• Tidak ada hasil yang ditemukan

Assessment of Water, Food, and Energy Productivity Indices Using the WA+ Water Accounting Framework and a Nexus Approach

N/A
N/A
Protected

Academic year: 2024

Membagikan "Assessment of Water, Food, and Energy Productivity Indices Using the WA+ Water Accounting Framework and a Nexus Approach"

Copied!
19
0
0

Teks penuh

(1)

Homepage: https://jwim.ut.ac.ir/

University of Tehran Press

Assessment of Water, Food, and Energy Productivity Indices Using the WA+ Water Accounting Framework and a Nexus Approach

Seyyed Ali Moasheri1 | Saman Javadi2 | Mahmoud Mashal3 | Hamid Kardan Moghadam4 | Behzad Azadegan5

1. Department of Water Engineering, Faculty of Agricultural Technology, University of Tehran, Iran. E-mail:

[email protected]

2. Corresponding Author, Department of Water Engineering, Faculty of Agricultural Technology, University of Tehran, Iran. E-mail: [email protected]

3. Department of Water Engineering, Faculty of Agricultural Technology, University of Tehran, Iran. E-mail:

[email protected]

4. Water Research Institute, Ministry of Energy Water Research Institute, Tehran, Iran. E-mail: [email protected] 5. Department of Water Engineering, Faculty of Agricultural Technology, University of Tehran, Iran. E-mail:

[email protected]

Article Info ABSTRACT

Article type:

Research Article

Article history:

Received 27 April 2023 Received in revised form 17 June 2023

Accepted 17 June 2023

Published online 12 October 2023

Keywords:

Groundwater NEXUS Plasjan plain Water accounting

With the aim of increasing water, food and energy productivity, this study was carried out in two stages to develop and validate a tool for evaluating agricultural management strategies in relation to the link between water, food and energy security (NEXUS). In the first part, using the WA+ water accounting framework, with the aim of analyzing the parameters of hydro climatology, the four worksheets of basic resources, evaporation and transpiration, harvesting of water resources and productivity of the Plasjan watershed were calculated and management scenarios were determined to increase productivity, and in the second part, management scenarios with The NEXUS approach were evaluated and prioritized. The results of WA+ showed that in the Plasjan basin, the high volume of evaporation and transpiration was useless. In the second part of this research, among the 4 main scenarios (48 sub-scenarios) introduced to improve productivity, the scenarios of cultivar change and irrigation treatment, change of cultivated area and rainfed cultivation with supplementary irrigation had a positive effect on water, food and energy productivity index. After prioritizing the influential sub-scenarios with the TOPSIS multi-criteria decision-making model, the sub-scenario of wheat variety 6 with full irrigation treatment had the most positive effect on water, food and energy productivity and was identified as an indicator scenario for evaluating productivity in agricultural management.

Cite this article: Moasheri, S. A., Javadi, S., Mashal, M., Kardan Moghadam, H., & Azadegan, B. (2023). Assessment of Water, Food, and Energy Productivity Indices Using the WA+ Water Accounting Framework and a Nexus Approach.

Journal of Water and Irrigation Management, 13 (3), 715-733. DOI: https://doi.org/10.22059/jwim.2023.357988.1069

© The Author(s). Publisher: University of Tehran Press.

DOI: https://doi.org/ 10.22059/jwim.2023.357988.1069

(2)

نا هﺎﮕﺸ اد تارﺎﺸ ا

یرﺎﯿآ و بآ

Homepage: https://jwim.ut.ac.ir/

:ﯽﯿوﺮ !ﻟا #ﺎﺷ ۹۹۳۱ - ۲۳۸۲

!

WA+

"

#

$

|1

2 3 |

4 | !" #$%|

5

1 . .

:!

[email protected]

2 . #$%& & $ :! .

[email protected]

3 . :! .

[email protected]

4

. ) * * +)+, !& - .

:!

[email protected]

5 . :! .

[email protected]

'( ) *+

, -.

:'( 0 1 / 01 23 +

2 3 4 3 56 07: / 02 / 1402

2 3 4 71! % 27 : / 03 / 1402

2 3 4 89 3 : 27 : / 03 / 1402

2 3 4

;1 20 : / 07 / 1402

,< = : >

)

7 &8

9:

; <1

=$&

>

? / 7 !@3 A 7 B C

D EF !7 G H

; IJK !@ $ C7

7

7 0 J

J /

1 7 !A7 )$

) 9 D EF !L8

. : G ; BM7

# NJ 7 7 &8 $O O

7 WA+

/ J 1 C)3 ? /

P 7 !I , !7 G H D$3$ Q)L )/

R7 9: 7 S @ )MI ! 1 R7 ! O /

7 7 B C 9 T J /$ >))@ ; <1 C 7 !U$8

:

7 $ $)1 7 J /$ G BM7

9 $3 H 7 .9

J V

! WA+

!U$8

; <1 7 W;8 X MI ) S @ F ) N)

$7 > G BM7 .

) LZ $ O >)7 B/ 01 48

7 $I 7 9 T : @ ($

/$

)7 7 W 9 9 ]A ))^ )7 Q) WH ))^

9I_ )`a L)Q

7 bc : 9 $3 d1 . $7 D EF

# 7 E )`a /$ 7

W)Qe )@ O )

TOPSIS

B)7 f )7 Q) 7 G B: WH $ )`a >

7 9I_

!7 !J: D EF $ K

$ : bc 7 7

7

9 :

. :

: @ : ?;

) LK g

$T g

f@

$Q, g G + g )Q8 C 7

) 1402 .(

7 bc : / 7 EF

D 7

NJ

$O O 7 &8

WA+

1 )$

)7 9 ! . 13

) 3 ( 715 - 733 .

DOI:https://doi.org/10.22059/jwim.2023.357988.1069

!& - : : * J

. . & $ ©

(3)

1 - '( )(

# / c ) !7 !T$ 7 B

/ LH ) Q C B

@QT ) 9 9 BM7 B3 O 7

/

@J 9 !T$

)

Cosgrove and Loucks, 2015

T ! 7 = 7 .(

7 )

WWAP, 2015

( 1) B 7)

$:

! )C

U + #

2050 55 C Z B 7

! U + D EF 3 @

) 9 / eJH - J@ Z )

/

7 > 7

= C B 7 . C 7 B B3 O 9

NJ

$O O / Jc /

# /

! 7 C R7

M7 !7 U

$O O . : /$c f I $8 >

NJ 1 !@ $ 9 J / Jc /

9 D EF $)1 .

$)1 D EF

I i

* 1 ) j )

$1 ) / ]

> . Qe

) W ) /

`- eM

) b , R7 $A7

1 J 1 )I )

El-Gafy, 2017

.(

! 7 BM7 !@ $ 9 T 9 C

!7 !T$ 7 D EF /

! Z K > $)1 1 !@ $ !7 ;

Q ! L7 $:

) $: BM7 ! / R7 ,7 kI $

Bizikova et al., 2013

.(

7 I 7 $ NJ

R7 C 1

)$

: 7

?E8 B/ !7 ; !

$LA * ` )

9 /

$

!@

l M7 $:

)

Hanlon et al., 2013

.(

C B 7

@ !7 NJ

W;8 W 7 *X$e, J7 ` + )3$

+ Q/ NJ W;8

3$

) B)7 C .9 B

7 $I 7 7

) 9 EF

@ ) 9 9 $7 Q/

)

Cook et al., 2009;Kai et al., 2011

.(

7 7

>

7 $I 7 U

Q/ NJ 7 $T$

)

>

+

U /$c . $7 D EF $)1 @7 7 f)L, 9 T ? e R7 : /

O l .9 9)Q/ )&7 m$U$ > 7 R7 !O n 9 7 U + !U K o,7 T $O

) 9 7 &8

Karimi et al., 2013

.(

7 &8 G p $ K 7 NLJM / 7 &8 $O O

: !@ $ qLJM /a ? / 7 ) 9

Chalmers et al., 2012

.(

$)1 r

T 7

/B3 O

!7 W/

!J $)1

$T$

! BM7 EF

D 7

>J p /9 )

sI 7 / BM7 9 T

!@ $ 1 ) : 7

Stein et al., 2014; Stein et al., 2011

( . I

$)1

>J p I

t

>)7 M7

7 ) $LT

+J

#

<

* l BM7

!7 BM7 ) : 7

Halbe et al., 2015

( .

$)1 7 H 7

@

# ) /

? R ) /

! BM7 EF

D

!7 I

#

!u J 0 /

!@ $ 1 7 B C

9 T 9) R7 9 .

>

;

!7

$I 7 9) R7 B/

v ) M7 C B R 7 B C

9 T

!@ $ 1

$c / : .

$U$

m T

!

$)1

$T

>

9

! BM7 / qLJM EF

D 9)Q/

&

/ BM7 Z K w

@N

@J

$T

! /

? R

/ 7

) W)Qe /

,3 x .

$)1 7 9 Q Z K

$ /9 ) /BM7

qLJM

W)Qe ) / ,3 x ) Q

Stein et al., 2014

$)1 .(

- EF - D d N

$)1

>7

# 2011

$

!T$

R $T

>)7 LLQ3 H

!J 9 )

Salam et al., 2017

.(

$)1 R7 D

EF )&7 )j)1 9

! O

* ` /

l

>

BM7 / oK 7 )1 / W)+J&

W)+J& )F 7

BM7 / /$c

. :

!@3 A i C 7 !U$8

7 &8 $O O NJ 7 ; <1 7

WA+

/ J 1 9 H 7 $ !U$8

)

Rahimzadeh et al., 2020

W;8 ! !@3 A > V J .(

T

!7 T r 7 WK !+A

3 +J 8 / 548 k@ J $)L) W;8 ! 9

5 / 465 k@ J $)L)

? Z )MI S @

. 7

T T c /

!U$8

! z<QK T >) a

! W;8 8 9 / 41

$)L)

k@ J

!O

$:

.7 C)

)MI S @ 7 !U$8

!

W;8

3

/

264

$)L)

(4)

k@ J S @ )MI

!7

* $Z )N W;8 1 / 201 k@ J $)L)

!7

* $Z )N )F :

)MI

| c

7

? e

$:

. W/

>) O V J B)7 !

>

C) 7

9 U

) : (

MWU

!7

C) 28 / 1 G $L) J /

9 W/

.

>) O

>

!@3 A 7

P 7 / 7 NJ /

$T$

! f

$T$

!U$8 !7

? e )

9

!U$8 f)& J1 NJ

B)7

$T$

7 NJ

* ) Q J

k . )C 7 f7 H 7

W 50 Z 7 R7 W;8 9 !+A

/

>

B)7 W;8 ! 9 7 R7

.9 NJ

7 r * ,)U$ > 7 )1 9)Q/

>

!Q/ } GCLJ&

!I T BM7 / D EF qLJM : 7

.

eJH !@ $ -

B3 O W)LH ))^ 9)@QT : K QJT QK /

! EF 9) 1 7

W

!F F >

R $T / ; 9

)

Vorosmarty et al., 2000; Gleik, 2008

.(

R7 J >

: RH 9, .

9+)+8 !7 !T$ !A7 >

7 BM7 X 7 ? e

>) 1

) 9 U )&7 BM7

Yong, 2005

> .(

7 G$ N 7

> !7 !T$

B C !

!7 $T ) t + )&7 !U K !)Z$ * :

. $:

$e 7 $I 7 J8 ! $:

f7 H )`a $ 8<

!p

!T $7 7

!+A T + @ >) O . : 7 !J:

7 )3$

B)7 + >)Q/ 7 &)

.

!7 !T$ 7

$)1 7 &8 $O O 7 B C ? / D EF

1

BM7

)&7 ? / > ! $7 9)Q/

7 J T

# @ ~ i M7

R7 )

k3 H

W 7 7 . ) H f)L, $ 7

>

= ) WJ&

7 &8 1 @7 >J p 7

WA+

? e R7 . >))@ P 7 O NJ 7 ; <1 C 7 !U$8 D$3$ Q)L )/ <)7 C) >

d1 7

@U ) 9 7 )

<

CT ? e R7 7

)

<

@ / NJ 7 ))

>

: J 7 k J V

P 7 / 7 &8

/

P 7 / !7 !i$7 /

/$

!7 qLJM 7 $p

9

@U ) 9 Q L@

; <1 C 7 !U$8 C

B 7 Ic s $

BM7 beMJ :

@ : . 9 NJ 7 1

)$

7 bc : ! D EF

/$

~ A :

$ 7 H !J

^ ))

*

>

bc : / # QK d1 /$

J

@ ))

>

: 9 . 9 /$

7

Qe # NJ )

W )

@ O )

$3 9 7 .

2 - ( +

2 - 1 - ,$)-. +

7 !U$8 C

; <1 f : !

) 1 9 : B Q ( 98 & 7

1854 )

$L R7 J 7 )

>

^T #$i )

50

!T 50 !T 43 H : !+)H

• K ) ^T 32

!T 45 !+)H 33 !T 15 3 Q +)H H

.

7

@U ) 9 R7

>

!U$8 7 # i 97

- 1396 /

! 218 )L )$

$ k@ J

7 7 H ) !

>

W;8 177 )L )$

R7 k@ J )

41 )L )$

R7 k@ J

,A 9: 7

$:

W)8 ) Q/

1401 ( ,A R7 9: 7 .

>

# +J !7 !T$ 7 !+A

i

€ 3 +J ) 3 !Q O f $ 7 !U$8

C

& ( ) i ! c

€ Q;8 7 •Q1 $ $ 8

41

)L )$

7 # k@ J 7

$:

.

(5)

Figure 1. Studied area (Rahimzadeh et al., 2019)

!7

$p

$I 7 7

$T$ 9)@U D EF $)1

9 H B/ 01 $ .

7 7

`

G /

/$

! bc :

2

7 7 bc :

3

EF bc : 7

4

D f)L, .

> G B: B/ 01 G ; f8 B/ 01 ? / !7 !T$ 7 E3 7 # G . $:

MJ !@3 A $ !+A B/ 01 ? / !7 !T$

R7 J s : !7 !T$ 7 !@3 A > ! . $:

CM : & ) ]A : 9

= J $7 /

!+A B;

!U$8 !@3 A $

; <1 J

M . : RQT !7 G H G G !Jc 1 * K<i

C) !LQT $:

9 ? e

) : ) !J $I 7 U 7 (

MWU

7 U 7 (

MLU

7 ) : (

UWU

U 7 9‚ N8

) : 9& S @ )MI C) (

CLU

W/ !+A r 7 C) !+A $ >) O

)MI ! 1 R7 P 7 O B/ 01 ? / !7 !T$ 7 G$ G .!+A ? e R7 C) 7 S @ 9: 7

7 &8 WJ&) $O O > !7 G H : )

(

WA+

G O G . $:

Jc !I , 7 &8 WJ&) !7 !i$7 / P 7 / 7 ~ A / !7 !T$ 7

>

) 7 &8 WJ&) : H 7 $ (

WA+

*< $T$ 9)@U !7 !T$ 7 . )

Ic p !7 !T$ 7 !+A 7 R7 9 J /$ ~ i !7 G H W; 1 G

. $:

bc : !7 !T$ 7 W : G 9 /$ l / T * )`a D EF $)1 /

H 7 $ R7 b)eM R7 b)eM /$ $)1 7 7 k) > 7 )

7 B C / 7 &8 7 >)

BM7 >)7 $)1 * i I 7

WA+

/

9 $3 D EF 7

) f : . $:

2

.9 : !u B/ 01 f8 (

(6)

Figure 2. Using the NEXUS approach in evaluating water, food energy productivity indicators using the WA+ water accounting system

2 - 2 - ! ! ( ! /

!+A ? e R7 L@ 9)@U !7 r 7

!@3 A $

!7

$p 9I_ M7 ` + 7

W 7 *X$e, L)Q )7 LZ $ O $)1 r 7 m$ 7

5

) qLJM Q) ))^ (

SR1

)7 6

!7 G 9 G H ) k3 F #$e, $ K

]A ))^ (

SR2

9 ) *X$e, (

SR3

$

7 7 k J W

7 m$Q; 7 48

) # T $ 1

. : q @ (

Table 1. Defined scenarios and sub-scenarios

Scenario Sub-scenario

Sub-scenario code Scenario

Sub-scenario Sub-scenario

code

10% addiction in Alfalfa cultivation area Scp22

Intense Deficit irrigation S.atd1

20% addiction in Alfalfa cultivation area Scp23

S1 Medium deficit irrigation

S.atd2

30% addiction in Alfalfa cultivation area Scp24

Mild deficit irrigation S.atd3

10% addiction in Barley cultivation area Scp25

10% reduction in fodder corn cultivation area Scp1

S2 20% addiction in Barley cultivation area Scp26

20% reduction in fodder corn cultivation area Scp2

30% addiction in Barley cultivation area Scp27

30% reduction in fodder corn cultivation area Scp3

10% addiction in Wheat cultivation area Scp28

10% reduction in canola cultivation area Scp4

20% addiction in Wheat cultivation area Scp29

20% reduction in canola cultivation area Scp5

30% addiction in Wheat cultivation area Scp30

30% reduction in canola cultivation area Scp6

Supplemental irrigation with rain 448mm SR1

10% reduction in Alfalfa cultivation area Scp7

S3 Supplemental irrigation with rain 339mm SR2

20% reduction in Alfalfa cultivation area Scp8

Supplemental irrigation with rain 193mm SR3

30% reduction in Alfalfa cultivation area Scp9

Wheat cultivar1 and full irrigation Sc1t1

10% reduction in Barley cultivation area Scp10

Wheat cultivar1 and deficit irrigation Sc1t2

20% reduction in Barley cultivation area Scp11

Wheat cultivar2 and full irrigation Sc2t1

S2 30% reduction in Barley cultivation area

Scp12

Wheat cultivar2 and deficit irrigation Sc2t2

10% reduction in Wheat cultivation area Scp13

Wheat cultivar3 and full irrigation Sc3t1

20% reduction in Wheat cultivation area Scp14

S4 Wheat cultivar3 and deficit irrigation

Sc3t2 30% reduction in Wheat cultivation area

Scp15

Wheat cultivar4 and full irrigation Sc4t1

10% addition in fodder corn cultivation area Scp16

Wheat cultivar4 and deficit irrigation Sc4t2

20% addition in fodder corn cultivation area Spc17

Wheat cultivar5 and full irrigation Sc5t1

30% addition in fodder corn cultivation area Spc18

Wheat cultivar5 and deficit irrigation Sc5t2

10% addiction in canola cultivation area Spc19

Wheat cultivar6 and full irrigation Sc6t1

20% addiction in canola cultivation area Spc20

Wheat cultivar6 and deficit irrigation Sc6t2

30% addiction in canola cultivation area Spc21

(7)

2 - 2 - 1 -

! / 0

12 ) (S1

C F ) f7 H JT

! 7 C

$ 7

$IQ R7 ,A 9: 7 7 ) B

; 8

$M7 /

! J)

!;

M k Q )N R7 1

!J:

9 T

~ i

# @ R7 M7

$7 9 .

= 7

~ i

# @ M7

* )

!7

$p

# @ M7 N / )

)C B/

? e 7

$M 7

I

# 7 86 - 1385 7 H

$O

&

O / F )

; ke

$J Q:$/

+J )

• / 9

: bM 7

9 . r

* K<i / I/

>

~ i W

! 7 f7 H C

O

$ 7

s $ 9 :

!+A J

7 JI F<7 )

! f7 H

! 7 C

* ) Jc )

~ i

$ 3 9

J

NZ H 9

€IA

* K<i 7

~ i

# @ M7

$M7

!7 N ) l R7 )

,A

9:

/

!@3 A $

!7

$ K l H )

!K$Q;

, 9 7 ) p

!J : Qi ) fZ 8

$:

!

)C e

! 7

$ 3 9

!u : s $

$ 3

! 7 C

!@3 A T

‚ ) f7 H 9 fQ,

? e BM7

€7 A

* K<i

~ i

# @ M7 N / )

9:

/ p $

B)7

$ .

)C ]A #$e, m$ !7 !T$ 7 ? e

@U 9 )

9 L@

!7 !T$ 7 /$

B/

) ? e /$

<

7 W 7 NZ J (

# @ 59 46 19 NJ f7 H B/ Z

!7 9I&

(# 93 8) L@ 9)@U = 7

$

! 7 f7 H C

$ 3 * @3 A J 9

NZ - ! 7 BM7

: 7 NZ J s

W € 7 1402

)

Agricultural Statistics,

(

2019

!

$

!+A BM7 ? e B/

!@3 A $

# T ~ : !7 )

2 .9 : q @ (

Table 2. Resources and consumption management scenarios in line with implementation of the drought adaptation program Sub-scenario Water consumption (million cubic meters/Year) Cultivation area(ha)

Fodder corn

Canola Alfalfa Barley Wheat Fodder corn Canola Alfalfa Barley Wheat

Current 12.96 0.07 31.08 5.22 8.98 1200 14 3000 700 2350

S. atd1

5.31 0.03 12.74 2.14 3.68 1200 14 3000 700 2350

S. atd2

6.99 0.04 16.78 2.82 4.85 1200 14 3000 700 2350

S. atd3

10.49 0.06 25.17 4.23 7.27 1200 14 3000 700 2350

2 - 2 - 2 -

! / 5.

$$

67

! 892 :; <-(

) (S2

7

!T$

!7 q @ 7 B C

! z<QK

!J p +)NL :

9 30 I 7 $ B:

93 8

B C 10 20 30

B/ 9 ]A Z

10 20 30 L@ 9)@U !7 9I& 9 ]A Z

# T ! : q @ *X$e, l / 7 )

2 $ K 9, ( .9 :

SR2

2 - 2 - 3 -

! /

$

>".

$?

@ <-(

A /0 B? C( + D /.

) (S3

7 !7 !T$

3 & c /

9 ,

R7 ,A

# / )c

B 7

!U$8 C 7 s :

3 & c 9)Q/

! 7 E3 .9 $c 7 i G #$e, LQK !& + )7 C

# / 1396

1400 . : @ 7 rC * NJ s :

>

01 B/

G H

$e,

! G #

!7

* $Z Q

)L 7 )

: ) $

>) a / . $:

# T /$

) 3 ( .9

(8)

2 - 2 - 4 -

! / 5.

$$

.

$

>

$ A /0 892 A F

) (

S4

W )7 K$

! C J

9

! s : G K

! $ + 7 >)

B C 7 NJ

) $:

Journal of Water Productivity and Improvement Methods, 2016

!7 .(

$i

@)Ii W

)7

M7 7

r /

! Z qLJM

$T

$:

!7

$i

! LQK

* Z f7 H T$

.

! Z

$T : s : W )7 W/

$ 7 B C )3$

7 B C ]A 9

NJ

!7 0

A :

! )3$

$ EF )

9

? / LZ 9 W/

$

!7

$ K : 7 B/

9: 7 R7

7 +L .

!7 0 : A

!

@U ) 9 R7 7 ,7 9

. J V I/

# 7

! 7 /

$

*

J V I/

G 7

! 7 / X$i

*

`-

$c /

$7 .

2 - 3 -

! / $# !

@ /$ !7 !T$ 7 fIH G :

!7

$p bc : $)1 7 BM7 ! 7 sI $)1 /

EF * $Z > 7 r . : / $c NJ D bc : C) ! : 7

T @7 fIH $)1 /

!I , /$

* ))^ : bc :

H 7 $ $ / 7 / bc : ! = > 7 . )

7 7 7 D

7 JI EF !I , !+A $T$ * K<i

$:

.

- 7 bc : :

B/ 01

El-Gafy

) (

2017

7 bc : )

, ton/m3

(

.

!7

* $Z !A7

) 1 (

:9 !u

!A7 1 (

. = . / .

!

Yc, t

#$e, LQK

c

: 7

t

? e C)

Wc,t

#$e, )3$ 7 :

c

: 7

t

.

- 7 bc : : D

B/ 01

El-Gafy

) (

2017

7 bc : ) D

Epro,t, ton/J

(

!7

* $Z !A7

) 2 (

:9 !u

!A7 2 (

. = . / .

! #$e, LQK

Yc,t

: 7

c

? e D C)

Ec,t

(G $L) /# D) : 7

)3$

#$e,

c

: 7

t

.

- 7 bc : bc : > : EF

!7

$p $)1 J 7 f)L, -

D - > EF B/ 01

9 !u

!7

* $Z !A7 ) 3 ( q @ : $:

!A7 3 (

. = . /

! EF ) ?<Jc €LA H

Yc,t

>) a EF 7 U + : = 7)

C J V Q:

$QK

> & =$N 1395

- NZ J (

EF f

>) a , : p $

9 .

J 1 7 C) IK # > / R7 7

R7 # e,J D C) ( ) ,A )

BM7 ? e !+A ? @J ? e )3$ C)

D T 9@ Z : /

.9 !+A *X$e, )3$ G p

(9)

2 - 4 - G -(

' ' H (

$ 3

? e D G$7 G p /

$ 9, )`a L $K )p m$

G p K

$ 3 9

]A

fF : 9)@QT B

m$

+

? e )Q): / $ C)

LQK

#$e,

H ) )

Mohammadzadeh et al., 2017

( . /

k 9 T B C 7 D

7

/ T D

G p / )3$

*X$e, 9

)

Rajabi et al., 2012

( B/ 01 . qLJM

)

Beheshti Tabar et al., 2010; Mousavi-Avval et al., 2011a; Azizi and Heidari, 2013;Sahabi et al., 2013; Mondani et al., 2015; Sahabi et al., 2016

( 7 7

* @3 A D ! ) qLJM

bc : / /

! bc : D / )3$

*X$e,

€i qLJM )&7

* NJ 9 B)7

* @3 A >

!J)& J 3 ) $

$ $

•Q1 / / $

)Q):

9c$

/

L)&

B)7 W >

D G p

)3$

*X$e, K

F 7 .9 !J:

B)7

* @3 A

G ;

!J l

O

#$e,

!@3 A $

9 !J H

> 7 7

>

$T

!

*X$e, l

!+A bc : p /

? e D

7

!& + $ H

) 7

> 7

.

$p

!@3 A U 8

bc : / D

#$e, QK ; <1 C 7 !U$8

!@3 A $ H

9

.

$T$ NZ J T ! )3 ! LQK !7 t$7 / 9

T

? e NZ J ) !@3 A $ !+A k3 F #$e, /

Vafabakhsh and Mohammadzadeh, 2019

(

!+A 9 : Ic : p G<K : >))@ J T

7 i .9 !@3 A

! ML / J D T

G p

$e, )3$ / X

F 7 K * q : 9:

7 WH J NJ 7

7 $v8 !I8 e ! 1 183

bc : ƒ$eM D b3 c D T c D D /

7 D ? e D qLJM # : D

!I , )

.

Vafabakhsh and Mohammadzadeh,

(

2019

D # @ B/ 01 >

.

G p T c

$e, )3$ / RQT qLJM R7 *X

9 :

!7 C) U 8 !@3 A * I , ! bc : !I , 7 .9 : J /

!@3 A $ *X$e, D /

D E7 f : e / 9 $

B

>): / H NJ $ K * )LQK i ! )F & ) *X

!7 )

!7 #$e, LQK Q/

*X$e, G $L) / )3$ !7 BM7 Ic p !7 !T$ 7 IK

9 $ E7 C) B

!7 / W/ # /

!7 >) O ) C) *X$e, l / 9 98 & J / /

>): &

>): NJ $ 9c$ NJ $ *X

!7 )F *X W/ # /

D # @ >) O /

~ A ) !I , $ / 7 f D # @ :

Vafabakhsh and Mohammadzadeh, 2019

.(

!7

$p

!& + f7 H bc : :

Q 7 $ /

T c /

*X$e, )3$ WJ&) /

!3 O

!7

* $Z .9 : )7 ! X >) )

bc : s7 €Ii D / )

4 ( ) 7 ( !I , )

Pimentel, 1980; Herrhz et al., 1995; Hatirli et

al., 2006

.(

!A7 4 ( ( J / # D ) D

D ? e =

( J / # D ) T c D

!A7 5 ( ( J / G $L) ) #$e, LQK

7 = D

( J / # D ) D

(10)

!A7 6 (

( J / # D ) D b3 c D = ( J / # D ) T c D –

!A7 7 ( ( J / # D ) D

D ? e =

( J / G $L) ) #$e, LQK

3 - I- J!

3 - 1 - 'G -(

bc : !7 !T$ 7 7 /

@ LIH G :

!7 bc : > l / + $)1 7 $p !I , /

# T) : 3

* $Z > 7 r .(

bc : ! / C) ! : 7 7

W/ L@ 9)@U # QK d1 >) O

bc : * ))^ !;)J : !I , /$ l / $ / 7 /

$ $ > 7 . H 7

7 bc : ! = 7

7 D . : !I , !+A $T$ * K<i 7 JI EF

3 - 2 - ( 'G - ' H (

NJ 7

! T )

Agricultural Statistics, 2019

( Ic : p

!+A

!7 9 + U 8 !@3 A . T c

D 7 # @ 3$

) *X$e,

!@3 A $ €Ii

!J 7 / !+A $ E

!@3 A $ !I ,

.9 :

7

!I , bc : / D

*X$e, D !@3 A $

/ e f : E7

$ 9 B /

>):

*X )

&

)F

! i

* )LQK K

NJ $ H

!7 ) Q/

LQK

#$e,

€7 A

# @ D /

! ) # T 4 ( :

9

!I , .

!7

$p f7 H

!& + bc : : /

$ 7 Q

/ T c / WJ&)

*X$e, )3$

!3 O

!7

* $Z

>) )

! X )7 : 9

.

D / WJ&)

/ K

$

!7 f : W)+J&

W)+J& )F E1 ;

E1 ;

W)&+

7 .

= 7

>

W)&+

7 / D W)+J&

f : )

&

9c$

3C )7

!J)& J 3

D W)+J& )F f :

E7 )Q): / $

$

$)8 9

B /

>):

*X : 7 )

Yilmaz et al.,

.(

2005

W/

>) O )

&

E7 )7

$

!7

$ K D E1 ;

!J)& J 3 / $

)Q):

3C 9c$

9 B /

>):

*X CT D

E1 ;

!7 Q:

)

Yilmaz et al., 2005

.(

!@3 A

U 8 D

*X$e, 7

!@3 A $

€Ii

!J 7 /

$ E

!I , .

7 f : / qLJM D

! G p

*X$e, )3$

!@3 A $ W

D W)+J&

B)7 D

W)+J& )F W

D

E1 ;

B)7 D

E1 ;

$7 .

>

!;)J

!J 7 / B/ 01

C) 9+7 A )

Ghasemi Mobtaker et al., 2010; Zangeneh et al., 2010; Azizi and Heidari,

2013; Khoshnevisan et al., 2013

.(

$7 , D

/ E1 ; l

$

*<

s), J&

:

? e

>

f :

* U D B/

NJ D

E1 ; / C T

/ R7 7 D

E1 ;

> O 7 7 .

C T )Q): / $

7 / $

$ CI / $ J&

NJ

WJ&) / 7

| c W

| c 9

? e 7 !

? e

!J)& J 3 9c$

/ L)&

7

D nQ1 )7

t I : 7

!LQT

$ 9

!

$

*X$e, )3$

K

!7 B/

W

D E1 ; / f

D lQ

.
(11)

Table 3. Water, food and energy productivity indices

Water productivity index Food productivity index

Energy productivity index (Kg/J) Sub-scenario code

Scenario

8.537 0.873

28.097 Current Situation

8.537 0.575

11.520 S.atd1

S1 S.atd2 15.173 0.665 8.537

8.537 0.798

22.759 S.atd3

8.537 0.808

26.716 Scp1

S2

8.537 0.745

25.292 Scp2

8.537 0.682

23.825 Scp3

8.537 0.871

28.100 Scp4

8.537 0.871

28.102 Scp5

8.537 0.871

28.105 Scp6

8.537 0.845

28.979 Scp7

8.537 0.819

29.971 Scp8

8.537 0.793

31.096 Scp9

8.537 0.869

28.195 Scp10

8.537 0.867

28.293 Scp11

8.537 0.864

28.393 Scp12

8.537 0.863

28.538 Scp13

8.537 0.855

29.001 Scp14

8.537 0.847

29.487 Scp15

8.537 0.934

29.440 Scp16

8.537 0.997

30.744 Scp17

8.537 1.061

32.012 Scp18

8.537 0.871

28.095 Scp19

8.537 0.872

28.090 Scp20

8.537 0.871

28.095 Scp21

8.537 0.898

27.309 Scp22

8.537 0.924

26.601 Scp23

8.537 0.950

25.960 Scp24

8.537 0.874

28.001 Scp25

8.537 0.876

27.906 Scp26

8.537 0.879

27.812 Scp27

8.537 0.880

27.677 Scp28

8.537 0.888

27.275 Scp29

8.537 0.896

26.891 Scp30

8.666 0.895

33.400 Sr1

S3 Sr2 28.411 0.877 8.947

8.321 0.883

31.062 Sr3

11.723 0.872

33.797 Sc1t1

S4

16.593 0.859

33.354 Sc1t2

11.839 0.883

34.178 Sc2t1

18.976 0.868

33.679 Sc2t2

11.553 0.878

34.018 Sc3t1

19.431 0.869

33.707 Sc3t2

11.750 0.873

33.845 Sc4t1

18.247 0.868

33.651 Sc4t2

11.966 0.879

34.025 Sc5t1

21.057 0.869

33.714 Sc5t2

11.990 0.878

34.011 Sc6t1

17.923 0.865

33.568 Sc6t2

Table 4. Energy index in the current situation in the production system of studied products in Plasjan region

Energy index Unit Wheat Barley Canola Alfalfa Fodder corn

Output energy MJ. ha-1 123430 114652.1 51805.2 218561.4 171810

Pure energy MJ. ha-1 77171.758 75044.916 12992.855 123384.33 111143.99

Energy efficiency - 2.67 2.89 7.33 2.30 2.83

Special energy MJ. ha-1 11.564 9.902 17.530 9.517 1.0111

Energy efficiency MJ. ha-1 0.086 0.101 0.057 0.105 0.989

Forms of energy

Direct energy MJ. ha-1 30424 25192.86 26366.6 79165.6 45272.18

Indirect energy MJ. ha-1 15834.242 14414.324 12445.745 16011.47 15393.83

Renewable energy MJ. ha-1 9913.5 9707.04 5920.16 24402.2 12315.43

Non-renewable energy MJ. ha-1 36344.742 29900.144 32892.185 70774.87 48350.58

(12)

3 - 3 -

$# ' !

D EF $)1 !c O 7 $ /$ > J 8<Z /$ /$ @ d1 >)7 9 .9 H 48

q @ $ :

10

$ T : ~ A LZ $ O B C 9

7 D EF bc : ! 7

>J p &

9I_ E )`a MJ bc : ! > /

: 7 NJ r

TOPSIS

!I 7 r .

TOPSIS

7

!I 7 /$

!7

~ : fQK

.

@ ))

>

@) / :

>

@ !L8 ) / NJ $ 7

7 /$

bM

$:

.

>

@) / 7 f7 H

) 7

# _ . : 7 /

@ ) /

$

$ f : 1

3 l&

* ` 9&

, ) A

F) . : 7

# d

7 7 : /

$ +

@) / d

7

# H : )

.

>

7 !L8

+ H

@ qLJM )

/ + )

=

&

+ f7 H

!&

# J .9

>

r /

# + NJ f : )

= )

Min/Max

( +)

= 7 9 #

.

9c d

# 7 :

@ / ) f8

# 1 93 8 7 93 8) )

>

@ ( ))

>

$:

7 93 8 .

$ + 7 B)7

>

7$LA ) 9 7

@ / ) !J p

$:

1 93 8 . )

>

$ + 7 W

>

7$LA ) 9 7

@ / ) !J p

$:

.

>

d

#

!7

$ K +)

= 7 7

/$

f8

@7 NJ

$:

.

!I , !LZ f8

# 7 : /

$ LH !LZ ) 7

f8 /

# !I ,

$:

.

>

!LZ /

!

$ !O )C !7 f8

# C .9 l

Q bc : !I , )C

)

Closeness index

:(

>

Q bc : !L8 )C

7 /

$ !I ,

$:

.

Q bc : )C

/ / !

$ J 7 +O C

l !7 f8

# .9

>

7 bc : /

$

= 7 !LZ

f8 /

# !I ,

$:

.

!I 7 /$

7 : Q bc : !I , )C

7 /

$ /$

= 7 Q bc : +

)C

!7

* $Z

3 C

!I 7

$:

.

$ Q bc : ! )C

B)7 X 7 !I : 7 !J:

9 .

>

r

$

! )J

X 7 : 7

!I

# H ) # T . ) 5

( )J

!I 7

>

r

!u 9

.

~ A $ O >)7

W 7 $ :

T 7 10

)`a x ,3 kMJ $ 7 bc : ! / !I T 9I_ E

9 H D EF

7 9I_ )`a $T 7

7 BM7 Q/ .9 $7 N T )`a` D EF

! $

!

/

$:

7

!T$

!7

>

r

$ B)7 f )7 7 G G H ))^

!7 >

9I_ IK >

~ A $ O >)7 )`a f :) 9: :

3 A), s : !7 !T$ 7 .(

)1 !+A NJ

! G #$e, k G H 7 B C !7 ;

7 bc : ! L7 $:

D

!J B C C) ]A Q/ #$e, LQK B C D C) Q/ ? e 7 9

W)/ $c 9 ! : 7 .9:

9 $3 >

bc : ! >J p & I 7 7

7 D EF ) f : . : 7

4 ( +

!&

T LQK /$

C B 7 7

1)

$ :

Q/ .9 B)1 ! $i

f )7 7 G G H ))^ /$ : )7

B)7 bc : 7 9I_ )`a >

!J: $)1 / .9

(13)

Figure 3. Radar graph of productivity increase scenarios with a NEXUSNEXUS approach

Figure 4. Comparing the performance of scenarios with a positive effect on increasing productivity with a NEXUS approach

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

water efficiency index

Food efficiency index Energy efficiency index

Sc6t1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Wheat cultivar6 and full irrigation Sc6t1 Wheat cultivar2 and full

irrigation Sc2t1

Wheat cultivar5 and full irrigation Sc5t1

Wheat cultivar4 and full irrigation Sc4t1

Wheat cultivar3 and full irrigation Sc3t1

30% addition in fodder corn cultivation area Scp18

20% addition in fodder corn cultivation area Scp17

Supplemental irrigation with rain 448mm Sr1 10% addition in fodder corn

cultivation area Scp16 Supplemental irrigation with

rain 339mm Sr2 water efficiency index food efficiency index energy efficiency index

(14)

= 7 bc : l / 9)Q/ !T

/ 9 $3 $ . $Q >))@ ~ A /$ 7

Table 5. Prioritization of selected subscenarios with TOPSIS method Energy efficiency

index

Food efficiency index

Water efficiency index

Subscenario

code Scenario description Subscenarios

prioritization

3.809 3.013 3.421 Sc6t1 Wheat cultivar6 and full irrigation 1

3.773 3.024 3.433 Sc2t1 Wheat cultivar2 and full irrigation 2

3.803 3.014 3.422 Sc5t1 Wheat cultivar5 and full irrigation 3

3.753 3.002 3.409 Sc4t1 Wheat cultivar4 and full irrigation 4

3.707 3.013 3.421 Sc3t1 Wheat cultivar3 and full irrigation 5

3.000 3.431 3.279 Scp18 30% addition in fodder corn cultivation area 6 3.000 3.286 3.188 Scp17 20% addition in fodder corn cultivation area 7

3.030 3.051 3.377 Sr1 Supplemental irrigation with rain 448mm 8

3.000 3.142 3.096 Scp16 10% addition in fodder corn cultivation area 9

3.096 3.010 3.022 Sr2 Supplemental irrigation with rain 339mm 10

J V 7

! 9 r 7

TOPSIS

/ !

$

Sc6t1

+ 7 bc : 7 421 / 3 bc :

7 EF 013 / 3 7 bc : D

809 / 3

!7

$3 $ K 9

7 # C B 7 MJ

.

4 - 'K$

$0

k) bc :

? @ / >)7 $ G K s : J / )3$ EF e D

7 &8 k) 7 !@3 A > ! 9 ? e R7

WA+

NEXUS

7 .9 H C)3 $

1 !+A 7 <)7 !7 !T$ 7 = >

9)@U 7 ; <

>) a J /$ !K$Q; > 7

J /$ 7 . # QK

7 l r W)Qe ) O )@

f)L,

€)H MJ

7

7 B C

$)1 7 W/

.

!7 IK NJ 7 1

)$

$ * ` /$

qLJM

C B 7 W/

BM7 / D EF

$ 7 . H

= 7 7

? e R7

W/

>) O

!@3 A $ !+A * )3$ 7 # @ D ? e C) !+A A), s : !7 !T$ 7

)1 NJ

f7 H B C kI ! G #$e, k G H 7 !p8<

BM7

$:

! L7

7 B C kI C) e # @ D #$e, )3$ BM7 .9 : D EF

J V 7

! 9

!

$

Sc6t1

+ 7 bc : 7

421 / 3 7 bc : EF

013 / 3 bc :

7 D 809 / 3

!7

$ K

$3 9

# r 7

TOPSIS

. : C 7

V J B/ 01 >

!

>J p

$)1

$O O 7 &8

!7

$ K

7 :

WJ&) 7 >) a

R $

9 BM7

)3$J )Jc I J $

. / H BM7

5 - # 8 1. Nexus Approach

2. Water productivity index 3. Food productivity index 4. Energy productivity index

5. Supplementary irrigation for irrigated and rainfed crops 6. Irrigation regime

(15)

6 - NO /( P Q.

…)/

@ • @ ! $ s $

. $T & $

7 - N /(

Agricultural Statistics. (2019). Agricultural Statistics Crop Year 2016-2017, Volume one:

Crops Products, Ministry of Agriculture Jihad, Deputy of Planning and Economics, ICT Center. (In Persian)

Agricultural Statistics. (2020). Agricultural Statistics Crop Year 2016-2017, Volume one:

Crops Products, Ministry of Agriculture Jihad, Deputy of Planning and Economics, ICT Center. (In Persian)

Acaroglu, M. (1998). Energy from biomass, and applications. University of Selcuk, Graduate School of Natural and Applied Sciences, Turkey. 43 pp.

Journal of Water Productivity and Improvement Methods. (2016). Ministry of Agriculture Jihad. (In Persian)

Alexandratos, N., & Bruinsma, J. (2012). World agriculture towards 2030/2050: the 2012 revision (No. 12-03, p. 4). Rome, FAO: ESA Working paper.

Aquastat. (2010). FAO Aquastat China Country ProVle. fao.org/nr/water/aquastat/countries regions/Iran/index.stm. Rost, S., Gerten, D., Bondeau, A., Lucht, W., Rohwer, J., &

Schaphoı, S. (2008). Agricultural green and blue water consumption and its influence on the global water system. Water Resources Research, 44.

Azizi, K., & Heidari, S. (2013). A comparative study on energy balance and economical indices in irrigated and dry land barley production systems. International Journal of Environmental Science and Technology, 10, 1019-1028.

Beheshti Tabar, I., Keyhani, A., & Rafiee, S. (2010). Energy balance in Iran's agronomy (1990- 2006). Renewable and Sustainable Energy Reviews, 14, 849-855.

Bizikova, L., Roy, D., Henry, D., Venema, D., & McCandless, M. (2013). The Water–Energy–

Food Security Nexus: Towards a practical planning and decision-support framework for landscape investment and risk management. The International Institute for Sustainable Development (IISD), Report. http://www.iisd.org/library/water-energyfood-security-nexus- towards-practical-planning-anddecision-support-framework. Accessed 04 Dec 2014.

Cai, X., Molden, D., Mainuddin, M., Sharma, B., Ahmad, M., & Karimi, P. (2011). Producing more food with less water in a changing world: assessment of water productivity in 10 major river basins. Water International. 36, 42-62. doi:10.1080/02508060.2011.542403.

Canakci, M., Topakci, M., Akinci, I., & Ozmerzi, A. (2005). Energy use pattern of some field crops and vegetable production: Case study for Antalya Region, Turkey. Energy Conversion and Management, 46, 655-666.

Chalmers, K., Godfrey, J., & Potter, B. (2012). Discipline-Informed Approaches to Water Accounting. Australian Accounting Review, 22(3), 275-285.

Chapagain, A. K., & Hoekstra, A. Y. (2011). The blue, green and grey water footprint of rice from production and consumption perspectives. Ecological Economics, 70(4), 749-758.

Choudhury, I., & Bhattacharya, B. (2018). An assessment of satellite-based agricultural water productivity over the Indian region. International Journal of Remote Sensing, 39, 2294-2311.

Cook, S.E., Fisher, M.J., Andersson, M.S., Rubiano, J., & Giordano, M. (2009b). Water, food and livelihoods in river basins. Water International, 34, 13-29.

Cosgrove, W.J., & Loucks, D.P. (2015). Water management: Current and future challenges and research directions. Water Resour. Res, 66, 17.

Dalin, C., Hanasaki, N., Qiu, H., Mauzerall, D. L., & Rodriguez-Iturbe, I. (2014). Water resources transfer through Chinese interprovincial and foreign food trade. Proceedings of the National Academy of Sciences of the United States of America, 111(27), 9774-9779.

(16)

De, D., Singh, R., & Chandra, H. (2001). Technological impact on energy consumption in rainfed soybean cultivation in Madhya Pradesh. Applied Energy, 70, 193-213.

D'Odorico, P., Carr, J., Laio, F., & Ridol, L. (2012). Spatial organization and drivers of the virtual water trade: a community-structure analysis. Environ. Res. Lett.

Dublin Statement. (1992). The Dublin statement and report of the conference. International conference on water and the environment: development issues for the 21st century, 26-31 January 1992, Dublin, Ireland. Fom: http://www.un-documents.net/h2o-dub.htm.

El-Gafy, I. (2017). Water–food–energy nexus index: analysis of water-energy-food nexus of crop's production system applying the indicators approach. Applied Water Science, 7, 2857-2868.

El-Gafy, I. (2017). Water–food–energy nexus index: analysis of water–energy–food nexus of crop’s production system applying the indicators approach. Applied Water Science, 7, 2857-2868.

Fliervoet, J. M., Geerling, G. W., Mostert, E., & Smits, A. J. M. (2016). Analyzing Collaborative Governance Through Social Network Analysis: A Case Study of River Management Along the Waal River in The Netherlands. Environmental Management, 57, 355-367.

Ghasemi Mobtaker, H., Akram, A., & Keyhani, A. (2010). Investigation of energy consumption of perennial Alfalfa Production-Case study: Hamedan province. Journal of Food, Agriculture and Environment, 8, 379-381.

Gleik, P. H. (2008). Can California's Water Problems Be Solved. Ecology L.Currents, 35, 71.

Godfray, H.C.J., Beddington, J.R., Crute, I.R., Haddad, L., Lawrence, D., Muir, J.F., Pretty, J., Robinson, S., Thomas, S.M., & Toulmin, C. (2010) Food security: the challenge of feeding 9 billion people. Science, 327, 812-818.

Halbe, J., Pahl-Wostl, C., Lange, M.A., & Velonis, C. (2015). Governance of transitions towards sustainable development–the water–energy–food nexus in Cyprus. Water International, 40, (5-6), 877-894.

Hanlon, P., Madel, R., Olson-Sawyer, K., Rabin, K., & Rose, J. (2013). Food, water and energy: know the nexus. GRACE Communications Foundation, Water and Energy Programs, New York.

Hatirli, S.A., Ozkan, B., & Fert, C. (2006). Energy inputs and crop yield relationship in greenhouse tomato production. Renewable Energy, 31, 427-438.

Herrhz, J.L., Girth, V.S., & Cerisola, C. (1995). Long-term energy use and economic evaluation of three tillage systems for cereal and legume production in central Spain. Soil and Tillage Research, 35, 183-198.

Hoekstra, A. Y., & Chapagain, A. K. (2007). Water footprints of nations: Water use by people as a function of their consumption pattern. Water Resource Manage, 21, 35-48.

Karimi, P., Bastiaanssen, W. G. M., Molden, D., & Cheema, M. J. M. (2013): Basin-wide water accounting using remote sensing data: the case of transboundary Indus Basin, Hydro/. Earth Syst. Sci., 17, 2473-2486, doi: 10.5194/hess-17-2473-2013.

Khoshnevisan, B., Rafiee, S., Omid, M., Yousefi, M., & Movahedi, M. (2013). Modeling of energy consumption and GHG (greenhouse gas) emissions in wheat production in Esfahan province of Iran using artificial neural networks. Energy, 52, 333-338.

Kijne, J.W., Barker, R., & Molden, D. (eds) (2003). Water Productivity in Agriculture: Limits and Opportunities for Improvement. Comprehensive Assessment of Water Management in Agriculture Series 1. CAB International, Wallingford, UK in association with International Water Management Institute (IWMI), Colombo.

Kitani, O. (1999). CIGR Handbook of Agricultural Engineering. American Society of Agricultural Engineers, United States of America.

Kivi, Z.R., Javadi, S., Karimi, N., Shahdany, S.M.H., & Moghaddam, H.K. (2022).

Performance evaluation and verification of groundwater balance using WA+ as a new water accounting system. Environmental Monitoring and Assessment, 194(8), 580.

(17)

Klimes, M., Michel, D., Yaari, E., & Restiani, P. (2015). Water diplomacy: the intersect of science, policy and practice. J. Hydrol.

Li, F., Lozier, M.S., Danabasoglu, G., Holliday, N.P., Kwon, Y.O., Romanou, A., Yeager, S.G., &

Zhang, R. (2019). Local and downstream relationships between Labrador Sea Water volume and North Atlantic meridional overturning circulation variability. J. Clim., 32 (13), 3883-3898.

Mandal, K., Saha, K., Ghosh, P., Hati, K., & Bandyopadhyay, K. (2002). Bioenergy and economic analysis of soybeanbased crop production systems in central India. Biomass and Bioenergy, 23, 337-345.

McDonnell, R.A. (2008). Challenges for integrated water resources management: how do we provide the knowledge to support truly integrated thinking? Int. J. Water Resour. Dev., 24, 131-143.

Mohammadi, A., Rafiee, S., Jafari, A., Keyhani, A., Mousavi-Avval, S.H., & Nonhebel, S.

(2014). Energy use efficiency and greenhouse gas emissions of farming systems in north Iran. Renewable and Sustainable Energy Reviews, 30, 724-733.

Mohammadzadeh, A., Damghani, A.M., Vafabakhsh, J., & Deihimfard, R. (2017). Assessing energy efficiencies, economy, and global warming potential (GWP) effects of major crop production systems in Iran: a case study in East Azerbaijan province. Environmental Science and Pollution Research, 24, 16971-16984.

Mohammadzadeh, A., Mahdavi Damghani, A., Vafabakhsh, J., & Deihimfard, R. (2018).

Ecological–economic efficiency for alfalfa (Medicago sativa L.) and corn silage (Zea mays L.) production systems: Maragheh– Bonab plain, east Azerbaijan province. Journal of Agroecology, 10, 875-895. (In Persian with English Summary).

Molden, D. (1997). Accounting for water use and productivity. International Irrigation Management Institute, Colombo, Sri Lanka.

Molden, D., & Oweis,

Referensi

Dokumen terkait