• Tidak ada hasil yang ditemukan

C ,O# @ A ,P #) 9 "A (: @:#A C F = 69.99; df = 31, 1; P-value LC A "E) = - @#A "E A Q E A G "O

N/A
N/A
Protected

Academic year: 2024

Membagikan "C ,O# @ A ,P #) 9 "A (: @:#A C F = 69.99; df = 31, 1; P-value LC A "E) = - @#A "E A Q E A G "O "

Copied!
11
0
0

Teks penuh

(1)

Beauveria bassiana

!"

#

$

Eurygaster integriceps

% &

( ) ! *$1

,- " .) & .*$2

$1

/ 0 1 1)

23 " 4 5 2

1

1 2 ! "#

$ %&

6 . ( 7,8

#' (#):

[email protected]

*+

,- + : 16 / 05 / 91 41

31 ) 1 ( 2

*+

8 +9&

: 09 / 04 / 92

2 (

":+ ; : < $= > ! (+

$: +

Beauveria bassiana

": ?

@:#A :

@:# 9:

9:

"A B = ( C ) 8

,DEF G >+ H $I= ,#+

": ? J:E@K :

: L :H :A

:

,- M $ A

. (

@# C

,O# @ A ,P #) 9

"A (:

@:#A C: :

: : 9:

)

F =

69.99; df = 31, 1; P-value = 0.0001

( + .

LC50

"+ ; A

"E) = -

@#A

"E) 9

@:#

9:

"A Q 108

× 1 105

× 2

$E A G

"O ! @ T .

:

LC50

":+ ; :A

Spt-566

(:

@:# :

9:

107

× 3

$E G

"O ! @ T .

V I+ A B W

50 ( X )

LT50

(

"+ ; A A = -

109 G

$E

"E) @ T

@#A (

@# 9

9

"A Q 13 7

"+ ; A

Spt-566

":E)

@#

9 19 + "O ! .

"+ ; A = -

( V , ; B W (+ @?

: ( + :&

(+ :

LC50

":A :='

"+ ;

B = ( YZ (

( [ .

? A \+ %- ]' A ^ M # G "A (F %- ( =_?

^ M

"? B = ( , [?;

"+ ; .

: 2

;<

,#+ :

$I=

Beauveria bassiana

(

@# B =

$ 9

Eurygaster integriceps

= B := (:

(Eurygaster integriceps Put. (Hem.:

Scutelleridae)

P ; ,-`

$:a A :+ :; B =

:

$::

: A

(Anonymous, 1997)

. (::+ :#a

) QO

$: B := L :b! $? $c \

:

(Rajabi, 2000)

.

?[

d % B = ( L @= E?' eW

$: B :I ( A

:

(Rajabi, 2000)

. f :b

@#

,-`

\ ,:-` (:+ L :@= :A $+ ? :

$ :T` $:[ OH =?: ,: [?; \ : A g'

:

: ) , : #) \ : ]:' A ,:#+ h ! ,:-`

) CA

\

$: %:

: . C: '

$:A

":A i:+

^ M :? A

":A : ) (+ :@? $: + :='

== j D= C '

"A B = ( , [?;

$: k #) :=+`

.

" A

" -` l+m T A L @=

"+ ;

$+

^ ::M (::+

":: ":: :: ::; ::

n+ ::@ :: a

, -

"= % `

` A

,: : Q:# :

.

C ' (+ $ +

^ M

Beauveria bassiana

$

" A

A"

:A% k :a : E?' O T ,T C T

P ? a , X

$ a A $

A

(Burges, 1998)

.

^ M

) ? A

^ M

B. bassiana

o d =@ (+

: ) $ :A% J H (+

,:

(Inglis et al., 2001)

. A " (+

\ ,P [?;

-`

:=

":A ":' % $ : + ` h+ : :+

:

- , "@- (

`

` : ":T - O T

"A ,: ,- : & L :) ,'

(Wraight et al., 2001;

Feng et al, 1994)

. ,+ ::! $:: + ::

c@::

^ M

: l:+m T A L @= ) ? A

p

j: Y

`

"A $[ OH h+

h :! ( + :& $O:# ,:A H C: T

(2)

$ A .

":A $:=F : %:- ": , n+ @

` $+` : ^ M G # G

:? A :A :

)

O# ,A H h+ A%

\+ %- ( + & $

$

(Burges, 1998)

.

:? A $+ E=:#) $+gH

^ :M ":+ ; : < $:+

B. bassiana

,:::#+ 8 c@::: :::A

$I=:::

"H F ) $ &

$: A B := ( C

(Talaei-Hassanloui, 1999)

.

$; :) : ET :&

?

"+ ; < $= `

&

jI=& (

"A B = ( ,#+ 8

"H F $I=

:? \+ `

::

Z :: $::- [ C:: :: ) "::+ ; (+ Y

(Haji Allahverdi pour et al., 2008)

.

@:

) 1385 (

"::+ ; $::= ` J::E@K ::

"::A 8 ,::#+

$I=::

"H F

:M $ A B = ( C )

(Rastegar, 2007)

. T O' E

? $ :? A

11

^ :M ":+ ;

B. bassiana

@:# (::

9::

: M $ A

.

":+ ; : B :I :[T q

SPSH-1

, 9 r&

12

$ = ( A

100

%

"@a = "+ ; (+ YZ

(Abdulhi et al., 2010)

.

":+ ; :=< G: : T $=E %

^ :M

B. bassiana

` :? A ( =_?

B := (: :

,::- M "::[T q ::

.

"::+ ; :: + ` (::+

::

spt 22 Ir-k-40

V ( A

4 / 94 7 / 91 X

:I+ B := (: cE (+ @ A

(Moore et al.,

2004)

. :: + B ::= (:: L ::@= :: O $:: +

^ M c@

A"

i+

B. bassiana

"A ,:-` :='

\:

@::# :: C:: :: ) ::A $::A

9::

$

(Moore & Edgington, 2006)

.

P

"A

$: D :

(

$cE@K $ +m T +% - h+ C

"A

$ A

r ' "

?[T

$: :I+ ^ :M C:A $ c@ C :=+ ?

.

>:: ! (::+ f :: (+ ::@? (+ A ::=A , :: #) $:: A

" B = ( C )

$: & :+ L :)

=: A

^ M CA

B. bassiana

$ A .

"A

$:= ` C: T ( ?

" ? ^ M (+

@#A 9

@#

( 9

=_? B =

$: %- : Yp (

:? A \+ %:-

t A [A ,a = A , $ A ^ M

"A , : #) :

:! C)

: $: %- : c@:

$[ OH h+ ` A

.

> =? @ AB C D<

E;F

^ ::M "::+ ; :: <

B. bassiana

:: + `

,#+

@#A C ) $I=

@# 9

9:

"#+ + + A .

^ M

^ M $E # E

"#

: : !

": : $ : %&

: .

o?; C!

A% `

"+ ; L :;

1

$:- [

, .

L ::;

1

"::+ ; ::

B. bassiana

:: c@::

,#+

B = ( $I=

.

Table 1- B. bassiana isolates used for bioassays on Sunn pest.

Isolates Place origin

Host origin Collection

Place

Fashand (DEBI001) Karaj

Soilُ IRIPP

Spt-566 Esfahan

Sunn pest IRIPP

Ir-K-40 Kermanshah

Sunn pest IRIPP

Spt-22 Turkey

Sunn pest IRIPP

IRIPP: Iranian Research Institute of Plant Protection

, h ! l@ PDA

c@: :A @&

uT a ,

"+ ; v E ^ M

: .

":@c

: L :@= h+ : , (+ r&

) :

2 22±

";

w #E 16

$+ = ,'

( G:

:

) C+ @ q k` A T

4 / 0 ( x : :X 80-

o?; a

` .

8 ? r&

G

"A l?

"+ & ,DEF " ? L OE BW 109

$:E G:

:@ T

,DEF +

,#+ =O A

" T $I=

"A

% 108 107

106 105 104 A :+ ": "+ ; .

,:#+

$I=:

V : ": y ) CM :) ,:DEF c@ A " T L [ 20 10 X 90 80 X

":A Q:

(

=+ ? I+

"A

B I ?

.

(3)

G C H "

# G \+ ` (+

G

":+ ;

^ :M :

,::DEF ::A ::

104 105 106 107 108 109 G::

$E ) C+ @ q k` "+ ; @ T 4

/ 0 X

( x 80 : ":

. (:

":E) C: :

) :a

@:# a @#A

( :

@:# :

$ 9:

oM M

": q= z F`

o:?; l: ?)

`

C @= + ` "A .

(

"A : 48 ,:! ,' :

$+ Q = h+

23 25

";

w #E f {

$# E&

wg

% ? [A "A 40

× 40

× 40

$@

:@

:

\=:: f9::) r::& ::

\+ :: ` ::A $::q ! ::

$ k K@

. (

": lO: $= < J M Ca

rG "@- M , M A l+

l:+ c@: :A

L E!

$@ 8 &

6

$:E

"E:X - ,:DEF :@ T 15

$@

( @

$: : & : :

. :? :A \+ : `

,DEF + F`

( + "A j

&

$ .

"+ ; A 6

A ,DEF 4 :

10

D C B = ( '

"@- . k` :A %: :

::q 4

/ 0

% ( x ::

80 ::+ ::?

. (:: rG::

::

"A ,:#+ f {

$:# E& r=:; $I=:

$E q@:# wg:

"A C [A 16

× 10

× 5

$@

C @= @

"+9| A

(

"

"O=& B = M ` Ca k H

.

:& } : ":A "@#A f { : :A 8

23

":;

$O# ,A H w #E 70

65 :X :

16

$+ = ,'

8

V : : C: @= $ + : ,'

(

"A 20 ,OY . ( V

! $

$ K & "

$ + ! "A B I

$?

.

+ \+ ` p

":A (F %- Y :# G

( ? A I+ $< M

$ A .

(+ A

B ?

"+ ;

": ? : $< :M : :P [?;

(: ,

c@ B = .

^ M # G @A

:A ,:DEF 109

$E A G

@ T ) COM = (

"

. (:F rG:

EC®

ADDIT®

"A : ": "A % " ,O#

l

$ :

"T E

"- :~ :A :# G :) ": $ @: g& : + .

# G

":A

:A (:F : : : :

G::

"::A :: t ::EK ,::a = + ::H .

+ ::

C::)

h+ : ,! COM $I= ,#+ + ` = \+ `

h ! $O# ,A H 60

: B I X .

\+ : ` (:+

g'

(F k` t EK c@ A

"A

: :='

w A (F A G # G

% V

( ,:DEF A 109

$:E :A G:

%: j@:# A : :@ T

c@

. , ;

(: V : OY

:@A ^ :M h: :

( A vq

:+ E G c@: :A

, j+ : 4

,# rG X

( + C+ @ q k` A

80

@& "A rG $!q $ c' ~

C+ @: :

$ C @= k H "O=& ) .

( $ T`

C : :A

` A vq ^ M • c \ &

V

` A ^ M Y

.

: : : V X

?

L - c@ A w A

Abbott (1925)

+ v !b

.

n+ ::@

"::A

\+ :: ` J::E@K :: ? :: ` ,::

"::A

%::- B :: l::?

eg :: € ::H Q::T M SAS

$- ::b

"+%I

( : rG: r +

:

":A 8 (:

:+ "#+

.

"O: ! :A ( :=_?

LC50

C:A @ :Y

+ ;

"

":E) :

%:- B : B := (: $@:#+

SAS

c@

.

"A :D=

"O: !

LT50

%:- B :

Curve

Expert 1.3

? c@

LT50

" A A

Excel

A

"?

,DEF

+ j

.

I J

"+ ; " n+ @

^ :M :

B. bassiana

" ? (

@#A

@# 9

:? A 9:

":+ ; $: + :A ::

e @O:# : V :

$+W ::A

::P [?;

::I+ :: ? , ::

.

"::A (::F %::- ( ::=_?

\+ %- ]' A ^ M # G

$:= `

: ^ :M

" ? P [?;

"? B = ( $@

"+ ; .

g' + j

- :: & $ ::T`

(:: ^ ::M ::A "@

::

"::A :: C ::

B E#

c:

•:

l: a : ) :A vq:

:: M "::A C::+ ?@ %:: M "::A ::A •:: :: | ::

.

(4)

" n+ @ (+ @ A

: V (

:I+

h

"+ ;

= -

" ?

@#A 9:

(:

B = ,DEF A 109 G

$E A

@ T

"A

% 40 / 7 53± / 73

:X

(F= 27.38; df= 27, 6; P-value= 0.0001)

" ?

@#

9:

12 / 5 87± / 94 :X

(F= 7.41;

df= 23, 5; P-value= 0.0006)

$=[ cE " A

"+ ; "A ,O#

,DEF

? I+ +

.

"+ ;

=:: -

Spt-22

,::DEF 104

$::E ::A G::

::@ T

" ?

@#A

:I+ : V : B := (: 9:

.

,DEF V X (+ @?

104 :A G

$E

" ? A @ T

@#

":+ ; ":A >:E[@ 9:

Ir-k-40

( :::::: ::::::A 21

/ 2 84± / 3 ::::::A ::::::X

(F= 5.34; df= 23, 5; P-value= 0.003)

.

A $E n+ @

"

:I+ :cE X w A ` ,

^ M h

B. bassiana

$:

":E) ": :

@#

,O# B = ( 9

"A

"E)

@#A ) 9

# w

,

(F= 69.99; df= 31, 1; P-value= 0.0001)

.

w A

% B I O !

LC50

:+ ; A

"

": E' =: -

@::#A ,:: [?;

B ::= (:: 9::

108

× 6 / 1 G::

$::E

"::A ::@ T :: ` ,::

.

%::

LC50

::A :: "O:: !

"::+ ;

"::E) =:: -

@::#

:: ) 9::

105

× 2

$::E G::

"::+ ; ::A ::@ T

Spt-566

( ::?

"E) ) $

107

× 9 / 3

$:E G

: [ :@ T (

+ ) L ; 2 .(

":+ ; : + : V : ( :

" ? A

@#A 9:

:@?

50

%

":I @ :A

LC50

` A

"O ! .

"O !

LT50

)

V I+ A B W

50

% B ::= (:: ,:: [?;

(

"::+ ; ::A

=:: -

":: ? ::

@::#A :: - 9::

,::DEF h 109

G::

$E

@ T A "O ! CA M .

"+ ; ( ? A " $T )

" ?

@#

9

LT50

,:DEF :A :

105 106

107 108 109

$::E G::

::@ T ::A :: "O:: !

"+ ;

Spt-566

(+ %

" ? ,DEF h - 109

G

$E

@ T

!

"O ) L ; 3 .(

` :+ %: n+ :@ (:+

"::+ ; ":: ,::

,O::# =:: -

"::A

"::+ ;

spt-566

L ) ( ' "@ @ A $= `

" ? (

B =

"::

::

::+ &

$

@::#

o::?;

:: `

::#A

w ::#) (:: ,:: [?; ::

":: =@::# $+ ::

@::#A

o?;

A ? `

.

"#+

LC50

"+ ; ( A ,: [?; " ?

@::#A

@::# 9:::

9:::

B :::= (::

":::A 8

Overlapping

"+ ; ( A "

= -

" ? :

@:::#

":::+ ; :::A 9:::

Spt-566

"::: ? :::

@#

9

"+ ;

= -

" ?

@#A 9

fg@a

$=[

; )

C : 4 .(

":#+

( :

I+ cE

( A

" ? : ,: [?;

@:#A 9:

@#

B = ( 9

"+ ; h "

^ :M : :I+

" A

" ?

@#

( : :A 9:

$E 74 / 43 :A ":#+ @: A , : #) cE X

" ?

@#A 9

$E ( A

72 / 19 X

(F= 69.99; df= 31, 1; P-value= 0.0001)

.

L ; 2

LC50

"O !

"+ ; A

B. bassiana

) B = ( C

.

Table 2- LC50 for two B. bassiana isolates on Sunn pest adults.

Isolates Population

LC50

(spore/ml) (Lower-Upper)* Slope

Chi- square Pr

Df

Fashand Aestivating

1.6×108 (1.6×107-5×108) 1.06±0.35

3.41 0.90

8

Fashand Hibernating

2×105 (3.8×104-6.6×105) 0.52±0.09

2.04 0.99

10

Spt-566 Hibernating

3.9×107 (8.4×106-3.9×108) 0.37±0.08

3.47 0.96

10

*

"+ ; + A , O "O ! CA MLC50

.

* Lc50 for other isolates was unable to estimate.

(5)

.

L ::;

3

LT50

^ ::M ::A :: "O:: !

B. bassiana

"+ ;

= -

Spt-566

) C

B = ( .

Table 3- LT50 for B. bassiana isolates (Fashand and Spt-566), on Sunn pest adults.

Isolates Population

Concentrations (spore/ml) LT50

(Days)

Fashand Aestivating

109 13

Fashand Hibernating

109 7

Fashand Hibernating

108 10

Fashand Hibernating

107 11

Fashand Hibernating

106 19

Spt-566 Hibernating

109 19

C 1 ,DEF

"+ ; V

= -

" ?

@#A

B = ( 9

.

Fig. 1- Concentration-mortality for B. bassiana (isolate Fashand) on aestivating population of Sunn pest.

C 2 ,DEF

"+ ; V

= -

" ? :

@#

B = ( 9

.

Fig. 2- Concentration-mortality for B. bassiana (isolate Fashand) on hibernating population of Sunn pest.

C ::

3 ,::DEF

"::+ ; :: V ::

Spt-566

" ?

@#

B = ( 9

.

Fig. 3- Concentration-mortality for B. bassiana (isolate Spt-566) on hibernating population of Sunn pest.

C 4 +

LC50

"O ! A

"+ ;

= -

Spt-566

" ?

@#A

@# 9

9 .

Fig. 4- LC50 for B. bassiana isolates (Fashand and Spt-566) on hibernating and aestivating population of Sunn pest.

` n+ @

(:F %- " B \+

EC®

ADDIT®

]:' A ^ :M :# G "A

\+ %:- :? A

"E) ^ M

"? B = ( $@#+

"+ ; :

.

"A

":+%I ": :H (:+ C:X ) n+ :@ r :+

( A " + `

Yp (F

"+ ;

( c@

@#A

@# 9

fg@:a 9

$=[

vq 1

%

; .

Log LC50 (spore/ml)

(6)

C 5

"#+

Y cE (

$=F %-

"A G

^ M

B. bassiana

" ?

@:#A 9:

B = ( 20 T` r&

.

Fig 5- Mean comparison for mortality rate of sunn pest aestivating population due to suspendedspores of B. bassiana in oils, 20 days after inoculation.

C 6

"#+

Y cE (

$=F %-

"A G

^ M

B. bassiana

" ?

@:#

9:

B = ( 20 T` r&

.

Fig 6- Mean comparison for mortality rate of sunn pest hibernating population due to suspended spores of B. bassiana in oils, 20 days after inoculation.

(

A C+ @ - `

V

: I+

h:

":+ ; :

Ir-k-40, Fashand Spt-22

Spt-566

"E)

@#A

A 9

:Y d :?I

(:F :

"A Q:

75(a)

/ 98 93(a)

/ 94 70(b)

/ 78 94(c)

/ 40

"E)

@#

"A 9 Q:

95(a)

/ 94 57(c)

/ 59

97(c)

/ 54 45(b)

/ 78 :: "O:: ! .

"::#+ ( ::=_?

(F

" + + A

vq:

5 :X :c

$::=[

(::F ( ::A ::

EC ADDIT®

"::E)

@::#A (::F "@:: ::; 9::

ADDIT®

:: E?'

::: :::@ A )

C :::

:::

5 6 .(

":::E)

@#

":A : "- ~ (F ( A B = ( 9

^ :M

:: :: 9:: Yp ::D $ ::c

. t ::A n+ ::@

"A p 9 Y

":+ ; :? A (F

^ :M :

L ; 4

9

, `

.

L ::;

4

LT50

::A :: "O:: !

^ ::M

B. bassiana

)

"+ ;

= - ( r& $=F A ? 20

.

Table 4- Estimated LT50 for B. bassiana (isolate Fashand) with oils, 20 days after inoculation.

L ::;

5

LT50

^ ::M ::A :: "O:: !

B. bassiana

)

"+ ;

Spt-566

(

? r& $=F A 20

.

Table 5- Estimated LT50 for B. bassiana (isolate

Spt-566) with oils, 20 days after inoculation.

L ::;

6

LT50

^ ::M ::A :: "O:: !

B. bassiana

)

"+ ;

Spt-22

( r& $=F A 20

.

Table 6- Estimated LT50 for B. bassiana (isolate Spt-22) with oils, 20 days after inoculation.

LT50

(Days)

Concentrations (spore/ml)

Oils Population Isolate

7 109 EC Aestivating Spt-22

20 107 EC Aestivating Spt-22

6 109 ADDIT® Aestivating Spt-22

13 107 ADDIT® Aestivating Spt-22

15 109 ADDIT® Hibernating Spt-22

LT50 Concentrations Oils

(Days) (spore/ml) Population Isolate

7 109 EC Aestivating Fashand

15 107 EC Aestivating Fashand

11 109 EC Hibernating Fashand

18 107 EC Hibernating Fashand

7 109 ADDIT® Aestivating Fashand

20 107 ADDIT® Aestivating Fashand

9 109 ADDIT® Hibernating Fashand

12 107 ADDIT® Hibernating Fashand

LT50 Concentrations Oils

(Days) (spore/ml) Population Isolate

12 109 EC Hibernating Spt-566

15 107 EC Hibernating Spt-566

16 109 ADDIT® Hibernating Spt-566

19 107 ADDIT® Hibernating Spt-566

(7)

L ::;

7

LT50

^ ::M ::A :: "O:: !

B. bassiana

)

"+ ;

Ir-k-40

( r& $=F A 20

.

Table 6- Estimated LT50 for B. bassiana (isolate Ir- k-40) with oils, 20 days after inoculation.

LT50

(Day s)

Concentrations

(spore/ml) Oils Population Isolate

17 109 EC Aestivating Ir-k-40

20 109 EC Hibernating Ir-k-40

12 109 ADDIT® Aestivating Ir-k-40

13 109 ADDIT® Hibernating Ir-k-40

L ; 8

I+ V (

":A

"E :

^ :M

B. bassiana

(::F ::A ::?

(:: ,:: [?;

::

@#A 9 .

Table 8- Mean mortality of sunn pest aestivating population due to suspended spores of B. bassiana in oils.

Isolates Means of Oils

mortality (%)

Fashand ADDIT®

100

EC 97.5±2.5

Spt-22 ADDIT®

97.47±2.52

EC 92.38±3.26

Ir-k-40 ADDIT®

89.97±4.08

EC®

67.43±3.17

Spt-566 ADDIT®

42.5±3.22

EC 39.39±4.12

L ; 9

: :I+ : V (

":A

"E :

^ :M

B. bassiana

(:: ,:: [?; (::F ::A ::?

::

@#

9 .

Table 9- Mean mortality of sunn pest hibernating population due to suspended spores of B. bassiana in oils.

Isolates Means of Oils

mortality (%)

Fashand EC

97.47±5.05

ADDIT® 92.42±5.05

Spt-566 EC

95±0.77

ADDIT® 61.91±9.81

Ir-k-40 EC

52.15±8.55

ADDIT® 66.99±6.64

Spt-22 EC

39.57±6.71

ADDIT® 69.76±4.1

K?

"+ ; " > ! (+ n+ @

^ M JE@K

B. bassiana

"::: ? $ :::c@ $:::= ` :::

@::#

@::#A 9::

B ::= (:: 9::

.

$::a A

( ::: !

":::+ ; $:::= ` %::: ::: +

^ :::M $+ :::

M. anisopliae

+

B. bassiana

J:E@K C:)

:: B ::= (:: ::

::

. :: ? :: "::<

) 2004 (

c@: B := (: L @= O $ +

^ M

":A i:+

B. bassiana

C: : ) L :@= :A

$:

:

(Moore et al., 2004)

":[T q $:T :

` , ::: #) %:::

@:::#A C:::) :::

$ 9:::

@#

^ M "A ,O# $ 9

A B I ? A

.

^ M ? A Y

B. bassiana

"@

‚T A

8 c@: :A $ : + ` h+ : n :A V A

,:::#+

,:::- :::M $::: A ::: $::: & $I=:::

(Sedighi et al., 2012)

.

"+ ; > ! (+

DEBI001

)

= - ( A "+ ; (+ YZ

LT50

[ ,:c

: $:- . :A

";

"A

" =+

"< G: B := (:

,K:

$:= @

$ A A "#+

w #) A " "@

,:

^ M $ " ;

"A

,K: = ( A Ca

:

B ::I

$::

::

W ::A ,:: c :: A ::~ ) n+ ::@ 9::T

? A

"+ ;

$ B = ( = -

A .

' T O E

? $ )

2010 ( :? A 11

":+ ;

^ M

B. bassiana

@# (

$: A 9

M .

"+ ; B I [T q

SPSH-1

r&

, 9 12

$ = ( A

100

%

"+ ; (+ YZ

"@a = .

[T q

Kazemi Yazdi, (2010)

%: ( : [ A

":+ ; =< G T $=E

^ :M

B. bassiana

` ::? A ( ::=_?

":: :: B ::= (:: ::

"::+ ; ::

SPT 22 Ir-k-40

:: V :: ( :: ::A

7 / 91 4 / 94

"@ B = ( " E' cE (+ @ A X

"+ ; (+

: k :K@ :[A [T q A

.

$T :)

::

"::+ ; ::~ ) >:: ! "

::

SPT 22 Ir-K-40

::A

V ( (+ @?

)

"A Q 89 / 9 89 / 19 (

":: ?

" @::# " @::#A ::

J [::~ B ::= (::

(+ ::

"+ ; : $- [

.

(: : B :I : !

B ::=

) ::~ ) >:: ! fga ::A (

$I=:: ,::#+ 8

"H F ,A H

$O#

W A 90

%

,: c@

.

L ?@)

$

"H F 8 "

G:

@: A :

B A w ?

:? A "@- M ) w #)

:: @:: A ^ ::M .

:: G:: 8

"::A

$::[ OH h+ ::

(8)

l+ % ,: : (+ A :=A

t : :A G: :a A L :?@)

@? ) A w #)

$ . ( =_?

: + ` B :I

~ ) > ! ,:A H

$O:#

75

% : : B :I

( + & ,A H ^ M ? A M

$ A .

>OH

::: Q:::; W :::A $O:::# ,:::A H ( ::: ! :::[T q Q::; ,::+ ^ ::M W ::A $:: ":: ; $+ G::

^ :M $: :? A $ &

Beauveria

$:

:

(Milner & Lutton, 1986)

.

"+ ; h+ (+ "A "; A

$E ( A = -

07 / 66

,: [?; V X

(

"+ ; " @# " @#A

"@a = YZ .

"#+ A

"E) ( A "

@#A

":E) 9

@#

B = ( 9

"+ ; CA

^ :M J:E@K

"E) B I

@#

$:E ( : :A 9:

74 / 43

(: :A ":#+ @: A , #) cE X :

$:E ( A " @#A 72

/ 19

: :cE :X

.

@::# >H ::=

9::

::+ ::+ j :: ::A B ::= (::

" A

$ w ?

ƒ :a : A

=@# k H .

) (+

"A

":+9| B ' C T : < $:H

J [~

(:

@:#A : :A 9:

:O? :A

"; m

$ . ( , % $@T ) ( =<

:

j

"E?) A h+

^ M

` ":A :? A :

$ j - A .

"; A

"A A n+ @ : ` ,

>: ! (:+

"A

$: :D :

^ :M c@:

Beauveria

L :@= :A

(

@:#

9:

; : C:OM :+ A

` B I d % "A .

$ n+ @ " =<

"

$ A

^ :M : W - :O A „ :ba $E ?

, ~

. c@

^ :M # G $=F

: W - = "@ + + %

C:?' $:=F :

$

$:=F : %:- c@: :+ % (+ A :=A =

W -

^ :M :A $:=F :

:D :? A :

$ " ; + ( ! .

W - c@

$=F G:

^ :M :

"[: C: OM $:q ! C: ' A A

\c=:A … :

$ ,D- ! ,A H ,

:=

)

Edgington et al.,

2000; Edgington et al., 2007

.(

: @[ ( : ! $a A

(F "

$ ]' A G T

$T : I

` B I z a "A

"A

` L O :a : A` $[+ :

z

(+ A

: & k` :qM L vq Q

(Locke, 1984)

. L :[- k :H ]:' A ,:A H (+

G:: ::

$:: ^ ::M ::

::

. k` ,::[ OH

%::+

G W - ,a $+

(:F w : A

A A

l a >H = ULV

$ +9&

:

(Bateman et al., 1993; Burges, 1998)

.

& C ' ? $ =A )

2006 (

\+ %:- (:F Yp

^ :M :? A

B. bassiana

":A 8

":H F

\+ ` B = ( .

]:' A (:F ": n+ @

$::: ^ :::M :::? A \+ %:::- :::

(Bandani &

Esmailpour, 2006)

. ::: + `

Skrobek (2001)

$ %- C# @&

PA1 ADDIT® Agrocer®

"A D=

^ ::M ::? A ::Y \+ %::- ::

M. anisopliae var.

anisopliae V245 P. fumosoroseus

lT A c:: ":: E'

Bemisia argentifolii

: $A + "O=&

.

\+ %:-

W V

":A

%:

80

% (:F :A :? :?

ADDIT®

r&

2 V A "#+

40

% 30

%

:: W - + :

: :: :

. r::&

3 100

%

? W

ADDIT®

. (:+ " $ + `

::: B :::I >::: !

(:::F c@:::

ADDIT®

,:: 9 r::& ^ ::M ::# G 20

]::' A 100

%

:: B ::= (:: :: V ::

.

%::+ A` vq:: (::F

: r :a : V :A : ) A C - G T

e [+ : L : ":A k9; COM vq (+ A ";

$ \K&

: .

\:

: E (:F :

@:# o:+

\K& "I @ G

:A :=A ( :A $x : F †-

, )

.

ƒ : B : L : ,?:#M (+

:A

$A ::H e @O::# h ::!

$::

:: A .

$q+ :: ( ::=<

" ;

$:

":=a * : ‡ :c G:

":A

L : C:a

`

$

(Askary et al., 1999)

.

(9)

Reference

Abbott, W.S. 1925. A method of computing the effectiveness of insecticides. Journal of Economical Entomology, 18: 265-267.

Abdulhi, M., El-Bohssini, M., Jmil, M., Trissi, A.N., Sayyadi, Z., Skiiner M. & Parker, B.L. 2010.

Beauveria bassiana characterization and efficacy vs. sunn pest, Eurygaster integriceps Puton (Hemiptera: Scutelleridae). Pakistan Journal of Biological Science, 13(21): 1052-1056.

Anonymous, 1997. An integrated approach to saving wheat from sunn pest. ICARDA- CIMMYT- Turkey wheat improvement program.

Askary, H., Benhamou, N. & Brodur, J. 1999. Ultrastructural and characterization of aphid invasion by the hyphomycete Verticillium lecanii. Journal of Invertebrate Pathology 74: 1-13.

Bandani, A. & Esmailpour, N. 2006. Oil formulation of entomopathogenic fungus, Beauveria bassiana, against Sunn pest, Eurygaster integriceps Puton (Heteroptera: Scutelleridae). Communications in Agricultural and Applied Biological Sciences, 71 (2 Pt B): 443-448.

Bateman, R.P., Carey, M., Moore, D. & Prior, C. 1993. The enhanced infectivity of Metarhizium flavoviridae in oil formulation to desert locusts at low humidity. Annales of Applied Biology. 122: 145-52.

Burges, H. D. 1998. Formulation of myco-insecticides. pp. 131-185. In: Burges, H. D. (ed.), Formulation of Microbial Biopesticides. Kluwer Academic Publishes, Dordrecht.

Edington, S., Segura, H., de la Rosa, W. & Williams, T. 2000. Photoprotection of Beauveria bassiana:

Testing simple formulation for control of the coffee berry borer. International Journal of Pest Management, 46: 169-179.

Edgington, S., Moore, D., Kutuk, H., Satar H. & EL-bouhssini, M. 2007. Progress in the development of a myco-insecticide for biological control of sunn pest. pp. 237-243), In: Parker, B.L., Skinner, M., El- Bouhssini, M. & Kumari S.G. (eds.), Sunn Pest Management, A Decade of Progress 1994-2004. Arab Society for Plant Protection.

Feng, M.G., Poprawski T.J. & Khachatourians, G.G. 1994. Production formulation and application of the entomopathogenic fungus Beauveria bassiana for insect control: Current status. Bio-control Science

& Technology, 4: 3-34.

Haji Allahverdi Pour, H., Ghazavi, M. & Kharazi-Pakde, A. 2008. Comparison of the virulence of some Iranian isolates of Beauveria bassiana to Eurygaster integriceps (Hem.: Scutelleridae) and production of the selected isolate. Journal of Entomological Society of Iran, 28(1): 13-26

Inglis, G. D., Goettel, M.S., Butt, T.M. & Strasser, H. 2001. Use of Hyphomacetous fungi for managing insect pests. pp. 23-70. In: Butt, T. M., Jackson, C. W. & Magan, N. (eds.), Fungi as Bio-control Agents:

Progress, Problems Potential. CABI Publishing, Wallingford, UK.

Kazemi Yazdi, F. 2010. Isolation and biological characterization of Beauveria bassiana from overwintering sites of Sunn Pest, Eurygaster integriceps, in Kermanshah Province, Iran. Research project report, Iranian Research Institute of Plant Protection, Tehran, Iran.

Locke, C.S. 1984. An exact confidence interval from untransformed data for the ratio of two formulation means.

Journal of Pharmacokinetics and Pharmacodynamics, 12(6): 649-655.

Miliner, R.J. & Lutton, G.G. 1986. Dependence of Verticillium lecanii on high humidity for infection and sporulation using Myzus persicae as host. Environmental Entomology, 15: 380-382.

(10)

Moore, D., Edgington, S., Kutuk, H. & EL-Bouhssini, M. 2004. The development of a myco-insecticide for the biological control of sunn pest. 29-30. In: El-Bouhssini, M., Parker, B., Skinner, M., Reid W. &

Kumari, S. (eds.), Abstracts book of Second International Conference on Sunn Pest. July 19-22, ICARDA, Allepo, Syria.

Moore, D. & Edgington, S. 2006. The sunn pest- a grain of hope for its control. CABI Bioscience, Silwood Park, Ascot, Berks, SL57TA UK.

Radjabi, G.R. 2000. Ecology of Wheat and Barley Sunn Pests in Iran. Agricultural Research, Education and Extention Organization, Nashr Amozesh Keshavarzi, 343p. (In Persian).

Rastegar, G. 2007. Study of pathogenicity on some strains of Beauveria bassiana (Bals.) Vuill. On the sunn pest adults and the best strain formulation. Ph.D thesis in Agricultural Entomology. Tehran (Iran), Science and Research Unit, Islamic Azad University of Tehran. (In Persian with English summary) Sedighi, A., Ghazavi, M., Haji Allahverdipour, H. & Ahadiyat, A. 2012. Study on the effects of some Iranian

isolates of the fungus Beauveria bassiana (Balsomo) Vuill. (Deuteromycotina: Hyphomycetes) on the bird cherry-oat aphid, Rhopalosiphum padi (Linnaeus) (Hemiptera: Aphididae), under laboratory.

Munis Entomology & Zoology, 7(1): 267-273.

Skrobek, A. 2001. Investigation on the effect of entomopathogenic fungi on whiteflies. Ph.D. D. Dissertation, Department of plant Diseases, Rhein. Friedrich–Wilhelms–Universitate, Bonn.

Talaei-Hassanloui, R. 1999. Laboratory investigation into pathogenicity of Beauveria bassiana on sunn pest Eurygaster integriceps. M.Sc. Thesis, University of Tehran, Iran. (In Persian with English summary) Wraight, S. P., Jackson, M.A. & Kock, S.L. 2001. Production, stabilization and formulation of fungal bio-

control agents. pp. 253-287. In: Butt, T.M., Jackson, C. & Magan N. (eds.), Fungi as Bio-control Agents: Progress, Problems and Potential. CABI Publishing, Wallingford.

(11)

Virulence of four Beauveria bassiana isolates on aestivating and overwintering populations of Eurygaster integriceps

Ghamari Zare, Zeinab1, Askary, Hassan2, Abbasipour, Habib1, Sheikhi Gorjan, Aziz2 and SaeidiZadeh, Ayatollah1 1- Shahed University, Tehran, Iran

2- Iranian Research Institute of Plant Protection, Tehran, Iran Corresponding author: H. Askary, Email: [email protected]

Received: Aug. 07, 2012 2 (1) 31-41 Accepted: June. 30, 2013

Abstract

In this study, virulence of four Beauveria bassiana isolates on aestivating and overwintering populations of Sunn pest (Eurygaster integriceps) adults was investigated. Bioassays were conducted and performed by spraying fungal spore ssuspension on adult sunn pest. Obtained data was analyzed to compare mortality in different treatments and to estimate LC50 and LT50. The results showed that overwintering adults of Sunn pest were more susceptible than the summer population. According to the results, LC50 of Fashand isolate was 1×108 and 2×105 spore/ml on aestivation and overwintering populations, respectively. LC50 of Spt-566 isolate was 3×107 spore/ml on the overwintering population. Estimated LT50 for Fashand isolate (109 spore/ml) on aestivating and overwintering populations were 13 and 7 days, respectively, whereas, estimated LT50 for Spt-566 isolate was 19 days on overwintering population. On the basis of this study, Fashand isolate was more effective than Spt-566 on two physiological stages of Sunn pest adult. The results also showed that adding oils to the suspension of the spores increase virulence of the isolates on all stages of sunn pest.

Keywords: Bioassay, Beauveria bassiana, Eurygaster integriceps, Sunn pest, Overwintering site

Referensi

Dokumen terkait

Effect of 8 weeks of preseason training on body composition, physical fitness, anaerobic capacity, and isokinetic muscle strength in male and female collegiate taekwondo

The framework builds on the role of hospitals within the disaster risk management system and positions them as key players with the ability either to lead or to strongly support

THE DELSAN TEAM As part of our commitment to our customers to help elevate their operations and overcome operational challenges, we have an in-house helpdesk, technical support,

..,~ ,.' QUARTERLY PHYSICAL REPORT OF OPERATION As of the Quarter Ending September 30, 2017 Department: State Universities and Colleges SUC Agency: University of the Philippines

5 : Vibration of a Footing on an Elastic Half Space a Physical Situation; b Equivalent Spring- Mass Representation outer zone of elastic behaviour with radiation damping footing mass

Remove the developed plate from the chamber, mark the position of the solvent front with pencil, and allow to dry at ambient temperature for 30 min or, alternatively, in a stream of

CONCLUSION It is concluded that island-types on the Pacific plate result primarily from the subsidence of volcanic islands due to the tangential motion of the lithospheric plate, An

Results of variance analysis effect of cultivar, nitrate and ammonium ratios and substrate on chlorophyll, calcium, nitrogen, manganese in Phalaenopsis.. *, **, ns: Significantly