ContentslistsavailableatScienceDirect
Electric Power Systems Research
jou rn al h om e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / e p s r
A linearized formulation of AC multi-year transmission expansion planning: A mixed-integer linear programming approach
Tohid Akbari
∗, Mohammad Tavakoli Bina
FacultyofElectricalEngineering,K.N.ToosiUniversityofTechnology,Tehran,Iran
a r t i c l e i n f o
Articlehistory:
Received21October2013
Receivedinrevisedform28March2014 Accepted16April2014
Keywords:
AC-OPF
Linearizedpowerflow
Mixed-integerlinearprogramming Transmissionexpansionplanning
a b s t r a c t
ThispaperpresentsamethodinexpansionplanningoftransmissionsystemsusingtheACoptimalpower flow(AC-OPF).TheAC-OPFprovidesamoreaccuratepictureofpowerflowinthenetworkcomparedto theDCoptimalpowerflow(DC-OPF)thatisusuallyconsideredintheliteraturefortransmissionexpan- sionplanning(TEP).WhiletheAC-OPF-basedTEPisamixed-integernonlinearprogrammingproblem, thispapertransformsitintoamixed-integerlinearprogrammingenvironment.Thistransformationguar- anteesachievementofaglobaloptimalsolutionbytheexistingalgorithmsandsoftware.Theproposed modelhasbeensuccessfullyappliedtoasimple3-buspowersystem,Garver’s6-bustestsystem,24-bus IEEEreliabilitytestsystem(RTS)aswellasarealisticpowersystem.Detailedcasestudiesarepresented andthoroughlyanalyzed.SimulationsshowtheeffectivenessoftheproposedmethodontheTEP.
©2014ElsevierB.V.Allrightsreserved.
1. Introduction
Transmissionexpansionplanning(TEP)addressestheproblem ofaugmentingtransmissionlinesofanexistingtransmissionnet- work;theobjectiveistooptimallyserveagrowingelectricload whilesatisfyingasetofeconomical,technicalandreliabilitycon- straints[1].Ingeneral,theTEPisconsideredasmakingastochastic decisiononwhen(thetime),where(thelocation),andwhichtypes oftransmissionlinestobeinstalled.In[2,3],aclassificationscheme categorizesthesubjectspublishedinthisarea.
A mixed-integer linear programming (MILP) is used in [4], for the TEP problem that considers power losses. We suggest a linearization methodfor theAC-TEPbased onthemethodin [4]. However, both active and reactive powers are included in ourproposedformulation.In[5],amulti-yearTEPmodelispre- sentedusingadiscreteevolutionaryparticleswarmoptimization approach.Aguadoetal.[6],presentanovelTEPmodelthatcon- sidersa multi-yearplanninghorizonina competitiveelectricity market.BoththeTEPand generationexpansionplanning(GEP) problemsareanalyzedtogetherin[7,8].Also,transmissionswitch- ing(TS)isinvestigatedin[9]fortheTEPshowingthattheTScould improvethecapacityexpansionplanningmodelaswellasreduc- ingthetotalplanningcost.Ameta-heuristicandholisticapproachis
∗Correspondingauthor.Tel.:+9809125179374;fax:+982188462066.
E-mailaddresses:[email protected],[email protected](T.Akbari).
presentedin[10]fortheTEPwhichhasbeentestedonarealistic powersystem.In[11],ascenario-basedmulti-objectivemodelis presentedformulti-stageTEPwherethenon-dominatedsorting geneticalgorithm(NSGA-II)is usedtoovercomethedifficulties insolvingthenon-convexmixed-integeroptimizationproblem.A multi-objectiveframeworkispresentedin[12]fortheTEPindereg- ulatedenvironment.Recently,intermittentenergyresourceshave beenexperiencingarapidgrowthinpowergenerationaroundthe world.Therefore,newchallengesareintroducedtointegratethe renewableenergysources(RES)tothepowergrid.Therearemany publishedpaperswhichfocusonthisnewlymainissue[13–15].
Theplanner ofpowersystemshoulddeal withmany uncer- tainties during the planning process such as load uncertainty, uncertaintyinprices,marketrulesandetc.AmultistageTEPprob- lem includingavailable transfer capability (ATC) is modeled in [16]thattakesloaduncertaintyintoaccountbyconsideringsev- eralscenariosgeneratedbyMonteCarlosimulation. In[17],the TEP is studied by considering the load uncertainty using ben- dersdecomposition.Sincethispaperisfocusedontransforming a mixed-integer nonlinear programming (MINLP) probleminto a MILP, uncertainties have not been considered in this paper.
However,thepresentedmodelcaneasilybeextendedfortaking uncertaintiesintoaccount.
Thesurveyed literatures usetheDC-OPFfor solvingtheTEP problemwhichisnotcompletelysuitableduetoignoringreactive power.However,therehavebeensomepublishedpaperswhich usetheAC-OPFtosolvetheTEPproblem[18–21].Thispaperpro- posesanapproachfortransmissionplanningbasedontheAC-OPF, http://dx.doi.org/10.1016/j.epsr.2014.04.013
0378-7796/©2014ElsevierB.V.Allrightsreserved.
Nomenclature Indices
g indexofgenerators i,j indicesofbuses l indexoflines
m indexofblocksusedforpiecewiselinearization t indexofsub-periods(times)
Sets
B setofallbuses
CL setofallcandidatelines
CLi setofallcandidatelinesconnectedtobusi EL setofallexistinglines
ELi setofallexistinglinesconnectedtobusi G setofallgenerators
SP setofallsub-periods Constants
APmaxL.I maximumapparentpowerflowoflinel I interestrate
ICl investmentcostofcandidatelinel
M numberofblocksusedforpiecewiselinearization nc numberofcandidatelines
ng numberofgenerators
PD,it activepowerdemandatbusiintimet QD,it reactivepowerdemandatbusiintimet PG,gmin minimumactivepowerofgeneratorg PG,gmax maximumactivepowerofgeneratorg QG,gmin minimumreactivepowerofgeneratorg QG,gmax maximumreactivepowerofgeneratorg
|Vimin| minimumofthevoltagemagnitudeatbusi
|Vimax| maximumofthevoltagemagnitudeatbusi Yij0,Yij admittanceoflineijfortheexistingandcandidate
lines,respectively.(Yij0=G0ij+jB0ij,Yij=Gij+jBij)
˛ij,m slopeofthemthblockofthevoltageangledifference betweencorridoriandj
ij maximumofeachblockwidthforcorridoriandj ref voltagephaseanglefortheslackbus(ref=0) aconstanttomakeinvestmentandoperationcost
comparable
ij,,ωij, 1,ij, disjunctiveparameters Variables:
ICt investmentcostintimet OCt operationcostintimet OF objectivefunction
PG,gt activepowerofgeneratorgintimet PL0
i→j,lt activepowerflowofexistinglinelfrombusitobus jintimet
PLi→j,lt activepowerflowofcandidatelinelfrombusito busjintimet
QG,gt reactivepowerofgeneratorgintimet QL0
i→j,lt reactivepowerflowofexistinglinelfrombusito busjintimet
QLi→j,lt reactivepowerflowofcandidatelinelfrombusito busjintimet
ult binaryvariablerelatedtothecandidatelinesintime t
|Vit| voltagemagnitudeatbusiintimet
ij,mt widthofthemthangleblockofcorridoriandjin
timet
+ijt,−ijt positivevariablesusedsoastoeliminatetheabso- lutefunction
it voltageangleatbusiintimet
providing a more accurate picture of both active and reactive powerflowsintheexpandedpowernetworkinthefutureplanning horizon.ThenoveltyofthispaperistheintroductionofaMILPfor- mulationusingtheAC-OPFapproachsoastosolvetheexpansion planningproblemoftransmissiongrid.Inbrief,anAC-OPF-based TEPisformulated,and linearizedaround theoperating pointin ordertoderiveaMILPproblem.SolvingaMILPproblemisamature technology,wheretheMILPsolverscanbeembeddedinmanytools and applications.Moreover,somenumerical examplesare pre- sentedinwhichsimulationsarediscussedaccordingly.Thewhole linearizationprocessprovidedinsubsection“B”ofsection“II”that convertsthenon-linearACapproachtoaMIPproblemisnoveland hasnotbeenpreviouslypresented.Thispapercontributestothe TEPbyapproximatingthesineandcosinefunctionsinpowerflow equationsbytheirTaylor’sseries;then,thequadraticfunctionis modeledusingpiecewiselinearfunctions.Moreover,theinequal- ityconstraintsforapparentpowersofexistingandcandidatelines aretransformedintoasetoflinearconstraints.Numericalresults confirmthecontributionoftheproposedmethodincomparison withtheconventionalsolutions.Sincetheproposedoptimization problemforsolvingtheTEPislinear,theglobaloptimalsolution canbeobtainedeasilybytheavailablesoftware.Inaddition,out- comesobtainedbytheproposedmethodaremoreaccurate(due totakingreactivepowerintoaccount)thanthoseoftheavailable conventionalmethods(duetoignoringreactivepowerbyusing theDC-OPFforsolvingtheTEP).Itshouldbeemphasizedthatthe ISO(independentsystemoperator)isresponsiblefortransmission expansionplanning;theISOaimsatminimizingtheinvestment costplusthetotalpaymenttothegeneratingcompanies.
2. AnalysisandformulationoftheTEP
Heretheproposedmethodisformulated,presentingtheTEP basedontheAC-OPFusingaMINLPthatwillbetransformedintoa MILP.
2.1. TheAC-OPF-basedTEPformulation
Theobjectivefunctionistheinvestmentcost(IC)whichisthe constructioncostofnewlinesandtransformers(ifany)plusthe operationcost(OC).TheOCincludesthetotalcostofgenerationin thepowersystemunderstudy.UsinganACpowerflow,objective functionoftheTEPcanbeformulatedasfollows:
MinOF=
t∈SP
(1+I)−t
⎛
⎜ ⎜
⎜ ⎜
⎝
ncl=1
ultICl
Investmentcostintimet(ICt)
+
ng g=1CgPG,gt
Operationcostintimet(OCt)
⎞
⎟ ⎟
⎟ ⎟
⎠
(1)Theobjectivefunction(1)issubjectedtothefollowingequalityand inequalityconstraints;
Equalityconstraints:
PG,it−PD,it=
l∈ELiPL0
i→j,lt+
l∈CLiPLi→j,lt ∀i,j∈B,∀t∈SP (2)
QG,it−QD,it=
l∈ELiQL0
i→j,lt+
l∈CLiQLi→j,lt ∀i,j∈B,∀t∈SP (3)
P0L
i→j,lt =|Vit|2Gij0−|Vit||Vjt|×(G0ijcos(it−jt)
+ B0ijsin(it−jt)) ∀i,j∈B,∀l∈EL,∀t∈SP (4)
PLi→j,lt =ult(|Vit|2Gij−|Vit||Vjt|×(Gijcos(it−jt)
+ Bijsin(it−jt))) ∀i,j∈B,∀l∈CL,∀t∈SP (5)
QL0
i→j,lt =|Vit|2B0ij−|Vit||Vjt|×(G0ijsin(it−jt)
+ B0ijcos(it−jt)) ∀i,j∈B,∀l∈EL,∀t∈SP (6)
QLi→j,lt =ult(|Vit|2Bij−|Vit||Vjt|×(Gijsin(it−jt))
+ Bijcos(it−jt))) ∀i,j∈B,∀l∈CL,∀t∈SP (7)
Inequalityconstraints:
PminG,g ≤PG,gt≤PG,gmax ∀g∈G,∀t∈SP (8) QG,gmin≤QG,gt≤QG,gmax ∀g∈G,∀t∈SP (9) (PL0
i→j,lt)2+(QL0
i→j,lt)2≤(APL,lmax)2 ∀l∈EL,∀t∈SP (10)
(PL
i→j,lt)2+(QL
i→j,lt)2≤ult(APL,lmax)2 ∀l∈CL,∀t∈SP (11)
|Vimin|≤|Vit|≤|Vimax| ∀i∈B,∀t∈SP (12) u1(t+1)≥u1t ∀l∈CL,∀t∈SP (13) While(1)showstheobjectivefunction,i.e.ICplusOC,(2)and (3)representactiveandreactivepowerbalanceateachbus,respec- tively.Constraints(4)and(5)indicateactivepowerflowingthrough existingandcandidatelines,respectively.Similarly,constraints(6) and(7)introducereactivepowerflowsthroughexistingandcan- didatelines,respectively. Superscriptindex 0isused todenote theexistinglines.Activeandreactivepowergenerationlimitsof thegeneratorsarerepresentedby(8)and(9).Transmissionpower limitsareshownby(10)and(11)forboththeexistingandcan- didatelines,respectively.Voltagemagnitudelimitsareshownby (12).Eq.(13)impliesthatifacandidatelineisconstructedwithin thesub-periodt,it isconsideredasanexistinglineinthenext sub-period.
Theabove-formulatedproblemisaMINLPproblemduetothe nonlinearitiesin(4)–(7)aswellasin(10)–(11).Itshouldbenoted thattheobtainedsolutionforthemodel(1)–(12)isapracticalfeasi- blelocaloptimumsolutionthatmeetstherequirementsofISO;but, notaglobalone.Thisisduetothenon-convexitynatureofthefor- mulatedproblem.However,whenonetriessolvinganon-convex MINLPoptimizationproblem,therewillbenoguaranteetoobtain theglobaloptimumsolution.Thisrestrictionremainsunresolved forthemostpracticaloptimizationmodelsinacomplexsystem [22,23].
Hence,theproposed MINLPproblemis transformed intoan MILPtoavoidanylocaloptimalsolutions.ThisobtainedMILPfor- mulationisanapproximatefortheoriginalACformulation.Further, theglobaloptimal solutionofthe MILPformulation caneffica- ciouslybeobtainedbyexistingsolvers.Whiletheresultantsolution isnotnecessarilythesameastheglobaloptimalsolutionofthe
MINLPformulation(hardlyattainableandnoguaranteetoreach it),theMILPsolutionremainsclosetotheglobalsolutionoforigi- nalMINLPproblemdependingonthenumberofblocksinmodeling thecircleorquadraticterms(Morn).
2.2. LinearizationofthepresentedMINLP
HereitisintroducedthelinearizationoftheMINLP,presented by (1)–(12),around thenormal operating point. Let usassume thephasedifferencebetweenthevoltagesatbothendsofevery existing orconstructedlines issmall enough;this implies vali- dationoffirstorderapproximationofsineand cosinefunctions intheirTaylorseries.Moreover,assumethevoltagemagnitudes arenearly1p.u.forallbuses.Theseassumptionsarepractically trueundernormaloperatingcondition,maintainingthesystemfar frominstabilityandothersecuritylimits.Basedontheaforemen- tionedassumptions,(4)–(7)canbere-arrangedbysubstitutingsine andcosinefunctionsintheirTaylorseriesexpansionaboutzero.
In thefollowing formulation,just forthesake ofsimplicity,we havedroppedthesubscriptt.Itcanbeaddedtothecorresponding variablesorparametersifreferringtosub-periodt.
PL0
i→j,l=G0ij(1−cos(i−j))−B0ijsin(i−j)
∼=G0ij
(i−j)2 2−B0ij(i−j) ∀i,j∈B,∀l∈EL (14)
PL
i→j,lt=u1(Gij(1−cos(i−j))−Bijsin(i−j))
∼=u1
Gij
(i−j)2 2−Bij(i−j)
∀i,j∈B,∀l∈EL (15)
QL0
i→j,lt=−B0ij(1−cos(i−j))−G0ijsin(i−j)
∼= −B0ij
(i−j)2 2−Gij0(i−j) ∀i,j∈B,∀l∈EL (16)
QLi→j,l=u1(−Bij(1−cos(i−j))−Gijsin(i−j))
∼=u1
−Bij
(i−j) 2 2−Gij(i−j)
∀i,j∈B,∀l∈CL (17)
Then,thesecondorderfunctionsin(14)–(17)canbelinearized by considering 2M piecewise linear blocks as shown in Fig.1, approximatingtheexistinglinelbetweencorridorsiandjasbelow:
(i−j)2=
M m=1˛ij,m0ij,m, ∀i,j∈B (18)
|i−j|=
M m=1ij,M0 , ∀i,j∈B (19)
0≤ij,m0 ≤ ij, ∀i,j∈B (20)
˛ij,m=(2m−1) ij m=1,...,M∀i,j∈B (21) where˛ij,mand0ij,maretheslopeandthevalueofthemthblockof phasedifferencebetweencorridorsiandj,respectively.Theslope canbecalculatedaccordingto(21).Thesameconstraintswillbe appliedtothecandidatelines.However,(20)shouldberewritten forcandidatelinesasfollow:
0≤ij,m≤ ij+(1−u1)ij ∀i,j∈B (22)
Fig.1.Piecewiselinearmodelingoflossfunction.
Thedisjunctiveparameterijshouldbelargeenoughtoavoid restrictionofthewidthofthemthphasedifferencebetweenthe twonodesiandj.In(22),ifacandidatelinelisconstructed,the blockwidthwillbeboundedabovebyij;otherwise,forasuffi- cientbignumberij,theaboveconstraintwillbenonbinding.An appropriatevalueforijcanbe2.
Thenonlinearity in(19)(the absolutefunction)canbeelim- inatedbyintroducingtwo extrapositive variablesij+and −ij as follows:
|i−j|=ij++ij− ∀i,j∈B (23) i−j=ij+−ij− ∀i,j∈B (24) +ij ≥0and−ij ≥0, ∀i,j∈B (25) Applying the above linearization method to (14)–(17) will removethenonlinearitiesinboth(14)and(16).However,thenon- linearitiesin (15)and (17)willstill remaininplace duetothe productofdiscreteandcontinuousvariables(u1byi).Thesenon- linearitiescanbeeliminatedbyintroducingconstantlargeenough numbersωijandijasfollows:
−(1−u1)ωij≤PLi→j,l+Bij×(i−j)
−Gij
M m=1˛ij,mij,m
2 ≤(1−u1)ωij, ∀i,j∈B,∀l∈CL (26)
−(1−u1)ij≤QL
i→j,l+Gij×(i−j)
−Bij
M m=1˛ij,mij,m
2 ≤(1−u1)ij, ∀i,j∈B,∀l∈CL (27) Appropriatevaluesforωijandijcanbeselectedasbelow:
ωij=22Gij−2Bij (28)
ij=2Gij−22Bij (29)
It should be emphasized that the above linearization tech- nique adds three sets of continuous variables to the problem, 0ij,m(ij,m),+ijand−ij (M+2variables foreach linebetweencor- ridorsiandj).Further,nonlinearityin (10)canberemovedby
introducing the following n equations (see Appendix for more detailsandexplanations):
sin
360◦kn
−sin
360◦n (k−1)
PL0
i→j,l
−
cos
360◦kn
−cos 360◦n (k−1)
QL0i→j,l
−APL,lmax×sin
360◦n
≤0 k=1,...,n,∀l∈EL (30)
Thecorrespondingequationforcandidatelinescanalsobelike:
u1
sin
360◦kn
−sin
360◦n (k−1)
PL
i→j,l
−
cos
360◦kn
−cos
360◦n (k−1)
QL
i→j,l
−APL,lmax×sin
360◦n
≤0, k=1,...,n,∀l∈CL (31)
Itcanbeseenthat(31)isstillnonlinearduetothemultiplication ofdiscreteandcontinuousvariables(productofu1 byPLi→jland QLi→jl).Inordertomake(31)linear,asecondstepshouldbetaken furtherbyusingthefollowingthreerelationships:
−u1× 1≤PLi→j≤u1× 1, ∀l∈CL (32)
−u1× 1≤QL
i→j,l≤u1× 1, ∀l∈CL (33)
sin
360◦kn
−sin
360◦n (k−1)
PLi→j,l
−
cos
360◦kn
−cos 360◦n (k−1)
QLi→j,l
−APL,lmax×sin
360◦n
≤0 k=1,...,n,∀l∈CL (34)
Asuitableamountfor 1canbethemaximumapparentpower forlinel,i.e.APmaxL,I .Ifcandidatelinelisselected,(34)restrictsactive andreactivepowerflowsuchthatconstraints(32)and(33)willbe nonbinding.Otherwise,constraints(32)and(33)willlimitactive andreactivepowerstozerosothat(34)willbenonbinding.Note thatsin(360◦/n)isalwayspositive(n≥4).Thus,linearizationof(10) and(11)requires usingnlinearequationsforeach existingline alongwithn+2equationsforeachcandidatelineinsteadofusing oneequation.Therefore,asthenumbernbecomeslarger,thesearch spacegetslargeraswell.Asasolutionforthiscase,firstthemethod canbeappliedtothehigh-voltagetransmissionlinesinorderto reducethesearchspace;second,theplanningcanbeconducted forlowervoltageleveltransmissionlines.
3. Numericalexample
Theproposedmodelhasbeensuccessfullyappliedtofourdiffer- entpowersystems;asimple3-buspowersystem,Garver’s6-bus testsystem,IEEE24-busreliabilitytestsystems(RTS)andIranian 400-kVnetwork.ThisproblemwassolvedonaPCrunningwith Core2 Duo CPU, clockingat2.00GHzand 1GB RAM. Theused softwareisCPLEX12.2.0.2underGAMS23.6.3(GeneralAlgebraic ModelingSystem)[24].Cplexisacommonlyusedsolvertosolve theMIPproblemswhichcanefficaciouslygettotheglobaloptimal solution.Thissolverusesthebranchandcutalgorithm.
Fig.2.Asimple3-bustestsystem.
3.1. Firstcasestudy:asimple3-bustestsystem
First,averysimple 3-buspowersystemisassumed toshow theeffectiveness ofthemethod asshown in Fig.2.The capac- ity ofall existingand candidate transmissionlines is supposed tobe220MVA.Admittanceofallexistingandcandidatelinesis assumedtobeYij0=Yij=15+j(−60)Investmentcostofcandidate lines1,2and3are7×106,8×106and9×106,respectively.Offer coefficientsofgenerators1and2areequalto20$/MWhwhichare locatedatbuses1and2,respectively.Demandatbus3isconsid- eredtobePD+jQD=600+j100.Themaximumactiveandreactive powerofgeneratorsare320MWand64MVAr.
Hereit iscompared thesimulationsfortheDC-TEP, theAC- TEPandthelinearizedAC-TEP(LAC-TEP)approach.Forthesake ofsimplicity,theobjectivefunctionisassumedtobetheinvest- mentcostoflines,excludingtheoperationcostofgenerators.Inthe AC-basedapproach,thevoltagemagnitudesofbusesarelimited to0.95and 1.05p.u.FortheAC-TEP,theobjectivefunction(OF) willbe1.7×107andcandidatelines2and3areselectedasthe optimalsolution.Theactivepowergenerationofunits1and2are 320MWand283.4MW,respectively.FortheLAC-TEPmethod,the OFisthesameasthatoftheAC-TEPandactivepowergeneration ofunits1and2are320MWand293.5MW,respectively.However, theresultsfortheDC-TEParedifferentfromthoseofboththeAC- TEPandtheLAC-TEP;theOFis1.5×107andcandidatelines1and 2isselectedasoptimalsolution.Units1and2generate320MW and280MW,respectively.Table1comparesthesimulationsforall thethreemethods.
3.2. Secondcasestudy:Garver’s6-bustestsystem
TheGarvertestsystemisdepictedinFig.3[4].Ithassixbuses, 15candidatebranches,andatotaldemandof760MW.Generators, loadsandlinesdatacanbefoundin[4].Reactivepowerdemandis assumedtobe20%ofactivepowerdemandforeachbus.Maximum
Table1
Simulationdataforthe3-bustestsystem.
Statisticdata Method
DC-TEP AC-TEP LAC-TEP
Numberofblocksofequations 11 15 26
Numberofblocksofvariables 6 10 14
Numberofnon-zeroelements 325 346 4087
Numberofsingleequations 143 129 1788
Numberofsinglevariables 45 86 464
Numberofdiscretevariables 3 3 3
Executiontime(s) 0.015 0.016 0.187
Fig.3. Garver’s6-bustestsystem.
reactivepowerforeachgeneratorisassumedtobeonethirdand onefifthofitsgeneratedmaximumactivepowerunderlaggingand leadingoperatingconditions,respectively.
First,itisassumedthatn=16fortheLAC-TEP(i.e.a16-sidedcon- vexregularpolygonisconsideredtomodelthecircleasdescribed inAppendix)and=0(i.e.theobjectivefunctiontakesnooper- atingcostintoaccount).Theexecutiontimewas0.234s.Table2 showssimulationdatareportedbytheGAMS.Thevalueofobjec- tivefunction,i.e.theinvestmentcost,is$5.14×108.Simulation resultsshowlines1,2,3,5,6,7,9,10,11,12,14and15should bebuiltwithintheplanninghorizon.Generators1,2and3will produce150MW,360MWand291MWtogetherwith7.6MVAr,
−24.0MVArand −29.2MVAr,respectively.Thismeansthetotal powerlossesforthesystemisabout41MWor5.12%ofthetotal activepowergenerations.
Second,thenumberofsidesoftheregularpolygonwassettobe equalto8.Theproblemwillbecomeintegerinfeasibleinthiscase.
Thisoccursbecausewhenthenumberofsidesoftheregularpoly- gon(n)becomessmaller,transmissionofbothactiveandreactive powersbecomemorelimitedthroughthelines.Thus,thenumber ofsideswassettobeequalto32(n=32),resultingin$4.36×108 fortheobjectivefunctionandcandidatelinestobebuiltwere3,5, 6,7,9,10,11,12,14and15.Thisshowsthatsometransmission Table2
SimulationdatafortheGarver’s6-bussystem.
Numberofblocksof equations
26 Numberofsingle equations
19,483 Numberofblocksof
variables
14 Numberofsingle variables
7018 Numberofnon-zero
elements
41,872 Numberofdiscrete variables
15
Table3
LMPofbusesofGarver’s6-bussystem.
Bus LMP($/MWh)
1 33.3
2 34.4
3 30.8
4 34.9
5 34.4
6 30.0
Table4
Candidatelinesdata.
Candidatelines Capacity(MVA) Reactance(p.u.) Investmentcost($106US)
Name From To
CL1 1 4 175 0.015 7.72
CL2 2 7 175 0.021 10.82
CL3 7 10 175 0.020 10.29
CL4 9 10 175 0.016 8.24
CL5 11 15 500 0.022 11.13
CL6 11 20 500 0.024 12.35
CL7 11 24 500 0.011 5.66
CL8 13 20 500 0.011 5.66
CL9 14 19 500 0.017 8.76
CL10 19 21 500 0.014 7.21
CL11 20 22 500 0.014 7.21
Table5
Resultsfordifferentvalueof.
(h) IC($) Candidatelinestobebuilt OC($/h) OF($)
5×8760 7.21×106 CL10 123,892.876 6.1475×107
15×8760 1.442×107 CL10,CL11 118,128.524 1.6964×108
25×8760 2.008×107 CL8,CL10,CL11 113,884.071 2.6949×108
linesareoperatingattheircapacitylimits.Thenumberofnon-zero elementsandsingleequationsare60,304and28,699,respectively.
OthersimulationdatafortheAC-OPFandtheDC-OPFarethesame asthoseoflistedinTable2.ExecutiontimereportedbytheGAMS wasabout0.296s.
Third,for n=64 in the LAC-OPF, the objective function will become$4.34×108andcandidatelinestobebuiltwere2,3,5,6, 9,10,11,12,14and15.Forn>64,simulationsremainunchanged.
Therefore,oneshouldbecarefulindeterminingthenumberofseg- mentsusedtomodelthecircle.UsingtheAC-TEPwillresultinthe constructionofthesamelinesasthoseoftheLAC-TEPundern=64 withtheexceptionofbuildingline13insteadofline12;theobjec- tivefunctionfortheAC-OPFbecomes$5.29×108thatisbiggerthan thatoftheLAC-OPF.
Assuming=10×8760,1theICandOCareequalto$4.34×108 and $17,398.7per hourfor n=64. This meansthesame candi- datelinesareconstructedwhenconsideringoperationcost.The Lagrangianmultiplierofactivepowerbalanceequationorloca- tional marginal price (LMP) for bus numbers 1–6 are listed in Table3.2 ItshouldbehighlightedthattheseLMPsareobtained afterfixingthebinaryvariablesofcandidatelinestotheircorre- spondingoptimalvaluesoftheoptimizationproblem. Notethat thegeneratorconnectedacrossbus6isthemarginalgenerator.
Table3showsLMPsaredifferentatthosebusessincepowerlosses arenotignored.Itshouldalsobenotedthatthereisnocongestion intransmissionlines.
3.3. Thirdcasestudy:theIEEE24-busRTS
Thewell-known 24-busRTS is used to applythe presented method.ParametersofthecandidatelinesarelistedinTable4, whileresistancesoflinesareassumedtobeonefifthoftheircor- respondingreactances.DetaileddataandtopologyoftheRTScan befoundin[25].Inordertoputthetransmissionlinesundermore stress,activepowerdemandsandmaximumactivepowergener- ationcapacitiesaremultipliedby2foreachgenerator.A32-sided
1 Pleasenotethat8760isthenumberofhoursperyear.
2 ItistobenotedthattocalculateLMPs,theobjectivefunctionhasbeenmodified toincludeonlythegenerationoffers(orequivalentlyoperatingcost)i.e.investment costmustberemovedfromtheaforementionedobjectivefunction.
regularpolygonisusedtomodelthecircle(seeAppendixformore details).
Theparameterwassettobe25×8760.Theexecutiontime was3.32seconds.SimulationsshowfortheLAC-OPFthatlines8, 10and11shouldbebuiltwithintheplanninghorizon.Generating units2,10,11,14,19,20,31and32willproduceactivepowers of29.4MW, 145.5MW, 0MW, 12.7MW, 15.6, 0MW, 216.9MW and 0MW, respectively;otherunitswilloperateat theirmaxi- mumcapacities.Table5indicatestheresultsforvarious,showing considerablechanges in resultswhen varies. Using a DC-TEP approachforthiscaseshowsthatlines8and10areconstructed.
This can be justified as reactive poweris neglected in the DC approach, and therefore more transmission line capacities are available;resultinginlowerrequiredinvestmentcost.Also,inan AC-TEPapproachthecandidatelines5,8,9and10areselectedto bebuiltwhichexplicitlyshowsthattheobtainedsolutionissub- optimalduetothenon-convexitynatureoftheAC-OPFequations.
3.4. Fourthcasestudy:Iran400-kVsimplifiednetwork
Asthelasttest,arealisticpowersystemischosen;i.e.,Iranian 400-kVpowersystem.Thetopologyanddataofthenetworkcanbe foundin[11].Powerfactorofloadsissettobe0.9asatypicalvalue.
Insteadofconsideringasingleperiodasinpreviouscasestudies,a dynamicapproachisselectedforthiscase.Todoso,aninterestrate of8%isregarded.Impedancesofthree-bundledandtwo-bundled 400-kVoverheadlinesareconsideredtobe0.0192+j0.288/km and0.0288+j0.3296/km,respectively.Also,annualloadgrowth isconsideredtobeequalto5%inaverage.Thesystemiscomprised of52buses,28generatingunitsand27candidatelines.Aplanning horizonof16yearsisconsideredwhichisdividedintotwosub- periods.
Theproblemwasrunfordifferentvaluesofn.Simulationshave beenreportedinTable6.Asitcanbeseenfromtheobtainedresults, theconsumedtimestoreachtheoptimalsolutionwillincreasesig- nificantlybyincreasingthenumbern.Toreducethesolutiontime, thenumberncanbedifferentforvariouslines.Itclearlydependson theoperatingpointofactiveandreactivepowerforeachlineinthe correspondingP–Qplane.Thenumbernhavetobebigforhighly congestedand heavilyloadedlines;but,ncanbesmallwithout losinganygeneralityfor thelinesoperatingfarfromtheirlim- its.SolvingtheTEPusingsimpleDCpowerflowmightbehelpful toidentifythemostcongestedlinesorareas.Inthemeanwhile,
Table6
ResultsfromdifferentcasesforIran400-kVpowersystem.
Numberofsingle equations/continuous variables/discretevariables
Elapsedtime (min)
M=10 n=8
3,910,760/1,828,279/54 3.38
M=10 n=16
5,122,152/1,828,279/54 3.72
M=10 n=32
7,544,936/1,828,279/54 6.43
M=10 n=64
12,390,504/1,828,279/54 43.14
Table7
OptimalsolutionsforIran400-kVpowersystem.
Candidatelinestobebuilt
Sub-period1 1–49,4–50,7–10,7–23,7–24,24–29,49–50,23–32 Sub-period2 4–50,7–10,7–12,7–24,10–12,13–14,18–19,39–40,42–43
selectingthenumbernwouldbecomemoreeffectivebyexperi- ence.Thesamecandidatelinesareselectedtobebuiltforn=32and n=64,whiletheresultswillbedifferentforsmallervalueofnwhich verifythatthequalityofthemethodologydependsuponthenum- bern.Table7showsthatwhichcandidatelinesshouldbeaddedto thepowersystemduringeachsub-period.Asitcanbeseenfromthe table,themostlinesconnectedtobus7areneededtobereinforced orconstructedbecausethemainelectricitydemandislocatedat bus7.Alsoitistobenotedthattheselinesarehighlycongested andthereforeoneshouldcareaboutselectingthenumbernfor theselines.Inaddition,anintegratedframeworkforsimultaneous reactivepowerplanningandtransmissionexpansionplanningis suggested.Thismightleadtomoreoptimalplaninpowersystem andlesspowerlosses.Moreover,theuncertaintyrelatedtothegen- erationcapacityexpansionplanninganditseffectonTEPhaveto beaddressedpreciselyforsuchareallarge-scalepowernetwork.
4. Conclusion
Inthispaperanewexpansionplanningmodelwasformulated andappliedtoseveralpowersystems.Thepresentedmethoduses theAC-OPFforsolvingtheTEPprobleminorder togeta more accurateandrealpictureofbothactiveandreactivepowerflow inthenetwork.TheAC-OPF–basedTEPisanMINLPthatistrans- formedintoanMILPbytheproposedmethod.Anewlinearization methodispresentedtotransformthenonlinearACmodeltoalinear one.Theformulatedproblemthencanbesolvedbytheavailable commercialMILPsoftware.Moreover,duetothelinearityofthe proposedformulatedproblem,theglobaloptimalsolutionisguar- anteedtobefoundbymanyexistingalgorithmsandsoftwarewhich arereliableandefficient.
The main difficulties and disadvantages of the presented methodologyaretodealwiththedimensionalityandthemath- ematicalcomputationburdenoftheproblem,inparticularwhen thesizeofthepowersystemgetslarger.Thisrequiressufficient memoryandhigh-speedprocessorstosolvetheMIPproblem.With increasingsystem size,the execution time of theproblemwill increaseaswell.However,thisdependsconsiderablyonthenum- berofbinaryvariablesratherthanthenumberofblocksorsegment usedinpiecewiselinearizationapproach.Asasolutionforthiscase, inordertoreducethesearchspacethemethodcanbeappliedto thehigh-voltagetransmissionlinesinitially,andthentheplanning canbeconductedforlowervoltageleveltransmissionlines.
Fig.A1.AcirclewithradiusR.
Appendix.
Thisappendixdescribesasimpleproofoftransformationofthe nonlinearequationintheformofx2+y2≤R2(acirclewithradiusR intheCartesiancoordinates)intonlinearequationslike(A2).Con- sideracirclewithradiusRasshowninFig.A1.Thiscircumscribed circle3orcircumcirclecanbeestimatedbyan-sidedconvexregular polygon.
ThelineequationthatdirectlyconnectspointAtopointBcan bewrittenasbelow:
y−R×sin
360◦kn
= sin(360◦k/n)−sin(360◦/n(k−1)) cos(360◦k/n)−cos(360◦/n(k−1))
x−R×cos
360◦kn
(A1)
ManipulatingEq.(A1)willleadtothefollowingequation:
sin
360◦kn
−sin
360◦n (k−1)
x−
cos
360◦kn
−cos
360◦n (k−1)
y−R×sin 360◦n
=0 (A2)Inasimpleformatassuming˛=360◦k/nandˇ=360◦k/n(k−1) wewillobtain:
(sin ˛−sinˇ)x−(cos ˛−cosˇ)y−R×sin(˛−ˇ)=0 (A3) Thehigherthenumberofsegmentsisusedtomodelthecircle themoreaccurateresultswillbeobtainedbutattheexpenseof morecomputationaltime.
References
[1]J.Choi,T.D.Mount,R.J.Thomas,Transmissionexpansionplanningusingcon- tingencycriteria,IEEETrans.PowerSyst.22(4)(2007)2249–2261.
3Itisassumedthecircleiscircumscribedtotheregularpolygon.Onemayassume thatthecircleisinscribedtotheregularpolygon.
[2]C.W.Lee,K.K.Ng,J.Zhong,F.Wu,Transmissionexpansionplanningfrompast tofuture,PublicSaf.Commun.Eur.(2006)257–265.
[3]G.Latorre,R.Cruz,J.M.Areiza,A.Villegas,Classificationofpublicationsand modelsontransmissionexpansionplanning,IEEETrans.PowerSyst.18(2) (2003)938–946.
[4]N.Alguacil,A.L.Motto,A.J.Conejo,Transmissionexpansionplanning:amixed- integerLPapproach,IEEETrans.PowerSyst.18(3)(2003)1070–1077.
[5]M.C.DaRocha,J.T.Saraiva,Amultiyeardynamictransmissionexpansionplan- ningmodelusingadiscretebasedEPSOapproach,Electr.PowerSyst.Res.93 (2012)83–92.
[6]J.A. Aguado,S.Torre,J.Contreras,A.J.Conejo,A.Martinez,Market-driven dynamictransmissionexpansionplanning,ElectricPowerSyst.Res.82(1) (2012)88–94.
[7]B.Graeber,GenerationandtransmissionexpansionplanninginsouthernAfrica, IEEETrans.PowerSyst.2(1999)983–988.
[8]M.Kandil,S.El-Debeiki,N.Hasanien,Rule-basedsystemfordeterminingunit locationsofadevelopedgenerationexpansionplanfortransmissionplanning, IEEProc.Gener.Transm.Distrib.147(1)(2000)62–68.
[9]A.Khodaei,M.Shahidehpor,S.Kamalnoa,Transmissionswitchinginexpansion planning,IEEETrans.PowerSyst.25(3)(2010)1722–1733.
[10]V.S.K.M.Balijepalli,S.A.Khaparde,AHolisticapproachfortransmissionsystem expansionplanningstudies:anIndianexperience,IEEETrans.PowerSyst.5(2) (2010)199–212.
[11]P.Maghouli,S.Hosseini,M.Oloomi,M.Shahidehpour,Ascenario-basedmulti- objectivemodelformulti-stagetransmissionexpansionplanning,IEEETrans.
PowerSyst.26(1)(2011)470–478.
[12]P.Maghouli,S.Hosseini,M.Oloomi,M.Shahidehpour,Amulti-objectiveframe- workfortransmissionexpansionplanninginderegulatedenvironments,IEEE Trans.PowerSyst.24(2)(2009)1051–1061.
[13]Q.Zhou,L.Tesfatsion,C.Liu,R.Chu,W.Sun,Nashapproachtoplanningmer- chanttransmissionforrenewableresourceintegration,IEEETrans.PowerSyst.
28(3)(2012)2086–2100.
[14]A.M.LeitedaSilva,L.Manso,W.Sales,S.A.Flávio,G.J.Anders,Chronolog- icalpowerflowforplanningtransmissionsystemsconsideringintermittent sources,IEEETrans.PowerSyst.27(4)(2012)1722–1733.
[15]Y. Gu, J.D. McCalley, M. Ni, Coordinating large-scale wind integration andtransmissionplanning,IEEETrans.Sustain.Energy3(4)(2012)652–
659.
[16]T.Akbari,A.Rahimikian,A.Kazemi,Amulti-stagestochastictransmission expansion planningmethod, Energy Convers. Manage.52 (2011) 2844–
2853.
[17]T.Akbari,S.Zolfaghari,A.Kazemi,Multi-stagestochastictransmissionexpan- sionplanningunderloaduncertaintyusingbendersdecomposition,Int.Rev.
Electr.Eng.4(2009)976–984.
[18]M.J.Rider,A.V.Garcia,R.Romero,Powersystemtransmissionnetworkexpan- sionplanningusingACmodel,IETGeneration,Transm.Distrib.1(5)(2007) 731–742.
[19]M.Rahmani,M.Rashidinejad,E.M.Carreno,R.Romero,Efficientmethodfor ACtransmissionnetworkexpansionplanning,Electr.PowerSyst.Res.20(9) (2010)1056–1064.
[20]R.A.Jabr,Polyhedralformulationsandloopeliminationconstraintsfordis- tributionnetworkexpansionplanning,IEEETrans.PowerSyst.28(2)(2013) 1888–1897.
[21]T.Akbari,A.Rahimikian,M.TavakoliBina, Security-constrainedtransmis- sionexpansionplanning:astochasticmulti-objectiveapproach,Electr.Power EnergySyst.(IJEPES)43(1)(2012)444–453.
[22]El.ISamahy,K.Bhattacharya,C.Ca ˜nizares,M.F.Anjos,J.Pan,Aprocurement marketmodelforreactivepowerservicesconsideringsystemsecurity,IEEE Trans.PowerSyst.23(1)(2008)137–149.
[23]D.P.Bertsekas,NonlinearProgramming,AthenaScientific,NH,1999.
[24]Generalized Algebraic Modeling Systems (GAMS), 2013, Available from:
http://www.gams.com
[25]IEEECommitteeReport,TheIEEEreliabilitytestsystem–1996,IEEETrans.
PowerSyst.14(3)(1999)1010–1020.