Illustrations
Chapter 4
The Stability of Linear Feedback Systems
4 - 1
Illustrations
4 - 3
Absolute Stability, Relative Stability
2 4 1 3
1 3 1
1 3 1 5 1 3
1 1 1
1 1 1
, ,
n n n n n n
n n n
n n n n n n
n n n
a a a a a a
b b c
a a a a b b
a a b
Routh array
2 4
1
1 3 5
2
1 3 5
3
1 3 5
0
1 n
n n n
n
n n n
n
n n n
n
n n n
n
s a a a
s a a a
s b b b
s c c c
s h
4 - 4
Illustrations
0 0
1 0
1 1
0 2
b s
a s
a a
s
4 - 5
Illustrations
4 3 2
1 1
1 0
2 4 10 6 0 10 0 0 0 10 0 0 s
s
s c
s d
s
4 - 8
Illustrations
0 0 2
0
2 1 8
K s
s
K s
K
Stable
4 - 10
𝑑𝑈
𝑑𝑠 = 4𝑠 + 0 0
8
0 0
8 2
4 1
0 1 2 3
s s s s
4 0
Illustrations
1
( )
2( 2) ( ) ( 2)( 2 )( 2 ) q s s U s s s j s j
4 - 11
( ) 2 1 ( 1) U s s s s
4 - 12
𝑈 𝑠 = 𝑠2 + 1
𝑑𝑈
𝑑𝑠 =2𝑠 0
1
0 1
0 2
1 0 1
0 1
0 1
2 3
s s s s s
𝑑𝑈
𝑑𝑠 =4𝑠3 + 4𝑠 4 4
2
Illustrations
4 - 13
𝑑𝑠 =42𝑠 42
Illustrations
observing the relative real part of each root. In this diagram r2 is relatively more stable than the pair of roots labeled r1.
4 - 16
Illustrations
4 - 17
𝑠 = 𝑠𝑛 − 1
vehicle. Select K and a so that the system is stable. The system is modeled below.
4 - 18
Illustrations
Ka s
c s
Ka b
s
K s
Ka s
0
3 1
3 2
3
8 ( 10 ) 0
17 1
4 - 19
Illustrations