Aa / W # + L X / S
#^ : .%L X k I %L $ R
3 .& # 3 " 1 3
/ 16
#&-
S ) 1389 E&4 S ( S ) &
1401 3 ! ( >1 %L M &&N Z&AD .
! O &
3 & d 7 8 9 #&) # & >1
B !"
. .&) 1 2 ! 3 " 1 & >1 > A*
M &&N 2 ! 3 " 1 & >1
L ! $
B # L 6)
! O > A* +&& %SW Z$
O > A* 9 + . 3 " 1
! 4 #- D 3 " 1 #=*
& >1
# M H W ) 5 Z . #- D (
) 5 2 ! 3 " 1 & >1 M &&N (
E&4 g D W g # &
.% E ( > A*
Table 5. Equation for determining the optimal groundwater level in observation wells and aquifers
COD Observation well Equation of optimal G.w level RMSE-m
P1 Mohammad Abad WT=1140-0.25Cos(0.4X)+0.42Sin(0.4X) 0.052
P2 Korosh yeylaghi WT=1151.5-0.69Cos(0.48X)+0.46Sin(0.48X) 0.082
P3 Tankeman WT=1154-0.76Cos(0.5X)+0.85Sin(0.5X) 0.052
P4 Hossein Abad WT=1172-0.04Cos(0.52X)-0.01Sin(0.52X) 0.002
P5 Serah Zaki WT=1189.5+0.45Cos(0.6X)-0.21Sin(0.6X) 0.053
P6 Ghaley Azari WT=1201.6-0.37Cos(0.4X)+0.46Sin(0.4X) 0.047
P7 Arab Abad WT=1181-0.35Cos(0.42X)+0.51Sin(0.42X) 0.038
P8 Namak alan WT=1210.6-0.18Cos(0.53X)+0.49Sin(0.53X) 0.018
P9 Ghasem Abad bozorg WT=1176.6-0.78Cos(0.12X)+0.17Sin(0.12X) 0.018
P10 Ghasem Abad WT=1225.8-0.14Cos(0.43X)+0.27Sin(0.43X) 0.003
P11 Lashkar Abad WT=1224.5-0.33Cos(0.47X)+0.42Sin(0.47X) 0.002
P12 Seyf Abad WT=1175.2-0.31Cos(0.51X)+0.76Sin(0.51X) 0.007
P13 Sanghar Abad WT=1188.2-0.11Cos(0.4X)+0.36Sin(0.4X) 0.034
P14 Morghak WT=1180.3-0.33Cos(0.17X)+0.36Sin(0.17X) 0.005
Hashtgerd Aquifer WT=1178.7-0.21Cos(0.34X)+0.45Sin(0.34X) 0.007
Figure 5. Variation of the aquifer level during five years forecasted along with the optimal groundwater level
- %& ' !$ ,
!"#$
B & >1 ? % E $ # # 6N
T ; e
3 $ # %
# 3 =) 8 #=* > >1 .2 W W
# .%L X a .&) 1 & >1 ? /
($ 4 B.&) 1 + : 9 + . 3 " 1 E $
E $ [* # & >1 ? >1 % B: 4 10 15 # #W (; H
#- D 4 B & >1 M &&N >1 3 .& B<A " 7 * + (; .
E $ .& !$ d e !X
# - : # 6N CIR . 1 %
M ) * 9 3 " 1 % T ; e k I
#=* > %$ 1 # L X 3 .& # -)
30 3 &A&
# #W #$ +&& 0
CIR #$ "! #=* + 645 0 Q 7
/ 8
3 " 1 0 3 &A&
.
CIR .& > >1 ? .2 W 20
3 &A&
+& V 3 =) 8 #=* > & 0 #$ & >1 ? % + .2 W E&
( E"
+ W . a 3 " 1 o
: 4 3 " 1 4 B !"
# W M H )
6 . #^ #- D (
Table 6. Assessment of the aquifer stability in equilibrium scenarios
Observation wells
S1 S2 S3
Reliability Vulnerability Desirability Sustainability Reliability Vulnerability Desirability Sustainability Reliability Vulnerability Desirability Sustainability
Mohammad Abad 1 0 0.95 0.98 1 0.00 0.95 0.98 1 0 0.92 0.97
Korosh yeylaghi 0.48 -0.13 0.80 0.70 0.53 -0.11 0.82 0.73 0.55 -0.13 0.92 0.76
Tankeman 0.15 -0.35 0.61 0.39 0.17 -0.28 0.66 0.43 0.58 -0.21 0.84 0.73
Hossein Abad 0.35 -0.12 0.77 0.62 0.53 -0.09 0.80 0.73 0.77 -0.08 0.91 0.86
Serah Zaki 0.10 -1.00 0.01 0.00 0.15 -0.81 0.13 0.16 0.53 -1.00 0.60 0.00
Ghaley Azari 0.25 -0.09 0.84 0.58 0.37 -0.06 0.86 0.67 0.78 -0.05 0.93 0.89
Arab Abad 0.20 -0.23 0.71 0.48 0.53 -0.19 0.74 0.69 0.55 -0.27 0.88 0.71
Namak alan 0.10 -0.24 0.79 0.39 0.12 -0.20 0.81 0.43 0.33 -0.17 0.91 0.63
Ghasem Abad bozorg 0.17 -0.58 0.35 0.29 0.18 -0.46 0.43 0.35 0.55 -0.47 0.73 0.60
Ghasem Abad 0.12 -0.20 0.79 0.42 0.12 -0.16 0.82 0.43 0.60 -0.14 0.91 0.78
Lashkar Abad 0.17 -0.27 0.62 0.43 0.18 -0.20 0.67 0.46 0.72 -0.15 0.85 0.80
Seyf Abad 0.47 -0.21 0.45 0.55 0.58 -0.16 0.52 0.64 0.83 -0.14 0.78 0.82
Sanghar Abad 0.15 -0.43 0.47 0.34 0.17 -0.34 0.53 0.39 0.70 -0.21 0.78 0.76
Morghak 0.13 -0.58 0.25 0.24 0.15 -0.44 0.34 0.31 0.77 -0.35 0.69 0.70
Aquifer 0.27 -0.32 0.60 0.46 0.34 -0.25 0.65 0.53 0.66 -0.24 0.83 0.72
Continued table 6. Assessment of the aquifer stability in equilibrium scenarios
Observation wells S4 S5
Reliability Vulnerability Desirability Sustainability Reliability Vulnerability Desirability Sustainability
Mohammad Abad 1 0 0.95 0.98 1 0 0.95 0.98
Korosh yeylaghi 0.48 -0.49 0.80 0.59 0.50 -0.46 0.81 0.84
Tankeman 0.15 -1.30 0.61 0.00 0.17 -1.20 0.63 0.62
Hossein Abad 0.33 -0.43 0.77 0.53 0.40 -0.39 0.78 0.76
Serah Zaki 0.10 -3.66 0.00 0.00 0.12 -3.40 0.05 0.30
Ghaley Azari 0.23 -0.33 0.83 0.51 0.28 -0.29 0.84 0.68
Arab Abad 0.20 -0.84 0.70 0.28 0.27 -0.78 0.72 0.70
Namak alan 0.10 -0.88 0.78 0.22 0.10 -0.82 0.79 0.53
Ghasem Abad bozorg 0.17 -2.12 0.34 0.00 0.17 -1.96 0.37 0.57
Ghasem Abad 0.12 -0.74 0.79 0.29 0.12 -0.69 0.80 0.54
Lashkar Abad 0.15 -1.00 0.62 0.06 0.17 -0.90 0.64 0.59
Seyf Abad 0.45 -0.79 0.45 0.35 0.55 -0.71 0.47 0.77
Sanghar Abad 0.13 -1.60 0.46 0.00 0.15 -1.46 0.49 0.57
Morghak 0.13 -2.13 0.24 0.00 0.13 -1.93 0.28 0.48
Aquifer 0.27 -1.16 0.60 0.27 0.29 -1.07 0.62 0.64
3 " 1 4
14 O
!
#$ % P Q + $ R 0- <A " $
P Q + 3 " 1 4 %& Q -S O
! E"
E& 3 " 1 .$
) Z @ * 9 + . 6
M &&N (
3 " 1 4 14
! O #=AR (; %D
.% 3 ! !"
:
#
% 1
($ 4
E $ #$ % P Q + $ R 3 " 1 15
S H O
!$ E"
E&
3 ! 3 " 1 4 3 .& + #O X .
- + 3 " 1 4 3 .&
# %
Z a E .L SW
B %L
3 " 1 0- $ T CIR Z-a
# W 3 " 1 d X & ! $ #$
: # #W 9 + .
#
% 1
(; 3 " 1 d X & B ($
"
!
# M H ) Z
7 .% #- D (
Figure 6. Variation of the quantitative stability index in the observation wells under equilibrium scenarios
Figure 7. Groundwater hydrograph in five equilibrium scenarios
0 ) %& ' !$ ,
; 6 2 3-
< \& \& 4 # #W
0& 1 : 4 < 9 B\& 64 a .&) 1 4 + !"
.%L X >1 @(; 4 #$ 3 !
(; %D 3 " 1 # 6N &
!"
# M H : 9 \&
;
MODFLOW
&&N
% 4 . $
I : # #W .& 3 " 1 &) &
0& 1 ;
64 .%L X a
1 g&D Bl 4 # P - &o g&D 3 "
| ) 9 t " W M ;n8 R
# S4
B ; a #!= . X
# S4 9n$
j4 .%L X k I 3 " 1 0&
0& 1 4 #- D
) Z 64
8 (
# S4 0& 1 #^ \& 64 .%
0& 1 ZH R :
64
# #W 3 " % T E" #$ 3 ! \&
# % %L & >1 @(; 3 T
| ) 0& 1 #=* R
.% T 64
<A " U 3 " 1 !"
0& 1 64 M &&N #$ 3 ! \&
3 " 1 # 6N 3 .& & >1 I {n(; .&O &
&UV
+ O
.
2 2$ ( #$) - !$ ,
:
#
% 1 3 " 1 ($ 4
0& 1 #$ % P Q + $ R 64
E $ #$ S3
15 S H 3 " 1
% E&
.% # $ +
9 +
: # #W
#
% 1 ($ S3
# S4 B3 " 1 4
0& 1 B 64 ( ; )
%!X 64
Z ( 64
) 9 0& 1 ( \& 64
# M H Z
) 10 .% #^ (
Figure 8. Vulnerability index of Hashtgerd aquifer
Figure 9. Aquifer’s stability situation in scenario S3
:
#
% 1 %D 3 " 1 4
(;
3 ! S3
#$
%!X # %- 64 ( ;
64
0& 1
= 64 C$
+ % # -S
31 M &&N & >1 M # #W P Q
#- D k X + .%
&UV 0& 1 # %- 6X 64
%!X
%& R 64
E&
.%
%!X :
% P Q + $ R 64
E" m$ #$
# & >1 3 " 1
(; \ . > A*
+ # S3
M &&N %& Q + . # (S E= -S 0& 1
! .& 3 " 1 64 @& A .
#^ 3 " 1 4 #$ #
.
4 3 T $ R 3 " 1 4 :
" 31 j4 W E" 3 " 1 E
>1 M &&N 3 " 1 W E" .% 3 " 1 (; C$ &
B !"
3 " 1 4
#
%;
-S E" .
# 6N M W #W .& 3 " 1 M
C$
#$ 3 " 1 & E" # %- 3 " 1
%D UV
&
O S
(; B a
# 3 " 1 4 -S (S E= !"
.%
(;
S E $ !"
3 .& # 3 " 1 15
($ %& Q -S 0- H
%& Q -S 0- P Q + #$ % 3 " 1 & >1 @(; ($
. 4 9 +
0& 1 & >1 @(;
\& 64
0& 1 3 .& #I& # L &&N &&N \& 64
: .% $
#
% 1 3 .& #$ 3 !
0& 1 E" 64 # 9n$ 3 " 1 &
# E $ H \ # g 9n$
.%
:
#
% 1 (; #$ % P Q + $ R
0& 1 3 .& !"
5 64
# # #W 3 " 1 C$ <A " Z ; # 31 3
: .%
#
% 1
>1 @(; 4 #$ 3 ! \& 3 " 1 4
&
~a E= 9 R &
6) . C
3
B +
& >1 @(; &&N T %& R #$ =8
# 3 ;
"! 4 @8
. 3 " 1 W E" #$ 3 !
2 !
# 3 ; #=*
.% 4
# A$ 8 B (;
-S 0- !"
<A " R 3 " 1 %& Q ($
+ #$
P Q
MODFLOW
# M H
#&- 3 " 1 [*
-S + #$
& >1 @(; E $ c; 3 " 1 ($ %& Q 0& 1 & >1 @(; . 64
3 .& &&N 0- T 3 3 \&
0& 1 3 " 1 64 6) . T %& R
@& A C 3 0& 1 3 " 1 4
64
\&
#
# X #$ &X a
0& 1
#*= #$ 64 g&D /
3 " 1 4 %&( & >1 ? %& &$
'($ / #$
%&(
B % ; (; 6) .
? !"
& >1 %
# M H Mn ! # L X a
>1 ? + &$ ($
# W . &
< 67 2 =
S Z ! & 3 &) & >1 ?
$ P Q + #$ % ( % k ; E %& (W 0- (&Aa
3 &)
>1
# !$
&4 - 7 8
>1 ? !"
2 ! 3 " 1 9 + . !$ &
CIR a \( #O . 1 #Q R #$
S T Z& 4 8
#W & # E&
300
& 5 0 3 &A&
+ \&
.% % 3 " 1 : 4 9 +
#$ !"
# M H S E $ 7 *
B: 4 10 15 S > >1 .2 W B H
& ; e # 6N 7 8 D* >1 ?
'($ 4 / 3 $ #
3 " 1
0& 1
5 64
#&- : . .&) 1
#
% 1 $ R 3 " 1 ($ 4
M &&N #$ 3 " 1 W E" #$ % P Q + & >1 C$
C$
# %& R +
E&
& E" . 3 " 1 4 3 .& +
#$ 3 " 1 E&
S CIR 3 .& +
%D UV
&
!"
# Y
S E $ j ;
Z( ) E&
# %-
E .L #=* + 4 # @8
E $ #
15 H E&
-S 3 .& +
3 ! 3 " 1 4 C &
.
0& 1 3 " 1 .& \& z 3 " 1 64
C& = #$ 3 ! 0& 1 E" # # 3 " 1
64
& >1 3 W %SW 9 g BC$
E"
3 " 1 >1 C$ @(; #$
# T &
%
# # %- %
@8 1
0&
W E" T 64
3 " 1 C$
0& 1 3 .& + .% 64
:
#
% 1 %&( $ R # ) * +
7 8
&4 k .) !"
3 ! 3 " 1 ($ 4 .& L 8 .
0& 1 64 >1 @(; 4 # # 3 " 1 5 & >1 @(; E $ -S #$ % &
&4
E .L c; !"
0& 1 64 B
@8 6)
.% %&( .^ R & / + 4 %&A a # #W 3
B3 " 1 4
&4 0 @8 +&&
$
.% %&( .^ R & !"
!-
*' 7
1. World Water Assessment Program 2. International Atomic Energy Agency
>? @
•&
W 3 X g ?L € # X
.
>$
1. Aller, L. (1985). DRASTIC: a standardized system for evaluating ground water pollution potential using hydrogeologic settings. Robert S. Kerr Environmental Research Laboratory, Office of Research and Development, US Environmental Protection Agency.
2. Akbari, F., Shourian, M., & Moridi, A. (2021).
Optimum crop pattern planning considering surface and groundwater resources Interaction by coupling SWAT, MODFLOW and PSO.
Iran-Water Resources Research, 56(1), 136- 150. [Persian].
3. Bui, N. T., Kawamura, A., Amaguchi, H., Du BUI, D., & Truong, N. T. (2016).
Environmental Sustainability Assessment of Groundwater Resources in Hanoi, Vietnam by a simple AHP Approach, 72(5), 137-146. 4. Frija, A., Dhehibi, B., Chebil, A., & Villholth,
K.G. (2015). Performance evaluation of groundwater management instruments: The case of irrigation sector in Tunisia. Groundwater for Sustainable Development, 1(1), 23-32.
5. Juwana, I., Perera, B., & Muttil, N. (2010). A water sustainability index for West Java-Part 2:
refining the conceptual framework using Delphi technique. Water science and technology: a journal of the International Association on Water Pollution Research, 62(7), 1641-1652.
6. Lipponen, A. ed. 2007. Groundwater resources sustainability indicators. Paris: UNESCO, 7. Moghaddam, H.K., Banihabib, M.E., Javadi,
S., & Randhir, T.O. (2021). A framework for the assessment of qualitative and quantitative sustainable development of groundwater system. Sustainable Development.
8. Kardan Moghaddam, H., Milan, S.G., Kayhomayoon, Z., & Azar, N.A. (2021). The prediction of aquifer groundwater level based on spatial clustering approach using machine learning. Environmental Monitoring and Assessment, 193(4), pp.1-20.
9. Kardan Moghaddam, H., Kivi, Z.R., Bahreinimotlagh, M., & Alizadeh, M.J.
(2019). Developing comparative mathematic models, BN and ANN for forecasting of groundwater levels. Groundwater for Sustainable Development, 9, 100237.
10. Kayhomayoon, Z., Ghordoyee Milan, S., Arya Azar, N., & Kardan Moghaddam, H. (2021). A new approach for regional groundwater level simulation: clustering, simulation, and optimization. Natural Resources Research, pp.1-21.
11. Kayhomayoon, Z., Azar, N.A., Milan, S.G., Moghaddam, H.K., & Berndtsson, R. (2021).
Novel approach for predicting groundwater storage loss using machine learning. Journal of Environmental Management, 296, 113237.
12. Malmir, M., Javadi, S., Moridi, A., Neshat, A.,
& Razdar, B. (2021). A new combined framework for sustainable development using the DPSIR approach and numerical modeling.
Geoscience Frontiers, 12(4), 101169.
13. Ministry of Power. (2011). Prohibition discharge in Hashtgerd plain. (In Persian) 14. Ministry of Power. (2014). Report of
Reduction program and balance groundwater.
(In Persian)
15. Mortazavi Zadeh, F., & Godarzi, M. (2018).
Evaluation of Climate Change Impacts on Surface Runoff and Groundwater Using HadGEM2 Climatological Model (Case Study:
Hashtgerd). Journal of Water and Soil, 32(2), 433-436. (In Persian)
16. Pandey, V., Shrestha, S., Chapagain, S., &
Kazama, F. (2011). A framework for measuring groundwater sustainability.
Environmental Science & Policy, 14, 396-407.
17. Samani, S., Moghaddam, H.K., & Zareian, M.J. (2021). Evaluating time series integrated groundwater sustainability: a case study in Salt Lake catchment, Iran. Environmental Earth Sciences, 80(17), 1-13.
18. Shahedi, M., & Talebi Hossein Abad, F. (2014).
Introducing some indices to evaluate the balance of water resources and sustainable development.
Journal of Water and Sustainable Development, 1(1), 73-79. (In Persian).
19. Shemshaki, A., Mohammadi, Y., & Bolourchi, M.J. (2010). Investigation on Confined Aquifer & its Role on Subsidence Occurrence in Hashtgerd Plain. Journal of Geoscience, 20 (79), 137-142.
20. Rasaei, A., Sharafati, A., & Kardan Moghaddam, H. (2020). Analysis of groundwater uncertainty in climate change (Case study: Hashtgerd Plain).
Iranian Journal of Ecohydrology, 7(3), 815-827.
21. Rezaei, M., Mousavi, S.F., Moridi, A., Eshaghi, M., & Karami, H. (2021). An Optimal Socialist Cooperative Game Theory Model in Agricultural Sector (Case Study: Dezful-Andimeshk Plain).
International Journal of Nonlinear Analysis and Applications, 12(Special Issue), pp.719-731.
22. Rezaei, M., Mousavi, S.F., Moridi, A., Gordji, M.E., & Karami, H. (2021). A new hybrid framework based on integration of optimization algorithms and numerical method for estimating monthly groundwater level.
Arabian Journal of Geosciences, 14(11), 1-15.
23. Yousefi, H., Omidi, M.J., Moridi, A., & Sarang, A. (2021). Groundwater Monitoring Network Design Using Optimized DRASTIC Method and Capture Zone Analysis. International Journal of Environmental Research, pp.1-11.