53 3
1401 ) 590 - 579
( Vol 53, No 3, Autumn 2022 (579-590)
DOI: 10.22059/ijhs.2022.312708.1868
* Corresponding author E-mail: [email protected]
:
!" # *
!
" # $
%
%
& ) :)*
24 / 8 / 1399 - :3 45 &
22 / 10 / 1400 (
%&
8 5 9 * :; " ) < " ) " $ = > )? @ A B>
C
" * DE F
G H I * C J "
.)* = L MN $ OF P$ Q
)
$ Kobe Memphi (
=$ Q
%R$
MN S
)? ) C D = > O T" U 90
/ 10 75 / 25 50 / 50 $ 25 / 75 ( $ = Q ) "
MN
X ;YQ)Z B % [ ) 5 ) \Y" )Y F $ ) )Y F ] $ S Z ) \Y" )Y F $ ) E 5 )Y F ] $ (^ "
$ ) E 5 _ ) 5 )Y F
$ (; % Q ) ) E 5 )Y F ] )? % ` .
75 / 25 O T"
) B 85 YQ a a bY $ B B $ = ; ] [ $ %B$ O T" % c a = >
; 62 / 12
B$
.; > ) ; D " ) "
$ )Y F ) 5 ) E 5 )Y F ] $ B " ; e f = ; ] [ $ %B$ a 9
O U > A g ; ? OF $ :; " 4h U = > )? " % ` i YL . S Z MN
25
.; ;e )Y F $
S Z ) \Y"
B )Y F ] ) E 5 ; U
.; :; " ; E U ? ;
' ( ) ( * S Z :
) \Y"
%R$
.
Evaluation of the effect of nitrate to ammonium ratio and substrate on the quality of Phalaenopsis orchid
Vali Karimi*
Assistant Professor, Botanical Garden of Nowshahr, Researcher of Institute of Forests and Range lands, Tehran, Iran (Received: Nov. 14, 2020 - Accepted: Jan. 12, 2022)
ABSTRACT
The experiment was performed as a completely randomized factorial with three replications. Experimental treatments included Kobe and Memphis cultivars, four levels of nitrogen and three types of substrates. Nitrogen sources in the ratio of calcium nitrate to ammonium nitrate were 90:10, 75:25, 50:50 and 25:75, respectively. Culture media include; 1- Compost of coniferous bark (mainly pine) in the ratio of 2 parts of bark and one part of perlite, 2- Two parts of plantain leaf compost and one part of perlite, 3- Peat moss with a ratio of 2 parts peat and one part perlite (as a control). The results showed that in the ratio of 75:25 calcium nitrate to ammonium nitrate, the highest amount of calcium, fresh and dry weight of aerial and underground organs and also, the longest post harvesting was obtained for 12.62 days. In the substrate with a combination of two parts of peat and one part of perlite, the highest wet and dry weight of shoots were obtained that it was statistically flush with the plane leaf. Overall, the results showed that the ratio of ammonium for feeding orchids in both cultivars should not be more than 25%. Two parts plane leaf compost to one part of a mixture with an aeration material such as perlite can be a good substrate for orchid production.
Keywords: Compost, nitrogen, plane leaf.
,
6 $ *%4 5 23 ' )
Phalaenopsis orchid
7' (
2 '*% 8
Orchidaceae
9 (%' 1 : ; 01
<
)8 =
> 23 ' ". 7 ?@ ." ' B' ' 23 1398 3C B' '
14 3 D*! B' + ." ' (E<
F *(+ *@ *. 23 ' 01 40
(+ )8
3C ) " ' G + 90
6 $ *%4 5 ' B, 3H
) 3< + 0 E.!
Anonymous, 2020
9 ' 27 +' .(
: ; II D' 9 = < '7 )EJ ' 2 KL 01 10
23 )8 ! 01 7' E B'*JL ) 9 JM < " '
+ . % %'3I1 (J 7 B < 1 9 ( N+
)
Mirani et al., 2017
O ; "P #Q < 23 ' .(
*( ' B < 1 )J! = ) 3J($< =7 ' B < 1 7' '
2R F ' G ! 2 1 9 ' 3 9 ' J .3JJ + 3 ". ($ S & #P ." ' I E! ) TU! ($
" *V )23 * < 1 '*+ 7' # ! 3 2 1 9 ' B * 8 W 0 D ) .3 ISJ; B (8 (23 7' 2 /( ' 3 I E! ) TU! 2 1 9 ' ". ($
'TW H JL >* P+ ". ($ & # ! . 1 - X%'
" *V Y + " 2 1 9 ' =' 2 /( ' *+
I IH' ." ' %3P+ ) * "8 " * =' ' 3 ($ ) " ' 9 ' %'3I1 B < 1 Z )( ' [*8 =' ) *N! F ' [, = '3NS% \ XJ1
) 3
Sanghamitra et al., 2019
01 " / .(
)8
] # 8 " *V = C ". ($ <, 23 ) "5 \ ' 5'
Bi et al., 2021
9 ( N+ 7' E " .(
Z %'3I1 = < ^*I_+ =' = ($ '*+
) " ' =' )% _I1 &4*`a+ 7' = $
Lennartsson,
" = < 9 S ; )P *! b ca! - D .(1997
D ) ) (J 7 B < 1 3 D*!
> ' d" ' ) ;*! 0 e 0
) 3a+ G J+ = ($ '*+ B'*JL ) " )EJ ' ". ($ )EJ ' - .3 3<'*8 - ! B +7 + ) )J < 7' N;*! 0 e \_
0+ ' 3 D*! = <
+
* Ia+ ". = < ($ ) ( 9 ' J
B'7 ' +
%'*!
.3 " 9 S ; =' f J+ E<' 3
< 1 = < 23% e '*+ 7' = $ )EJ ' -*
Ia+ & P g +
%'*!
) 23 " *V & *` 3
) * 2 E ". ($ B'*JL
Lemaire et al.,
9( ' 0 D ) " * * > h+ B'*JL ) .(1998
" ) .+ E 5 & H*`8 ) Y +
i ' B'*JL + E (J 7 B < 1 ". ($ 9 !
)
Lennartsson, 1997
" *V 6 $ *%4 5 .(
)EJ ' 0 D ) 3J + 3 *_ "8 " * '*< = < ). 9( ' +
%'*!
7' 3J (J *(5 3
Y + " 9 [ _(%' .3 % [T; " *Q '*<
B*j ." ' 0E.+ "8 " * 0I8 " H 8 <
Q*I_+ f ! 9 (N ) 3% ' ' -74 ) *N! k 5
" ' < 7' )
Biswas & Singh, 2019
7' E .(
01 = < )MJW 5*E -3L 1 +R l KL 2 1 9 ' ". ($ f J+ % f ! 6 $ *%4 5 ) " '
Biswas & Singh, 2019
" * * f ! .(
+
;, = < )E!
+
> W7 + "#$% ) f ! ! ) " 9
2 1 1 1 23 ' 01 = 13% + EI L 9 !4
" ' -* 3#
)
Sanghamitra et al., 2019
( .
" * * ^*I_+
+ "#$% ) f ! ! ) Y + "
4 )
1 3 ' 01 3 *#N EI L 9 (.
) " ' 6 $ *%4 5
Hwang & Jeong, 2007
2 7 .(
3 >K(8' oL B < 1 < * = 2 1 <3I1 \< )X (%
+
* 7 Bp ( % Kh+ .
* 2 1 EI L \< oL 5 /$5 2' <
) 1 +
Mengel & Kirkby, 1987
B < 1 ! .(
-* %*+, &' ( % -* %*+, & /D*
+
%'*!
oL 3
EI L ' *#N ) * N%, /
Roude et al.,
1991; Druge, 2000
01 " / EI L *#N .(
) TU! ." ' 23 q_.+ rI(_+ = < * 7' 2 /( ' )8 01 3J% + (J 7 B < 1 l $I Bp ( % & # ' ) N%, = < s " / *#N =' 7 23
) " ' 23
Mascarini et al., 2005; De
Capdeville et al., 2005
&' ( % l $I &' ( % .(
JP lN+ `JL Bp ( % G J+ 7' ._ l ( \c% ) 3JJ + l<' 5 2 1 =' ' l ( l $I
" ' 7' 6 " / =3 I 01
<
23 )8 =
) 3% '
Sairam et al., 2011
B < 1 * % 3 .(
l $I . ' Bp ( % t `+ '3c+ = 7 ^ #! ' " / *+ $ H JL 7' E 01
<
' 7 ." '
B, D*I 2 '* - Ea( ' =' = g `JL u
) " '
Taiz & Zeiger, 2013
7' f J+ 2 /( ' .(
B < 1 )J N 3 =' !' ( % +* %*+, G J+
= g
+* %*+, G J+ = < * )EJ ' Q _ ." ' \< oL !' ( % G J+ = < * ($ pH
\ ' 5' oL f ! 9 ' J .3% 1 + ($ pH
Bp ( % G#J+ 9 ' f J+
+ B'*!
EI L *#N )
%p ( % = < * ."5 " 01 / 3a+ & *` 3 +* %*+, G J+
B < 1
B =3 ' oL * 9 ' = 7 B*j . * 2 /( ' >*I F a+ ). F a+ 3C 7' \ +
* )
H JL 7' 8 [T; >K(8' X ' oL + N%, " l KL ) -* %*+, l "vIW . 1
5
" ' 7' 6 L \ ' 5' oL ( ( D - 1 I + 1 23 )8 7 01
"vIW )E D C 3 (. = <
) " ' 6EL )X (%
Hatamian & Souri, 2019
.(
-* %*+, "#$% \ +7, u ' p 01 3 D*!
f ! ! ) &' ( % ) 33
) 67 >*Ia+ 3H
S \ +7, 3 B' + 9 !4 ) 'TW "#$%
25 ) 75 3H 50 ) 50 , " 3 3H 3+
)
Guba, 1994
=' &' ( % -* %*+, B + < 2 /( ' .(
9(5 ." ' = g B < 1 / EI L *#N b ca! 3J+7 % ' ' = 'T1 ! 9 (. ) (#$%
' 9 ' J ." ' ca! 9
b 3C *vJ+ )
Bp ( % +* %*+, !' ( % G J+ 7' 2 /( ' )J N 2' <
< 1 = < " *V Ia+ G J+ 7' )J N 2 /( ' 6 $ *%4 5 23 ' 01 3 D*! = < )J < \< =' ."5 1 - X%'
- .
*
> 3J/ ' 7' \ +7, 9 ' 1397
> 9 5 !
1399 B < 1 B* $EI X ' x Q = ( '
N *% J.< 1 y =' )% _I1 = $+ 1
%' 23 ' le 7' b ca! 9 ' - X%' =' .3 - X
= < - % ) 6 $ *%4 5 (3 / )Kobe
Memphis
\ +7, .3 2 /( ' (\/J ) 0 (+ ! *H)
& *`
0 *( 5 K+ x Q fD e
5 `!
' E! )
"5 1 - X%' .
0+ \ +7, = < !
( % ?@ Nj 6 $ *%4 5 23 ' le ) Bp
& *` Bp ( % G J+ . * ". ($ z*%
"#$%
<
) -* %*+, &' ( % ) l $I &' ( % = & *` f ! ! 90
/ 10 75 / 25 50 / 50 25 / 75
d0+ *+ ". = < ($ .3 2 E 1 -
* " *V !3 L) ] %7* B (8 "
(k "#$%
2 7' Q*I_+)"8 " * " $e
& P@e 5
/ 0 3C ! 5
u (= (+ (%
" D " $e 2
- Jj ] " *V " $e
" D " $e u 3
- "#$% Y + "
2 " $e
. * (3< B'*JL ) ) " D " $e u "
& *` "8 " * " *V ". = < ($
3C 9 23 " *V ". ($ > u
3C " *V F ' Jj ] 10
2 /( ' 2 +
.3%3 uD' 2 /( ' 7' 0#e " *V < .3 0#e ". = < ($ . * !' ' Y + " 9 JM <
>*Ia+ 2 /( ' 7' 2
%*/L3g 0 +*J ' <
" 7' 23 ) N! 6 $ *%4 5 = < .% .3%3 1 3JI< =' *(%, 4
D' 6 B'3I1 ) ] @e = <
)% <
20
=' .3%3 0c(J+ (+ (%
<
! 3
2 1 v%
)(5 1 3 . >*Q )% _I1 = + B ($ !
±5 30 B ($+7
±3 20 #$% " *Q
±5
70 )J+' )% _I1 *% . * B *%
400 E +
>*+
(+
G + ) % l vJ!
.3 1 ) "vIW
Bp ( % 'TW >*Ia+ ( +* %*+, !' ( %) 136
> 3; b @+ H JL ) c ( D - 1 I + 1
) 3 q_.+
Mantovani et al., 2015
.(
> 3;
1 .
"#$%
<
*%4 5 - e ' 'TW >*Ia+ H JL & `_.+ -* %*+, ) &' ( % rI(_+ = 6 $
.
Table 1. Different ratios of nitrate to ammonium and characteristics of elements in the nutrient solution of Phalanopsis cultivars.
Mo Cu Zn Mn B Fe S Mg Ca K P NH4+ NO3- The unit NO3-:NH4+
0.01 0.02 0.05 0.5 0.5 5 64 48 200 234 31 13.6 122.4 mgL-1
90:10
0.01 0.02 0.05 0.5 0.5 5 64 48 200 234 31 34 102 mgL-1
75:25
0.01 0.02 0.05 0.5 0.5 5 64 48 200 234 31 68 68 mgL-1 50:50
0.01 0.02 0.05 0.5 0.5 5 64 48 200 234 31 102 34
mgL-1 25:75
&' ( % 9 + ! IH' G#J+ B'*JL ) l $I &' ( % B'*JL ) -* %*+, &' ( % .3 )(5 1 E l $I
."5 E -* %*+, IH' G#J+
'TW >*Ia+ pH
)J+' 5 / 5 ! 6 .3 1 l vJ!
= , [,EC
569 / 0
(+ (% Y*+ I + B, pH
02 / 7 * . *
( & *` B < 1 = , 7 ?#H 0 ' '
'3( ' .3 - X%' `L Ns - SJ< B ($ ! = <
3% * uj* B < 1 ) 400
y*I 7' 6 ( D I +
) B < 1 600
! 800 [, 2 1 < =' ( D I +
3P .3 2 ' 7'
= V B3 13 2 + B < 1 3
*+
7 ' ' e ( % = 1 27'3%' =' ."5 1 Bp
>'3IX Z 7' 0 )
Kjeldahl
=' .3 2 /( ' (
(+ 0 5 I 7' 0 5 I q8 = 1 27'3%' ) l $I = 1 27'3%' =' .3 2 /( ' (SPAD
3 2 /( ' !' [T; Z 7' JSJ+
)
Ghazanshahi, 2006
.(
1 27'3%' =' =
pH EC
= NJ. Z 7' ($ E 5 & H*`8 8
(1993) Gabriels et al.
.3 2 /( '
] "C $+ = 1 27'3%'
%K 2 S( F *!
(+
9 ! | L)01 @e = 1 27'3%' =' .3 - X%' .3 2 /( ' \ F8 7' (01 \_
5 `! *@ ! < 7' 5
0+ 2 1 )%* %
7 -'3%' '*< -'3%' & P@e ) 3 = '
$c! (). ) J +7 -'3 < B * % B7 7' 6 .3 l
& ' C ); ) B , 08' .( ! B7 ) N+'3%' 7' 105
&3+ ) ' 1 (% );
24 3%3 2 ' ' e "L
. 1 )# a+ N%, u.8 B7 !
01
<
)IH 5K " ' 7' 6 23 )8 = = C =' ). t s B 2 S. +7, F a+
600 [, ( D I + 6 = 13% + .3J(5 1 ' e @c+
" ' 7' 01
<
Z ) XJ+ ) =7 '3P! 0+
50 3H 01
<
.3 1 9 P! 3
] #I1 >*I = T }*/% B' + Z Y '
)
Emongor, 2004
( - X%'
"5 1 . ) '
! ! 9 ) f u
- 1 "5 7' 27 ! I1 [, =' ). . 08' ] #
@c+
"L l % 7' 6 .3 2 ' ' e @c!
3 "O' e B, E (ED' " '3<
)
EC1
7' 6 .(
&3+ =' >*Ia+ B3% *;
2 uJ8 6V )c e " '3< 2 2 S. +7, F a+ = + ) B, B * %
3 "O' e B, E (ED' )
EC2
= T }*/% 3H .(
.3 1 )# a+ 7 )@ ' 7' >*I
EL (%) = (EC1/EC2) × 100
.
B, ) d
=EL
>*I = T }*/% 3H
EC1
) D ' E (ED' " '3< =
EC2
) *% E (ED' " '3< =
2 '
<
- % )IH C = ' 5'
MSTATC
) X!
B*+7, 7' < 9 S% + )$ c+ =' 0 Ia!
LSD
' 5' - % 7' " N%
Excel
2 /( ' < ' * % l ='
.3
/"
01
- e ' = 1 27'3%' *+ & /H 6% ' ) X! i (%
'3c+ 3J% + ! /H - e ' ) ' B .% 6 $ *%4 5 2 '* = T }*/% 01 ] Bp ( % ] l $I
] 0 5 I ] #I1 ] >*I ] "C $+
01 = 13% + ). '*< -'3%' u.8 ! B7 7' ( ?@
5 3H ) 05 / 0 & /! (P≤
JP+
'
JSJ+ '3c+ ). 01 l $I v% 7' +' .3J( ' tK(8' 01 @e ] JP+
' 23< .+ N%, 9
"#$% .3.%
= -* %*+, ) &' ( % rI(_+ = <
] #I1 ] Bp ( % l $I '3c+ 3J% + ! /H ] 0 5 I ] #I1 >*I 2 '* = T }*/%
"C $+
'*< -'3%' u.8 ! B7 ]
! 01 = 13% + JP+
' 7' ( ?@
5 3H
"5 Bp ( % ). "5 l $I '3c+ +' ." ' ! 01 @e ). u.8 ! B7 ] #I1
JP+
' 3J% + ! /H rI(_+ = < ($ ." '3%
! B7 ] Bp ( % 01 ] l $I '3c+
! 01 " ' 7' 6 = 13% + ). u.8 JP+
' 7' ( ?@
5 ) c " ' 3H
! = 1 27'3%' *+ & /H JP+
' ' ." '3%
"#$% le 0 c(+
-* %*+, ) &' ( % = <
($
0 5 I ] #I1 ] D*I 2 '* = T }*/%
-'3%' u.8 ! B7 ] Bp ( % '3c+ ] ' '*<
JP+
'
" '
> 3;) = <
2 3 .(
> 3;
2 . i (%
' 6% ' ) X!
"#$% le &' ( % = <
) -* %*+, JSJ+ Bp ( % l $I 0 5 I B' + ". ($
6 $ *%4 5 .
Table 2. Results of variance analysis effect of cultivar, nitrate and ammonium ratios and substrate on chlorophyll, calcium, nitrogen, manganese in Phalaenopsis.
Mean of squares df
Source of variation Chlorophyll Electrolyte leakage Manganese Nitrogen Calcium
Petal Leaf Root Leaf Petal Leaf
Leaf Petal Leaf
0.003 ns 0.028 * 0.105 ns 281.01ns 0.037*
0.012ns 4.162**
659.681**
881.512**
1 Cultivar (C)
0.357 * 0.628 * 0.238 ns 562.12**
0.031ns 0.246**
0.383**
383.102**
581.451**
3 NO3/NH4 ratio (N)
0.528 **
0.482 **
0.389 **
49.03* 0.091ns 0.157ns
0.006ns 16.28ns 3.109ns
2 Substrate (S)
0.168 **
0.258 **
0.018 ns 71.37*
0.011ns 0.046*
0.009**
71.381* 46.318ns
2 C× N
0.001 ns 0.015 ns 0.019 ns 14.021**
0.004ns 0.007ns
0.002ns 9.106ns 6.91ns
2 C× S
0.003 * 0.014 ns 0.006 ns 39.314ns 0.017ns 0.034ns
0.003* 7.317ns 18.504ns
6 N × S
0.004 ns 0.017 ns 0.003 ns 31.34**
0.007ns 0.001ns
0.004* 8.41*
15.141* 6
C× N × S
0.001 0.038 0.013 8.871 0.006 0.004
0.003 9.316 10.161
48 Error
24.19 20.21 22
16.35 19.01 24.02
25.01 17.21 19.07
- CV (%)
** * :ns
& /! f ! ! ) JP+
> (C' ?@ ' 5
1 3H
& /! *#%
JP+
' .
*, **, ns: Significantly difference at 5 and 1% of probability level and non-significantly difference, respectively.
> 3;
3 . i (%
le ' 6% ' ) X!
"#$%
<
". ($ -* %*+, ) &' ( % = 6 $ *%4 5 u p*D*5 *+ & /H
.
Table 3. Results of variance analysis effect of cultivar, nitrate to ammonium ratios and substrate on morphological traits in Phalaenopsis.
Mean of squares
d.f Source of variation
Leaf area
Dry weight of aerial plant
fresh weight of aerial plant
Dry weight of root
fresh weight of root
Diameter of petal
Vase life
74371.415 * 1957.41**
35612.172**
78.239**
8581**
12.107ns 8.007**
1 Cultivar ©
426.238 * 331.412**
1157.521**
47.261ns 1462.765ns
3.51ns 1.358**
3 NO3/NH4 ratio (N)
11.512 ns 31.872ns
1607.391ns 1.351**
41.09**
1.712ns 0.638*
2 Substrate (S)
6.372 ns 56.507*
548.284* 0.568ns
36.90**
7.308ns 0.381ns
C× N 2
4.629 ns 5.412ns
59.186ns 0.361ns
26.186ns 0.474ns
0.682ns C× S 2
2.214 ns 6.31ns
381.59ns 0.197ns
23.1073* 0.986ns
0.256ns N × S 6
4.472 ns 12.415**
187.357**
0.274ns 32.942ns
0.481ns 0.171ns
C× N × S 6
2.81 9.006
374.631 .158
21.416 .285
.259 48 Error
15.21 10.05
12.42 23.41
18.32 18.54
11.25 -
CV (%)
** * :ns
JP+ & /! f ! ! ) > (C' ?@ '
5 1 JP+ & /! *#% 3H . '
*, **, ns: Significantly difference at 5 and 1% of probability leveland non-significantly difference, respectively.
9 S% + )$ c+
2 '
<
9 ( ) ' B .%
9 (. 9 JM < ] #I1 D*I 2 '* = T }*/%
"#$% 01 " ' 7' 6 = 13% + 75
) 25
B' + ) -* %*+, &' ( % ) l $I &' ( % 3H 24 / 16 3H ' *;
"#$% . 90
) 10 3H
'3c+ 7' W ) -* %*+, &' ( % ) l $I &' ( % ] 0 5 I = 1 27'3%' *+ & /H ) c
tK(8' JP+
' "#$%
75 ) 25 &' ( % 3H
" '3% -* %*+, &' ( % ) l $I > 3;)
4 )j < .(
B, )X (% "5 \< -* %*+, ) &' ( % "#$%
6EL ] "C $+ l $I '3c+ H*`_+
\< 01 = 13% + " / S & #P .3 /% \< ."5 "#$% 01 "5 = T }*
90 75
l $I `JL 5 9 + ! )X (% &' ( % 3H Bp ( % !' ( % G J+ \ ' 5' ." ' D*I 2 '*
\ ' 5' oL l $I &' ( % 3J% + 'TW >*Ia+
) * + "5 l $I "vIW
Marschner, 1995
.(
'T1 ! H JL 9 ( N+ 7' E Bp ( % EI L
/ 01
<
" 3+ ." ' 23 )8 =
" / N+ ! " ' 7' 0#e Bp ( % t `+
) ' 01 " ' 7' 6
Druge, 2000; Pineda et
al., 2010
.W = T }*/% .(
= 0+'*L 7' E D*I
01 = lN+
+ ) 3
Sairam et al., 2011
.(
D*I 2 '* = T }*/%
] #I1 = ' 01 = <
"5 \ ' 5' &' ( % ) -* %*+, "vIW \ ' 5' )
Souri, et al,. 2018
B' + ) -* %*+, \ ' 5' .(
10 !
25 = T }*/% \< oL 'TW >*Ia+ 3H
7' \ \ ' 5' )E D C 3 1 >*I 25
3H
2 1 \J! L*% X ' oL +
* S & #P .
' 2 '* F a+ (. B*! 3 D*! F ' 9 X ' oL ) 1 + l<' 5 =3 ' F ' D*I l $I 3J% + H JL 7' 8 5 [T; >K(8'
+
* D*I 2 '* - Ea( ' \< B, )X (% )
) " '
Souri et al., 2009
.(
"#$% ] 0 5 I B' + 9 (.
75 3H
* %*+, ) - 25 3+, " 3 &' ( % 3H
> 3;) 4 .(
-* %*+, ! ) " ' 9 ' S% )X (% 9 '
"#$%
7' \ = <
25 H JL ' [T; 3H
"#$% 9 ' J ." ' (. JSJ+ H*`_+ E + & /H 7' = $ =3 I 0+ L -* %*+, ) &' ( % B < 1 u p*D*5 *+ u p*D* 5 &' ( % ." '
-* %*+, +
%'*!
7' 8 EI L ' *#N oL 3
* 2 1 JSJ+ H*`_+ E + 'TW H JL )
Kronzucker et al., 2001
0 5 I ='*(a+ .(
x*@ "#h+ )@ ' 2 1 (J *(5 ! H*`_+
) ' Bp ( %
Marschner, 2011
S & #P .(
%p ( % & # ! +
%'*!
0 5 I ) X! 9I !' 3 D*! 3
) 3< ' e ! "a! ' 2 1 "5 = T }*/%
Druge,
9E + (. -* %*+, Q _ (. 0 5 I .(2000
" K I - % E+ Q _ " ' B > P5 W =' <
B*!
B* K , Q ) " ' = (. = <
-* %*+,
3 D*!
+
* 9 + !*I1 3J% + F ' 3C & # ! .3%
X ' Y ( ' F ' 13JJ *#N ! " ' 9E + ) .3 %
7 23 )8 01 9 + !*I1 > h+ B'*JL JP+ ! Q _ 01 " ' 7' 6 L \ ' 5' '
) " ' ] #I1 = \<
Zamani et al., 2011
.(
'*(a+
E ] 9 + !*I1 = *#N -* %*+, l = 1
) 3 +
Kronzucker et al., 2001
9 ( *@% < .(
"#$% l $I '3c+
75 ) -* %*+, 3H 25
3H
+ & # ' ' )X (% 9 ' 23 3 9 ' ) 3+, " 3 &' ( % 7 t `+ l $I *# B*! = 7 ) 3J
' 9E + -* %*+, 7' 6 L \< 0 4 7' E "
01 " ' ) 3 23 )8 = <
Starkey &
Pedersen, 1997
.(
"#$% l $I '3c+ 9 (.
90 &' ( % 3H
) 10 B' + ) -* %*+, 3H 71
/ 2 23< .+ 3H
"#$% ) 3 1 75
) &' ( % 3H 25
3H
JP+ tK(8' -* %*+, ( ?@ '
7' 5 3H
"#$% +' " '3%
= <
50 25 ) &' ( % 3H 50
75 JP+ tK(8' -* %*+, 3H > 3;) " ' '
4 .(
Bp ( % !' (% G#J+ )j < ) " ' JP+ 9 ' ) 9 ' 0 L "L \ ' 5' oL t Q u 7' * (.
l $I [T;
+
* \ ' 5' oL S t Q 7'
B, "vIW ) 1 + "5
Marschner, 1995
)X (% .(
"#$% ) % +7 J#+ c ca! Z ' 1 b ca! 9 ' 7' \ -* %*+, = 1 E 50
'TW >*Ia+ 3H
). F *! l $I [T; B' + 3 1 23 ' 01 = <
"5 l $I "vIW % 6 $ *%4 5 01 ] = <
) "5 \<
Wang & Chang, 2017
. ' "c @+ (
) 3%3 )X (% 9 ' ) 9 cca+ 9 JM <
\ ' 5'
`JL 9 ' "vIW \ ' 5' oL 'TW >*Ia+ l $I 3 1 7 ] #I1 ] ). 3J% + rI(_+ = < -'3%'
)
Mortensen et al., 2001; Nielsen & Starkey, 1999;
Starkey & Pedersen, 1997
( .
> 3;
4 9 S% + )$ c+ . '
"#$%
<
% rI(_+ = -* %*+, ) &' (
6 $ *%4 5 u p*D*5 *+ u p*D* 5 = < q8 8 .
Table 4. Mean comparison effect of different ratios of nitrate to ammonium in some physiological and morphological indices of Phalaenopsis.
Electrolyte leakage (%) SPAD
index Calcium
(%) Total
nitrogen (%) Leaf area
(cm2) Diameter of
petal (cm) Vase life
(day) NO3:NH4 ratio
16.71 b 0.43 c
2.71 a 3.48 a
116.25 a 7.64 a
10.32 b 90:10
16.24 b 0.59 b
2.69 a 3.57 a
118.23 a 7.78 a
12.62 a 75:25
23.67 a 0.71 ab
1.53 b 3.34 a
106.34 b 7.49 a
10.21 b 50:50
26.19 a 0.86 a
1.39 b 3.65 a
101.38 b 7.36 a
7.68 c 25:75
> (C' ?@ = ' JP+ & /! € (.+ t C u 0e'3C = < 9 S% + B*( <
5 .3% '3% 3H
In each column, means followed by at least a common letter, are not significantly difference at 5 percent probability level.
= 1*I; oL 'TW >*Ia+ -* %*+, 7 "vIW 7' l J+ l $I 3J% + 'TW H JL 8 [T; 7'
". ($
+
* `JL 9 ' *# B, )X (% )
2 1 +
* )
Adams, 1966; Siddiqi et al., 2002
.(
7' \ f ! ! ) &' ( % ) -* %*+, "#$% ) % +7 60
) 40 a+ 3H )($ = , * l($ 'TW >*I
7 01 EI L l ( l $I *# 0 D ) 3 1 ) "5 \<
Bar-Yosef et al., 2009
Bp ( % G#J+ .(
2 1 3 +* %*+, G#J+ = (. ! !' ( % -* %*+, \ ' 5' )EJ ' Q _ . ' ". ($ pH
B3 =3 ' 3 + \<
oL ). F a+ (.
+ l $I H*`_+ H JL 8 [T; >K(8' 1
) " ' 2 1 > + % 3 7' = 1*I; B, )X (% )
Carr et
al., 2020
.(
- ! 0 Bp ( % v% 7' - e '
"#$%
<
&' ( % =
! -* %*+, ) JP+
' 7' ( ?@
5 3H
3J( '3%
> 3;) 4 )X (% 9 ' .(
& # ' ' ) g 5 9 '
+ = C 2 1 ) TU! = * G#J+ < B*j ) 3J 0 Bp ( % v% 7' 9 ' J " ' %p ( % & # !
.3% ' ' e ?@ u
"#$% ] "C $+ 9 (.
75 &' ( % 3H
) 25 B' + ) -* %*+, 3H 23
/ 118 G + (+ (%
"#$% ) 3+, " 3 90
% 3H ) &' ( 10 3H
f ! ! ) " ' ' e ?@ u -* %*+,
"#$%
<
= 50 / 50 75 / 25 tK(8' -* %*+, ) &' ( %
JP+
'
" '
> 3;) 4 7 23 )8 01 EI L .(
< !
"#$%
<
= 75 ) &' ( % 3H 25
-* %*+, 3H )
3C 'TW >*Ia+pH
8 7' (. (
"#$%
50 / 50 -* %*+, ) &' ( % )
'TW >*Ia+ pH
3C 3 C F ' " ' ( 100
) -* %*+, 3H
i (% 9 ' J .3 /H ) EI L &' ( % 3H /H -* %*+, \ ' 5' EI L \< ) 3< + B .%
= 1*I; € %*+, " &' ' )X (% 'TW >*Ia+
( l $I [T; 7' ) " ' l
Marschner, 1995
.(
"#$%
50 / 50 -* %*+, &' ( % 3H >*Ia+ pH
3C 'TW 8
] Ej* 7 01 3 \< oL
) 3 1 B,
Zieslin & Snir, 1988
"C $+ 9 (. .(
B' + ) 23 ' 23 )8 01 ] 113
(+ (%
< ($ )$ c+ Y + " ". ($ G + =
" D 2 KP %3P+ ) * 2 KP Y + " ".
) 3+, " 3 %3P+ ) * 2 KP " 7 +
Trelka et al.,
-*J1 / ' " ". ($ 6 $ *%4 5 ) TU! .(2010
&' ( % "#$%
78 3H 8 2' < -* %*+, 3H
14 '3P! ] ?@ >*Q \ ' 5' oL 2 ' 3H
'3P! ] ) 3 1 01
Wang, 2010
] 27'3%' .(
) - Nj u 7' 'TW H JL \ ' 5' 6 $ *%4 5 ". ($ B*$% ; 'TW >*Ia+ N% "vIW ) "5 \ ' 5' 9
Lee & Lin, 1987
.(
"#$%
<
! -* %*+, &' ( % rI(_+ = JP+
'
"#$% 01 @e 9 (. )E *@ ." '3% 01 @e 75 ) &' ( % 3H 25
B' + ) -* %*+, 3H 98
/ 7
) c ) 3 23< .+ (+ (%
"#$%
<
) &' ( % =
) c ca! Q ." ' ' e = +, ?@ u -* %*+, rI(_+ = < ($ 6 $ *%K5 01 @e "5 1 - X%' ! " 7 + %3P+ ) * Y + " )I ; 7' ".
JP+
' " '3%
)
Trelka et al., 2010
.(
"#$% 01 " ' 7' 6 = 13% + 9 (.
75
) &' ( % 3H 25
B' + ) -* %*+, 3H 62
/ 12 7
) &' ( % "#$% = < ! - ! ) 3 3 1 "#
tK(8' -* %*+, JP+
' 6 = 13% + 9 ( ." '
"#$% ! 01 " ' 7' 25
) &' ( % 3H 75
01 " ' 7' 6 " / .3+, " 3 -* %*+, 3H 'TW >*Ia+ Bp ( % =4 "#$% 7 23 )8 ) 60 B, 9 ?@ ) "#$% (G + (+ - 1 )
40
) " '3% (#h+ ! (G + (+ - 1
Manimaran et
al., 2017
"5 (. &' 3 <* ) 23 q_.+ .(
*#N oL ( D*I 2 '* ( ( D (ED' ".%) 7' = $ " ' 7' 6 " / 01
<
(J 7 =
+ ) 1
Ichimura et al., 2003
7' 2 /( ' .(
5 / 2 I +
2' < -* %*+, &' ( % >*+
8 / 4 &' ( % >*+ I +
l $I 01 '3P! " ' 7' 6 L >*Q \ ' 5' oL
) 3 1 7 01 01 @e
Banijamali & Feizian,
.(2018
q8 E 5 = <
" *V 0+ L
3 =' ". ($ ) B3 0 3#! =' 'T1 ! ) " ' B < 1 Guerin et al., 2001
.(
" ! ] 0 5 I q8 +
) " D
B' + 68 / 0 Jj ] ! ) * +
u " D
! ] 0 5 I 9 ( ." ' ' e = +, ?@
"8 " * +
" = < ! ) 3 23< .+ " D
tK(8' Jj ] JP+
' 7' ( ?@
5 3H
" '
> 3;) 5 0 5 I B' + \< 0 4 7' E .(
9E + =4 "#$% 7' % " ' "8 " * C/N
Bp ( % ) 9 "#$% 9 S% + \ +7, 9 ' )3 "8 " * 35
.( *
"8 " * f ! +
" D
"#$%
'*+ 8 " \ ' 5' B, > #% ) 4 C/N
B3 € a(+ W % "8 " * *;*+ D, r Pg 3 oL Bp ( % H*`_+ %3P+ H JL 8
1 + 2 1 .
" * f ! 0+'*L 9 ' &' '
"8 + 0 5 I 9 ( ) * *N.+ K+ " D
/( ' b ca! i (% ) 3J( ' ] " *V 7' 2
) "8 " * % ! , 2 1 ". ($ B'*JL
9/
) ' "c @+ 8
Angelo & Titone, 1988
.(
"#$%
4 C/N
7' !4 ) 20
23% ' 7 0+ L u (
" *V Bp ( % H*`_+ H JL 8 =7 '7, '*+ 8 3 D*! oL 1 + "8 " *
2 1 =' +
* )
Hue & Sobieszczyk, 1999
( .
" * ! 2 1 "5 0 Bp ( % 9 ( *@% <
"8 + Jj ] = < ! ) 3 23< .+ " D tK(8' = +, v% 7' " D ^*I_+ "
JP+
'
] ! 0 Bp ( % 9 JM< 0 5 I B' + ." ' Jj +
= +, ?@ v% 7' " D tK(8'
JP+
'
" ! +
" '3% " D
> 3;) 5 ( 9 ' 9 ' J .
q8 !
-'3%' u.8 ! B7 v% 3 = <
7' E .3J( ' ' e = +, ?@ u ). '*<
" * ". ($ B < 1 f J+ % 3 0 4 "#$% ! 7' % &4K(8' "8 [T; C/N
\< ) XJ+ Bp ( % [T; \< ." ' Bp ( % 0 5 I 3J% + Bp ( % ) )($ ' & # !
&' 3 <*
)X (% 2 1 +* L rPg oL ) ... <
) 3 \<
-'3%' ] ?@ \< B, > #%
0 4 7' . 1 + ). 3 \< 9 JM < '*<
). 3 \< S
"8 " * ! +
" D
B * 4 ($ = * 9 !4 )E *@ ." ' ($ EC
"8 " * ! +
B' + ) " D
mS/cm
08 / 2
3 1 23< .+
> 3;) 6 .(
" * ($ 2 1 JSJ+ ?@ 9 !4 B' + ) " D +"8 27
/ 180 3 23< .+ -'
7' < ! ) c ) JP+ tK(8' = +, v%
" ' '
> 3;) 5 =' = g H JL 7' E JSJ+ ) 3Jj < .(
*; +' + . 2 1 (J *(5 3J ' 5 " * (0 Bp ( %) %p ( % & # ! \<
"$%'*(% 2 1 ($ B, 5 '3c+ *; "8 )( ' (#h+ ! 3 = < q8 .3
> 3;
5 9 S% + )$ c+ . '
($
".
6 $ *%4 5 3 = < q8 8 .
Table 5. Mean comparison effect of substrates on some Phalaenopsis growth indices.
SPAD index
Total nitrogen (%) Manganese (ppm)
Fresh weight of aerial plant (g) Dry weight of aerial plant (g)
Fresh weight of root (g) Dry weight of root (g)
Substrate
0.48 b 1.34 b
180.27 a 47.31 b
3.86 b 35.87 ab
3.31 b Bark+ perlite
0.64 a 2.37 a
113.51b 54.84 a
4.79 a 42.62 a
3.58 ab plane Leaf + perlite
0.68 a 2.41 a
79.63 c 55.58 a
4.95 a 38.57 a
3.76 a Peat mass+ perlite
> (C' ?@ = ' JP+ & /! € (.+ t C u 0e'3C = < 9 S% + B*( <
5 .3% '3% 3H
In each column, means followed by at least a common letter, are not significantly difference at 5 percent probability level.
> 3;
6 9 S% + )$ c+ . '
". ($
E 5 = < q8 8 .
Table 6. Mean comparison effect of substrates on some physical and chemical indicators.
Bulk density (g/cm3) Water capacity
(%) Porosity
(%) Air capacity
(%) Manganese
(ppm) EC
(ms/cm) pH
Substrate properties
0.20 a 286.34 b
89.51 b 35.6 b
189.29 a 2.08 a
7.03 a Bark+ perlite
0.24 a 237.14 c
83.26ab 30.51 b
127.37 b 1.21 b
6.86 a plane Leaf + perlite
0.10 b 452.17 a
95.12 a 47.57 a
75.01 c 1.02 b
5.91 b Peat mass+ perlite
> (C' ?@ = ' JP+ & /! € (.+ t C u 0e'3C = < 9 S% + B*( <
5 .3% '3% 3H
In each column, means followed by at least a common letter, are not significantly difference at 5 percent probability level.
" ' 7 JSJ+ = C "8 " * ". ($
f L 7' E 9 ' *;
" * = C ". = < ($ = <
F a+ *`_ JSJ+ ) " ' 9 ' "8 = <
+ 2 1 " X ' oL =3 ' B, )X (% ) *
+ ) 3 =3 &K(8' 3%'*!
Hoog, 2001
*@ .(
)E
! ). '*< -'3%' u.8 ! B7 9 ( = 7 9 ' J .3 1 3< .+ " D +"8 " * 3 23% ' 7 0+ L u "8 " * JSJ+
. + . 6 $ *%4 5 23 '
7' Jj ] " *V = < s *`_+ B7 "8 " * " *V ?@ l< = +, v%
3 1
JP+ tK(8' " +' > 3;) " ' '
6 .(
($ 3 9 = < s *`_+ B7 )j <
u# ".
" 5 s " H 8 ) );*! +' ." ' !
B, B7 ($ [, = '3NS%
+
%'*!
.3 & /(+ 3
" ". ($ [, = '3NS% " 5 s 9 !4 +
B' + ) " D 17
/ 452 3 1 23< .+ %7 3H
^*I_+ Jj ] "8 " * = < ! ) tK(8' " D JP+
'
" ' > 3;) 6 )j < .(
B < ) 3 (. ($ [, = '3NS% " 5 s + \< , & '*% ( = , B' + ( 2 1 ) 2 ' Y ( ' )X (% .3 3<'*8
($ ) 3J + B ' )(E% 9 ' )X (% 9 ' . * 3 0H C '*< -'3%' u.8 ! B7 9 !4 "
9 !4 Jj ] ". ($ B, 7' 6 q8 '*< -'3%' u.8 ! B7 JP 3 = <
3 1 23< .+ ). u.8 ! B7 9 !4
> 3;) 5 4 7' E 3 .(
). f J+ 3 0
= '3NS% " 5 s B * > P(+ Jj ] ". ($
2' < ($ [,
EC pH
" * "#$% f J+
2' < " 4 k 5 0I8 3H .3 "8 ). )J N 3 oL !4 ='*< XC 3H 6 $ *%4 5 23 ' B < 1 .3 1 '*< -'3%'
23 )(
) N%, ) "#$% Y + "
3< 3% * 23 )( "8 " * = < ^*I_+
" * ) "#$% = ! 7 = < ] 2 $8 ) );*! B 3 "8
"#$%
<
) &' ( % rI(_+ =
) 3% * -* %*+,
Wang & Chang, 2017
.(
D ) 0
% u
< q8 B *
= 5 E
"
Jj ]
' ) .+ 3 3<
9
! 1 3 ' J . 9
' ' Jj ] " *V
=
$% ( 0
<
= 3#!
0 B3
' Y ( 0 e B'7 ' f J+ ($ )
= D*!
3
1 B <
7 (J + .3
-* %*+, ) &' ( % rI(_+ x*@ 0 c(+ &' ' le ) ' B .% - e '
Memphis
= 13% + 9 (.
01 "#$%
75
% 3H
&' ( ) 25
%*+, 3H -*
B' + ) 96 / 12 le ) " ' 7 tK(8' Kobe
JP+
' ?@
5
" '3% 3H 0E )
1 .(
&' ' 9 JM <
- e ' ". ($ 0 c(+
) XJ+
< '*< -'3%' u.8 B7 9 !4 ) 23 9 ' " D ^*I_+ Jj ] " ($ le
* 3< .+
0E ) 2 .(
0E 1 . 9 S% + )$ c+
0 c(+ '
"#$%
-* %*+, &' ( % le
" ' 7' 6 L .6 $ *%4 5
Figure 1. Mean comparison interaction effect of nitrate and ammonium ratio and cultivar on vase life of Phalaenopsis.
0E 2 . ' 9 S% + )$ c+
0 c(+
". ($
le '*< -'3%' u.8 B7 .6 $ *%4 5
Figure 2. Mean comparison interaction effect of substrate and cultivar on shoot dry weight of Phalaenopsis.
"#$%
75 ) &' ( % 3H 25
-* %*+, 3H
< / = < q8 ' ! 9 (.
! 9 (N 9 ' J 3J( ' 6 $ *%4 5 le .3 )(8 J
!4 9 13% +
= le " ' 7' 6
Memphis
". ($ ) 3 "#
"
." ' ' e
3 N )J ).
'*< -'3%' ". ($
Jj ] +
%'*!
D ) 3 0
5 s B * > P(+
"
'3NS%
= 2' < ($ [,
EC
B, f J+ pH
.3 "8 " * ) "#$%
! 'T1
= le < 3 Jj ] " *V
+7, *+
\ ) .+
"
' J . * Y + 9
+
%'*!
) 3
' f J+ ($ B'*JL
=
$ *%4 5 6 . E
REFERENCES
1. Adams, F. (1966). Calcium deficiency as a causal agent of ammonium phosphate injury to cotton seedlings. Soil Science Society of America Journal, 30, 485-488.
2. Angelo, D. G. & Titone, P. (1988). Evaluation of alternative potting media in Dieffenbachia amoena and Euphorbia pulcherrima. Acta Horticulturae, 221, 183-188.
3. Anonymous. (2020). Statistics of the office of flowers and ornamental plants (Unpublished statistics).
Agriculture Ministry of Iran. (In Farsi).
4. Banijamali, S.M. & Feizian, M. (2018). Effects of nitrogen forms and calciumamounts on growth and elementalconcentration in Rosa hybrida cv.‘Vendentta’. Journal of Plant Nutrition, 41, - Issue 9, 1205-1213.
5. Bar-Yosef, B., Mattson, N.S. & Lieth, H.J. (2009). Effects of NH4: NO3: urea ratio on cut roses yield, leaf nutrients content and proton efflux by roots in closed hydroponic system. Scientia Horticulturae, 122, 610-619.
6. Bi, G., Li, T. Gu, M., Evans, W.B. & Williams, M. (2021). Effects of fertilizer source and rate on zinnia cut flower production in a high tunnel. Horticulturae, 7, 1-11.
7. Biswas, S.S. & Singh, D.R. (2019). A manual on orchid education. ICAR-National Research Centre for Orchids Publisher, 75 p.
8. Carr, N.F., Boaretto, R. M. & Mattos, J. D. (2020). Coffee seedlings growth under varied NO3−: NH4+
ratio: Consequences for nitrogen metabolism, amino acids profile, and regulation of plasma membrane H+-ATPase. Plant Physiology and Biochemistry, Elsevier Publisher, 154, 11-20.
9. De Capdeville, G., Maffia, L.A., Finger, F.L. & Batista, U.G. (2005). Pre-harvest calcium sulfate applications affect vase life and severity of gray mold in cut roses. Scientia Horticulturae,103(3), 329-338.
10. Druge, U. (2000). Influence of pre-harvest nitrogen supply on post-harvest behavior of ornamentals:
importance of carbohydrate status, photosynthesis and plant hormones. Gartenbauwissenschaft, 65(2), 53-64.
b
a a
b
a a
0 1 2 3 4 5 6
bark +perlite Plane leaf + perlite peat moss + perlite
dry weuight of airal plant(g)
Substrates & cultivars
Kobe Memphis
11. Emongor, V.E. (2004). Effects of gibberellic acid on postharvest quality and vase life of gerbera cut flowers (Gerbera jamesonii). Agron, 3(3), 191-195.
12. Gabriels, R., Keirsbulk, W. V. & Engels, H. (1993). A rapid method for the determination of physical properties of growing media. Acta Horticulturae, 342, 243-247.
13. Ghazanshahi, J. (2006). Soil and plant analysis. Aeizh Publications. (In Farsi).
14. Guba, W. (1994). The effect of different NH4/NO3 ratios on the production and quality of gerbera grown in rockwool. Journal of Fruit and Ornamental Plant Research, 2, 143-155.
15. Guerin, V., Lemaire, F., Marfa, O., Caceres, R. & Giuffrida, F. (2001). Growth of Viburnum tinus in peat-based and peat-substitute growing media. Scientia Horticulturae, 89, 129-142.
16. Hatamian, M. & Souri, M.K. (2019). Postharvest quality of roses under different levels of nitrogenous compounds in holding solution. Open Agriculture, 4, 79-85.
17. Hoog Jr, J.D. (2001). Handbook for modern greenhouse rose cultivation. International Cut Flower Growers Association. Wageningen University Publishers.
18. Hue, N.V. & Sobieszczyk, B.A. (1999). Nutritional values of some biowastes as soil amendments.
Compost Science & Utilization, 7(1):34-41.
19. Hwang, S.J. & Jeong, B.R. (2007). Growth of Phalaenopsis plants in five different potting media.
Jouranl of the Japanese Society for Horticultural Science, 76 (4), 319-326.
20. Ichimura, K., Kawabata, Y., Kishimoto, M., Goto, R. & Yamada, Y. (2003). Shortage of soluble carbohydrates is largely responsible for short vase life of cut ‘Sonia’ rose flowers Journal of the Japanese Society for Horticultural Science, 70, 292-298.
21. Kronzucker, H.J., Britto, D.T., Davenport, R.J. & Tester, M. (2001). Ammonium toxicity and the real cost of transport. Trends Plant Science, 6, 335-337.
22. Lee, N. & Lin, G.M. (1987). Controlling the flowering of Phalaenopsis. In: Proceedings of a Symposium on Forcing Culture of Horticulture Crops,8 August,Taiwan, pp 27–44.(In Chinese with english abstract).
23. Lemaire, F., Rivie`re, L.M., Stievenard, S., Marfa, O., Gschwander, S. & Giuffrida, F. (1998).
Consequences of organic matter biodegradability on the physical, chemical parameters of substrates.
Acta Horticulturae, 469, 129-138.
24. Lennartsson, M. (1997). The peat conservation issue and the need for alternatives. In: Proceedings of the IPS International Peat Conference on Peat in Horticulture, 2 – 7 November, Amsterdam, pp. 112-121.
25. Manimaran, P., Rajasekar, P., Rameshkumar, D. & Jaison, M. (2017). Role of nutrients in plant growth and flower quality of rose: A review. International Joural of Chemical Studies, 5(6), 1734- 1737.
26. Mantovani, C., Renato, D. M. P. & Kathia, F.L.P. (2015). Foliar diagnosis in Phalaenopsis orchid plants subjected to application of nitrogen. African Journal of Agricultural Research, 10(53), 4906- 4912.
27. Marschner, H. (1995). Mineral nutrition of higher plants(2 th ed). Academic Press, San Diego.
28. Marschner, H. (2011). Mineral nutrition of higher plants. Academic Press, London.
29. Mascarini, L., Lorenzo, G. & Vilella, F. (2005). Nitrogen concentration in nutrient solution, post harvest life andflowers commercial quality in hydroponic gerbera. Acta Horticulturae, 697, 371.
30. Mengel, K, & Kirkby, E.A. (1987). Principles of plant nutrition(4th ed.). Bern: International Potash Institute.
31. Mirani, A.A., Abul-Soad, A.A. & Markhand, G.S. (2017). Effect of different substrates on survival and growth of transplanted orchids (Dendrobium Nobile cv.) into net house. International Journal of Horticulture and Floriculture, 5(4), 310-317.
32. Mortensen, L. M., Ottosen, C. O. & Gislerod, H. R. (2001). Effect of air humidity and K: Ca ratio on growth, morphology, flowering and keeping quality of pot roses. Science of Horticulture, 90, 131-141.
33. Nielsen, B. & Starkey, K. R. (1999). Influence of production factors on postharvest life of potted roses. Postharvest Biology and Technology, 16, 157-167.
34. Pineda, J., Sanchezdelcastillo, F., Gonzalez A.M. & Vazquez-Alarcon, A.(2010). Chrysanthemum response to foliar methanol application and nitrogen source in nutrient solution. Journal of Terralationo American University, 28(2), 129-137.
35. Roude, N., Nell, T.A. & Barrett, J.E. (1991). Longevity of potted chrysanthemums at various nitrogen and potassium concentrations and NH4: NO3 ratios. HortScience, 26(2), 163-165.
36. Sairam, R.K., Vasanthan, B. & Arora, A. (2011). Calcium regulates gladiolus flower senescence by influencing antioxidative enzymes activity. Acta Physiologiae Plantarum, 33(5), 1897–1904.
37. Sanghamitra, M., Dilip Babu, J., Bhagavan, B.V.K. & Salomi Suneetha, D.R. (2019). Role of potting media in the cultivation of orchids. International Journal of Current Microbiology and Applied Sciences, (01), 218-223.
38. Siddiqi, M.Y., Malhotra, B., Min, X. & Glass, A.D.M. (2002). Effects of ammonium and inorganic carbon enrichment on growth and yield of a hydroponic tomato crop. Journal of Plant Nutrition and Soil Science,165, 191-197.
39. Souri, M.K. & Roemheld, V. (2009). Split daily application of ammonium cannot ameliorate ammonium toxicity in tomato plants. Horticulture, Environment, and Biotechnology, 50, 384-391.
40. Souri, M.K., Goodarzizadeh, S., Ahmadi, M. & Hatamian, M. (2018). Characteristics of postharvest quality of chrysanthemum cut flowers under pretreatment with nitrogenous compounds. Acta Scientiarum Polonorum Technologia Alimentaria, 17(3), 83-90.
41. Starkey, K.R. & Pedersen, A.R. (1997). Increased levels of calcium in the nutrient solution improves the postharvest life of potted roses. Journal of the American Society for Horticultural Science, 122(6), 863-868.
42. Starkey, R. K. & Pedersen, A. R. (1997). Increased levels of calcium in the nutrient solution improve the post-harvest life of potted rose. Journal of the American Society for Horticultural Science, 122, 863-868.
43. Taiz, L. & Zeiger, E. (2013). Fisiologia vegetal (5th ed). Sinauer Associates, Inc, 952 p.
44. Trelka, T., Bres, W. & Kozlowska, A. (2010). Phalaenopsis cultivation in different media part 1.
Growth and flowering. Acta Scientiarum Polonorum, Hortorum Cultus, 9(3), 85-94.
45. Wang, Y. T. & Chang, Y. C. A. (2017). Effects of nitrogen and the various forms of nitrogen on halaenopsis orchid-A review. Horttechnology, 27(2), 144-149.
46. Wang, Y.T. (2010). Phalaenopsis mineral nutrition. Acta Horticulturae, 878, 321-334.
47. Zamani, S., Kazemi, M. & Aran, M. (2011). Postharvest life of cut rose flowers as affected by salicylic acid and glutamine. World Applied Sciences Journal, 12(9), 1621-1624.
48. Zieslin, N. & Snir, P. (1988). Responses of rose cultivar Sonia and the rootstock Rosa indica major to changes in pH and aeration of the root environment. Acta Horticulturae, 226, 167-173.