• Tidak ada hasil yang ditemukan

Chapter 7 Design of PID Controllers

N/A
N/A
Protected

Academic year: 2024

Membagikan "Chapter 7 Design of PID Controllers"

Copied!
25
0
0

Teks penuh

(1)

Chapter 7

Design of PID Controllers

(2)

Illustrations

7-2

(3)

This is the simplest form of control

(4)

Illustrations

7- 4

(5)
(6)

Illustrations

7- 6

(7)
(8)

Illustrations

7- 8

A proportional controller (Kp) will have the effect of reducing the rise time and will reduce, but never eliminate, the steady-state

error.

An integral control (Ki) will have the effect of eliminating the steady-state error, but it may make the transient response worse.

A derivative control (Kd) will have the effect of increasing the stability of the system, reducing the overshoot, and improving the transient response.

(9)

Proportional Control

By only employing proportional control, a steady state error occurs.

Proportional and Integral Control

The response becomes more oscillatory and needs longer to settle, the error disappears.

Proportional, Integral and Derivative Control All design specifications can be reached.

(10)

Illustrations

7- 10

CL RESPONSE RISE TIME OVERSHOOT SETTLING TIME S-S ERROR

Kp Decrease Increase Small Change Decrease

Ki Decrease Increase Increase Eliminate

Kd Small Change Decrease Decrease Small Change

(11)

1. Obtain an open-loop response and determine what needs to be improved 2. Add a proportional control to improve the rise time

3. Add a derivative control to improve the overshoot

4. Add an integral control to eliminate the steady-state error

5. Adjust each of Kp, Ki, and Kd until you obtain a desired overall response.

Lastly, please keep in mind that you do not need to implement all three controllers (proportional, derivative, and integral) into a single system, if not necessary. For example, if a PI controller gives a good enough response (like the above

example), then you don't need to implement derivative controller to the system.

Keep the controller as simple as possible.

(12)

Illustrations

num=1;

den=[1 10 20];

step(num,den)

G s( ) 1

s2 10s 20

7- 12

(13)

T s( ) Kp

s2 10 s (20 Kp)

Kp=300;

num=[Kp];

den=[1 10 20+Kp];

t=0:0.01:2;

step(num,den,t)

(14)

Illustrations

Kp=100

7- 14

(15)

T s( ) Kd s Kp

s2 (10 Kd) s (20 Kp)

Kp=300;

Kd=10;

num=[Kd Kp];

den=[1 10+Kd 20+Kp];

t=0:0.01:2;

step(num,den,t)

(16)

Illustrations

Kd=20

7- 16

(17)

T s( ) Kp s Ki

s3 10 s 2 (20 Kp) s Ki

Kp=300;

Ki=70;

num=[Kp Ki];

den=[1 10 20+Kp Ki];

t=0:0.01:2;

step(num,den,t)

(18)

Illustrations

Ki=100

7- 18

(19)
(20)

Illustrations

7 - 20

(21)

Manual Tuning:

(22)

Illustrations

7 - 22

(23)
(24)

Illustrations

7 - 24

(25)

Referensi

Dokumen terkait

Hasil pengujian kendali LQR pada gerak sudut roll, pitch, dan yaw mampu mempertahankan kestabilan quadrotor dengan nilai rise time, settling time, steady state error,

Respon dinamik kecepatan kendaraan kontrol PID dan PID adaptif dengan input step 25 m/s mengalami kecepatan konstan (settling time) pada permukaan aspal kering,

a Settling Time and b Overshoot Set Point Tracking Figure 7 a and b explain the comparison of the PID controller's disturbance rejection response, 1-DOF PID and 2-DOF PID tuning, as

Pseudocode of fitness evaluation Input: kp,kd, integration step size = step_size = 0.005; Fitness Score: for i:= 1 to µ do Initialize; // Initialize Manipulator Parameters

The time response parameters, including rise time Tr, percent overshoot Mp, settling time Ts and steady state error Ess of the PID controller and the fuzzy logic controller FLC for the

Karakteristik dari masing-masing parameter sistem kendali PID dapat dilihat pada tabel 2.1 Tabel 2.1 Karakteristik Parameter PIDYuan&Liu,2012 Penguatan Rise time Overshoot Settling

Output respon Parameter RPM Open Loop No Parameter Hasil 1 Waktu Puncak tp 39 s 2 Settling Time ts 52 s 3 Nominal RPM 298 RPM 4 Setting point 300 RPM Selanjutnya dapat menentukan