Online ISSN: 2345-6957 Homepage: https://jci.ut.ac.ir/
University of Tehran Press
Evaluation of the Effect of Foliar Application of Brassinosteroid on Physiological Characteristics and Yield of Rapeseed Genotypes Under
Late-Season Drought Stress
Shahryar Kazemi1 | Mahsa Rafati Alashti2 | Ghorban Khodabin3
1. Department of Agricultural Sciences, Payame Noor University, Tehran, Iran. E-mail: [email protected] 2. Department of Agricultural Sciences, Payame Noor University, Tehran, Iran. E-mail: [email protected]
2. Corresponding Author, Department of Agronomy, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran. E-mail: [email protected]
Article Info ABSTRACT
Article type:
Research Article
Article history:
Received: February 04, 2022 Received in revised form:
July 05, 2022
Accepted: July 31, 2022 Published online: April 16, 2023
Keywords:
Brassinosteroid, drought stress, oil percentage, oil seed,
relative water content.
In order to study the effect of brassinosteroids on yield and physiological characteristics of rapeseed genotypes under late-season drought stress, a factorial split-plot testis conducted in a randomized complete blocks design with three replicates for two cultivation years (2017-2019)inthe research farm ofIslamic Azad University, Karaj (Mahdasht). Experimental treatments include two levels of brassinosteroid (0 (the control) and 0.1 μmol) and two levels of irrigation (full irrigation (the control) and withholding irrigation from 50% flowering stage) as factorial in the main plots, with rapeseed genotypes (Nafis, Ahmadi, Okapi, Nima, and Niloofar) being considered as subplots. Foliar application of brassinosteroid under both full irrigation and withholding irrigation from the flowering stage increase seed yield, chlorophyll, and relative water content, compared to the control. The highest amount of soluble carbohydrates, leaf proline, and oil percentage have been obtained under drought stress and brassinosteroid application, i.e. 24.8%, 16.5%, and 2.5%, respectively, compared to the control conditions.However, Okapi genotype has had the highest stomatal resistance (24.59 s/cm), the lowest chlorophyll (1.49 μmolg-1FW), and seed yield (1960.5 kg/ha) in the conditions of withholding irrigation. Niloufar genotype has had the lowest stomatal resistance, the highest chlorophyll, oil percentage, and seed yield in both irrigation conditions. In general, in both irrigation treatments, the use of brassinosteroids improve physiological traits of rapeseed.
Cite this article: Kazemi, Sh., Rafati Alashti, M., & Khodabin, Gh. (2023). Evaluation of the Effect of Foliar Application of Brassinosteroid on Physiological Characteristics and Yield of Rapeseed Genotypes Under Late-Season Drought Stress. Journal of Crops Improvement, 24 (4), 111-126. DOI: https://doi.org/10.22059/jci.2022.338528.2676
© The Authors. Publisher: University of Tehran Press.
DOI: https://doi.org/10.22059/jci.2022.338528.2676
نا هﺎﮕﺸ اد تارﺎﺸ ا
یزروﺎﺸ ﯽ ارز
Homepage: https://jci.ut.ac.ir/
:ﯽﯿوﺮ ﻟا ﺎﺷ ۶۹۵۷ - ۲۳۴۵
!" # !$ %
& '"
( )
$ * +
,!
- . /0% ( 1 '
|1
|2
3
1 . .
2 .
.
3 . " #$ %&$
' %(
' )
* % .
!
"# $
% &'
:"# $ )*+
+ , - ./ 0
, - . / : 15 / 11 / 1400
, - 0 1+2 : 14 / 04 / 1401
, - 34 5 : 09 / 05 / 1401
, - 6 + : 27 / 01 / 1402
7
%8 9 : :
% 7 89 & 9 )
+( : ;&
+&<
=< %>
.?@ +A$ 8B
)
C&
+9 ) D ;& 'B E F 8G H +( I / E J K L> ( M ) % 7 89 & 9 )
+ @ NOJ :@ +( : )
K >
K N 8 J
%P : Q/ H
R S T ) , N +J O )
+S ( 9
" 9 + 97 - 1396 98 - 1397 E
+ , - @
+ X9
%Y
('P%, ) \ ]
%P .
N P ; @ , M
" B L>) % 7 89 & 9 ) +P 1
/ 0
Y )@ ^_H " M` ) )@ ( a ( 50
(+,% %>
) K >
N 8 J
K , + >
b I , E K ( J M + %MY c L ) H + J ,
.%&8J
" B +P % 7 89 & 9 ) d P ,
)@
)@ ^_H N Q]
; EJ
( M
?@ +A$ 8B N J 'A$
)
%, P
%P .
= a ) " B K % , ) %0
N> Y % 7 89 & 9 ) ) +( : ;& d P =< %> e ) = / ) 'A$ %P
P ) " 8& d Q
8 / 24 5 / 16 5 / 2
; ) %>
= . ) d P + fH ) +/ Y
' 0 = a ) )@ ^_H )
59 / 24 +8 9 ) D ( 8
f ) N J E = 49
/ 1
(
"
) ( M ( 5
/ 1960 ( 8(,
f J fH . ) =
' 0 E d P , ( M =< %> N J E = a )
) .'P )@
) )@ M , + S
g& % 7 89 & 9 ) K L> A ) )
.%P E h I / E J
:. ; <
Mi .j + 8`J + 8Pa@
. + ) %:
= k ) 1402 .(
9 ) + Dl
" B P + 9 ) 7 89 &
% ) : ) + K L>
J E I / ( + ( M
I b , E 'B P d
;&
( : + 8 NOJ ) . + 25
) 1 ( 111 - 126 .
DOI:https://doi.org/10.22059/jci.2022.338528.2676
: P $9m K 8 .
. %&$ ©
1 3 4 .
E )
Brassica napus L.
(
=
" OB f
+&<
] '9 )
Rathnakumar & Sujatha, 2022
(
) N / ' L a )
=<
) NH %Y
% 9 h 9 Ka &
=< % / +L_ _0
) + :
MP
+ ) % @
Qian et al., 2018
.(
, 1970
% / E ) N /
%P ' `M]
+ : n O
f,
= &o )
I , p % %q ) )
%P '9 )
FAO, 2015
f, .(
) = = &o
&
h
" OB
= E ] )
? &
+ +&8A ) KX<
) - rS &
h : M
h :
%&
L89 + ) P
Hamzei & Soltani,
n %, .(2012
+ >
A ) Ka OB ,
+&<
; EJ ( M
=<
' L
=<
) n O
+ :
+8`&>
f,
`9 = &o 8
+ , Q9 &8 ) f8$ 9 , F 8G +
' 0 NMB
)
;&
, +8$
<
+8$
'9 )
Rathnakumar & Sujatha, 2022
.(
;&
+( : )
$) A&]
,
%P Dm
'9 Q]
K s +( I / J
8: 9 +
P )
Dl ) ,%& J +( I / E J
+ M P ) N AH
E8&9 8J cL&
f$ / ) 8
> &
+ p<
?p]
+ , <
+/ 9
% @ , d) +)@
'B Dl H +
%, )
Salehi-Lisar et al., 2016; Rashtbari et al.,
t9 .(2020
)
;&
+( :
$)
% u '9 ) N
%`8 M]
K%P K%
;&
+( : Y
%P N $ 8
+( 8 I N
+_ B + 8$) )
Anjum et al., 2016
+,% Y ?@ AM .(
* $Y 'J QA9 '9 ?@ AM ) E M %P Y =
N) H ] ' M %P E, %`
) ;, E =< ' L
Khodabin et al., 2021
.(
j E
%P
;& '9 NOJ :@ +( :
Q]
; EJ ' 0
= / e )
;,
%0 N J
N 8B +A$
?@
e ) %P E H
)
Khayat Moghadam et al., 2021a
)@ ^_H d P E fH ;P =< ( M * $B ;, .(
%`) ) +,%
j E
%P ) '9
Sharghi et al., 2011
'J QA9 NOJ :@ +( : ;& E +9 ) .(
=< ( M 22
) %P E E fH
Rashidi et al, 2017
.(
= %&o j
+ +( I / E J ' ]
;, K D
? _
;&
+( : 0/
NMB )
;&
+( :
, ) 8J
%P '9 . L89 ,
, +, +(
,
;G)%
) )
; EJ
)
" OB d P
;&
) '9
Chen et al., 2018
%, P .(
+
%, f C&
%&&
,
%P ) S
) +
%&
NMB )
;&
, F 8G
%&
+( : K E J
= &9 P
, A )
%& G) )
Anjum
et al., 2016; Tanveer et al., 2018
.(
,% 7 89 & 9 ) ,
, +, +` AS N (
+
%&,
f C&
, ( M +( / ) 8
F 8G dA
) ,%& J +( I / J
+( I / E J , %P
;0 %
)
Sidhu & bali, 2022
( q v ) ' 0
) )
;&
,
<
+8$
+ F 8G , ) P
Xia et al.,
2009; Vardhini et al., 2011
;, - .(
a ' / `J ; EJ ,% 7 89 & 9 ) n O '9 ,
= / 8B Dm
) + 8J H %, ; EJ +( : ;& ) ) E NMB % + B) d P =
) %, K q
Saffari et al, 2014
.(
" B P A ) ) q& k ` ;, ) % 7 89 & 9 ) + %P ?@ n O +
?p] ; EJ ) + " ` '$
K+ Ca+2
8B ;,
Na+
e )
%& f C& K w , )
El-
Khallal et al., 2009
.(
f, = &o j E
%P '9
% 7 89 & 9 ) ) v )
N J ; EJ
a
N b
) / ) +8 o
Lima & Lobato, 2017
( M ( ) %P
Anjum et al., 2011; Gruszka, 2020
(.
f, +J %, ) N 89 x Y ;, - % 7 89 & 9 ) ;0 +9 ) o
)
&
h AP
;, ,
K $:
b I ( M +( I / E J K L> ) \ 0_& Q9 & b I = ` +( : ;& +P , ,
.'J K > E
2 7 . )
) C&
+) t9 b I , E )
% 7 89 & 9 )
;& d P +( :
+ @
) K >
N 8 J
%P : K
Q/ H R S T ) , +J O N +J O
+S ( 9 )
" 9 + 97 - 1396 98 - 1397 E
+ , -
@ + X9
%Y ) ('P%, ) \ ' `H
37 ] 45 +/ MP y 0 H 56
] 55 +H P " S 0 H
]
%P .
@ +9 &P , , NB
; @ +S
" 9 + ) " %]
1 (
%P 7 .'9
K OG T : NB
; @
" %]
) 2 7 (
%P '9 .
=
; @
N )@
z_9 N P )@
" M`
)
%, P (
^_H )@
Y 50
%>
%&)% f8$ 9) +,%
MP % BBCH
65 ( N
{ ) % 7 89 & 9 ) 24
- (% / & 9 ) + )
EBR, Sigma-Aldrich, USA
( L> 'C <
1 / 0 ( a
)
Ahammed et al., 2012; Shu et al., 2016
( ) K >
N 8 J ) K &
+ >
b I E , " %])
2 N P ( K J M + %MY c L ,
+ J
%&8J H .
'P + " 9 , t
10 1396
1397 ) . )
@ C&
= 9
] NAH
c % )@ C = ; @
) %P ) =,@ 9
z _$ h$ c|9 fGP
K , .%P
N P + @
;P
" S ) 'P F
;P ) 8 > J 30 +8 9 ) 8 F
&
)
&
P Y C
8J = ) > J .% %P K
, + >
180 8 9 + = ) > J 8 K
, + J 60
8 9 +
> J . ) 8 9 , ( = ) > J 8 )
, F
E 'P , o
+8 9 .%P 8J C 8
, +J O
* 9 ) " %]) T : @ g 8
3 % ) K A ( 150
^A& ) L$J 8(,
K L$J ( @ 150
K L/ 9 ^A& ) f 9 8 8(, (f 9 8
) K >
f,
@ ) p) 8$) 9 350
} ^A& ) I 8 8(, 100
Y 'P
150 Y
H 9 , + 100
Y u&<
, (+
) K >
.% %P EJ T : ) T 9
?9 J 1 . 1+
. 9 K +
% 1
< ; *:
"$L;
M .
? <
: 0 2 1396 9 1397
)@
w@
=M )
%&L9
= J
' A :
" 9 96
96 96 96 96 96 97 97 97 97
j ) ) (mm
0 8
/ 4 6 / 0 1 / 5 8 / 19 1
/ 31 1 / 14 5
/ 18 21
1 / 7
= 3 / 22 16 5 / 10 2 / 6 4
8 / 6 9 / 13 6 / 13 7 / 18 1 / 26
)@
w@
=M )
%&L9
= J
' A :
" 9 97
97 97 97 97 97 98 98 98 98
j ) ) (mm
7 / 0 1 / 30 8 / 64 9 / 33 9 / 58 5 / 12 7 / 49 6 / 25 13 0
= 8 / 23 2 / 16 9 3 / 7 8 / 4 8 / 5 2 / 9 8 / 14 4 / 21 9 / 26
?9 J 2 .
Q RS6
< . *
fH q 9
b I {
l &
%P b +L {
+ 9 "%8` 9 f H
@ J
$ J 8$
Canola (00)
%MY 9 "%8` 9 f H
@ J
8$
Canola (00)
c L 9 "%8` 9 f H
@ J 8$
Canola (00)
M 9 "%8` 9 f H
@ J 8$
Canola (00)
J 9 "%8` 9 f H
@ J 8$
Canola (00) Yazdandoost Hamedani, 2021
?9 J 3 C*R .
& D 9 U
V@
G 2 0 J .
W 0 : 30 - 0 9 60 - 30 + <
.
?*!
VR
1396 9 1397
M rM )
) (cm
;&
{ AP N
%, ' 8(/
T : +(
)
dS.m-1
( +/@ =)
) (%
L$J N) H
?p]
)
mg/kg
( f 9 8 N) H
?p]
)
mg/kg
( =,@
N) H
?p]
)
mg/kg
( N I 8
) (%
0 - 30 2
/ 7 91
/ 1 45
/ 0 4
/ 12 199
73
/ 3 07 / 0
30 - 60 5
/ 7 01
/ 2 46
/ 0 2
/ 13 164
90
/ 4 05 / 0
M rM )
) (cm
E& &
N) H
?p]
)
mg/kg
(
N) H
?p]
)
mg/kg
( c
N) H
?p]
)
mg/kg
(
*
) (%
' 9
) (%
=P
) (%
T : 'J )
0 - 30 75
/ 4 65
/ 0 6
/ 0 24
36
40
+ /
30 - 60 01
/ 3 96
/ 0 7
/ 0 27
34
39
+ /
n O F
;
= / L ( XJ ) ) K >
; E ) +8P 5
/ 2 8 / 8(, ) S ': &(
z_9
E %P q )
9 hA9 h$
F
; c .%P ~ G T : ) 0 r) _ ; @ ]
)@ 'P )
j +8 ) ] 8 ( K >
'J
%&) )@
* 9 ) K s
') S T :
rM
`9 )
L89 89
TDR
)
Germany, TRYME
/ /) ( ,
? 89 rM
100
+8 9 8 T : 'M$H a ) 8 'M$H , F 8G , K
+ @
H
%P ( q
%P . )
=
* 9 )@
M )@
N + K >
'J 50
%>
') S N) H ) L89
=
;, - ) ] )
= ' J i E T : ) (FC
_0
+ -
f7 ) (PWP
) Q 24 10
%>
) 50
%>
') S
N) H L89 +
) 89
% TDR
17
%>
+MqY (
T : G
%P )
Khodabin et al.,
(2022
fqY
?@
+J O ,
)@
) L89 d)
) 1 ( ) 2 ( A9 B .%P
_) 1 (
MAD = FC – θ/FC – PWP
z_9 T : +8) S q G • %Y `9
FC
)PWP
' J i %Y T : +MqY ') S Q
f7 + - _0 E
% +MqY ') S 8B θ
d9 %P + TDR
.%P )
_) (2
Vd = MAD × ASW × Rz × 10
ASW = FC – PWP
) _) 2 ( ?@ ASW
N) H
* 89 ) N) H L89 ( ) `9 rM Rz
100 +8 9 ) 8
Allen et al.,
% ((1998
10 +8 9) N %A ') D + ) 8
.'9 ( 8 = ` ' ]
" 8&
/ / ?@ %0 8& ) E q ,
) )@ ^_H N )@ d P +J O ?@ %0 N .%P L89 Q
5300 2600 8(, Q`( 8
" " 9 4200
2000
`( 8 . ) " 9 8(, Q
K J@ " 8&
) -
% L& M9 L89 ) + 8P )
250 + 8 / K 8M ( 8(, )
150 + 8 /
( 8(, ) K >
+A
% 7 89 & 9 ) " B .'J K >
NY )
"
c|9 r H
%P )
?@
MilliQ
" ) : ) ?@
=(V/V
10000 : 1 (
%P .
" B +P
^_H NAH 8L, h % 7 89 & 9 ) )@
Y 50
%>
+,%
)
%`) ) 9 f9 j
"% ) +89
GT-PS-12L
E q )
"
|9 q A h (+S G .%P
) %, P , )
f, S )
?@
MilliQ
Y 'A$
)
"
|9 % %P )
Ahammed et al., 2012
.(
' ]
%
= / ?@ +A$ 8B N J %& h I / E J K L>
' 9 11 9 zA>
e ) ]
`9 8J a )
;P +, 9 F + , K 'P )
%> .%P 8B
+A$
?@
e ) ) _)
A9 B ) %P
Rodriguez et al., 2002
.(
_) 3 (
RWC = (FW– DW) ÷ (TW- DW) ×100
@ 8B =RWC
+A$
?@
e ) =FW
e ) =TW
* @ e )
%P =DW
h :
.'9 e )
% 'C <
N J ) 89 ) 8 8J 8(|9
Varian Cary WinUV 6000i Australia
( q
?p]
" B
" S
\ , 645 663 8
'7 H
%P . g 8 Q$Y ) +
) A9 B
7
) %P
Arnon, 1949
.(
%0 e ) = /
= ] : Y E +,
15 %0 )@ ^_H " M c 1
/ 0
O F 8G NY q c %P (e )) +, = / %0
" S \ 520 8
d9 89
%P w 8 J 8(|9
% )
Bates et al., 1973
( Q$Y )
" ( )
)
.%P f, = &o ) 8
DELTA-T DEVICES Cambridge
' ] (
% ' 0
Y
] :
= , + L89 .%P ) +8Y $ h I / E J + % 9 Y ( M = ` ' ] %
8 / 4 , ^) 8
+ @ K
F ) OG = AM L89 ) c|9 .%P •
( M ' %P %] ) , p)
A9 B
%P .
%> = ` ' ]
=<
, M g&
c = h :
@ 72 +8 9 ]
) K%
48 M ' 9 L89 ) c|9 % %P ? 9@ ,
89 )NMR mq20 Bruker Germany
%> (
% =<
.%P
c
& MS L
x K @ +
@
n M
n M9
' ]
"
) ,
, " 9
; @
%P q
%`) q @ ) ' AD K
= M, ) c
,
; @ ,
) L89 EJ
@ G$ )SAS
4 / 9 ( Eq c
Q
% %P . )
$ 0 =
z_9 g&
%>
K D N) 08
j ) , + L89
%P .
3 9 :! ' .
3 . 1 3'; + 4 . (
g 8 Eq Q
, D
N) 08
" 9
× )@ N) 08 K D %> g& z_9 )@
× % 7 89 & 9 )
)@
× ) %> h z_9 E b I 'L>
' 0 +&`
" %]) ) 4
f .(
' 0 = d P
" B )@ ^_H N )@
+P ) % 7 89 & 9 ) ) Q
= 6 / 19 5 / 25 +8 9 ) D %P N> Y 8
) 'A$
" %]) %&8P H @ h %, P 5
) + " " 9 )@ ^_H .(
; EJ Q] Q 5
/ 30
4 / 25 ' 0 %>
e ) , " %]) % %, P ) 'A$
6 ' 0 E ;, .(
" 9
+ ') S + % ) ; EJ ) N) H
* 89 .'9 %P ) ;& K%P ;, QA9 'A$
$ 0
= f, )
;&
)@
×
; ) %MY b I N )@ d P b I
' 0 =
) 4 / 18 +8 9 ) D
@ h + c L b I ) 'P ( 8 f %&8P H
=
' 0 )
8 / 14 +8 9 ) D 'P H @ h M fH ) 'P r ` J fH ) ( 8
/ Y +
; ) )@ ^_H d P f =
' 0 = )
6 / 24 9 / 19 +8 9 ) D ) 8
Q
b I , " %]) %P %, J + 7
.(
' 0 b I M, )@ ^_H d P
; EJ = 'J ; EJ N )@ d P ) 'A$ ,
+( : ;& d P )
' 8$)
%P ,
+ ' 0 ; EJ v ) E H +( : ;& .%P )
+ ) P
Khayat Moghadam et al., 2021a
8$) ) ( %P
, 8 ) +9 89 ;, q
CO2
+ E8&9 8J ;, ) q& N J E ) P
Heidari, 2015
.(
;, v ) ;& d P % 7 89 & 9 ) )
' 0 E ?@ ' `x '$ %P
GA) A ) ;& d P g 8 ) %
;, - ,
f, ) 'P + :
El-Khallal et al., 2009
.(
?9 J 4
= < Z " D[, \ + . A9 < *; <
. &7 9 BC
& 8*#* D E ,*+8
0 : D7 /@, F
]L 0
K s ^) &
K `) =
@ ]
'0
e) "B K%,)
=/
N NJ
?@ +A$8Be)
=< %>
(M
" 9
** 1 48 /
** 107 1 / 992
**
14 / 171
**
69 /
** 0 3 / 221 2ns /
** 4 1 / 2393730
( ( ) " 9 4
01 / 1 2 / 4 94 / 0 02 / 0 41 / 0 72 / 0 7 / 225760
)@
** 1 31 /
** 891 31 / 3125
**
6 / 612
**
33 /
** 3 7 /
** 1261 5 /
** 49 36726009
" 9
× )@
* 1 23 /
** 11 56 /
** 76 40 /
* 10 11 /
** 0 95 / 36 81ns /
** 0 01 / 665881
% 7 89 & 9 )
** 3 72 /
** 2411 74 / 704
**
95 / 164
**
49 /
** 0 8 /
** 759
** 12 11829636
" 9
×
% 7 89 & 9 )
3 2ns / 2 17ns / 13 01ns / 4 0005ns / 00 64ns / 4 2ns / 1 5ns / 169516
% 7 89 & 9 )
× )@
** 3 26 / 60
**
2 /
** 46 55 /
* 37 13 /
** 0 72 /
* 39 1 /
** 4 3 / 1708137
" 9
×
% 7 89 & 9 )
× )@
3
534ns / 1 21ns / 7 77ns / 2 03ns / 0 64ns / 6 36ns / 0 9ns / 30596
" 9
× )@
× ( ( ) % 7 89 & 9 ) 28
21 / 1 28 / 3 15 / 1 01 / 0 5 / 1 54 / 0 59 / 40319
b I
** 2 5 / 73
**
8 / 118
**
37 / 31
**
12 /
** 0 49 /
** 64 6 /
** 3 2422913
" 9
× b I 2
98ns / 1 99ns / 4 34ns / 1 017ns / 0 51ns / 0 27ns / 0 09ns / 39771
)@
× b I
** 2 43 /
** 4 27 / 19 97ns /
** 0 044 /
** 0 5 / 6 11ns /
** 1 618390
" 9
× )@
× b I 2
41ns / 1 84ns / 2
* 43 / 2 008ns / 0 36ns / 0 31ns / 0 4ns / 60752
% 7 89 & 9 )
× b I 6
0ns / 94 04ns
/ 5 64ns / 1 005ns / 0 94ns / 1 6ns / 0 393421ns
" 9
×
% 7 89 & 9 )
× b I 6
36ns / 2 3ns / 4 52ns / 1 016ns / 0 11ns / 2 44ns / 0 41ns / 101927
)@
×
% 7 89 & 9 )
× b I 6
71ns / 0 46ns / 1 75ns / 0 005ns / 0 83ns / 0 09ns / 00 68ns / 145728
" 9
× )@
×
% 7 89 & 9 )
× b I 6 19ns / 1 73ns / 6 13ns / 1 009ns / 0 05ns / 2 19ns / 0 6ns / 75497
_:
64
89 / 0 42 / 1 01 / 1 016 / 0 29 / 1 31 / 0 16 / 19362
) K s Q x (%
77
/ 6 14 / 7 26 / 5 69 / 8 29 / 4 27 / 2 71 / 13
** * :ns
) Q +&`
" M8Y z_9 5
1
< %>
&`
+ .
?9 J 5 1+ " $ .
^:
G;
0 "+ K9.
× BC A9 < *; <
< . * E ,*+8 .
D7 0 :
%789&9) )μmol( )@
=/ )μmolg-1 FW(
'0 )S/cm(
e) "B K%,) )mg.g.FW(
NJ )μmolg-1 FW(
e) ?@ +A$8B )%(
=<8B )%(
(M )kg/ha(
)@
0 N 31b
/ 0 92±
/ 13 89a
/ 0 29±
/ 20 b
53 / 0 13±
/ 36 02b
/ 0 40±
/ 1 44b
/ 0 6±
/ 83 15a
/ 0 3±
/ 44 05b
/ 83 3435±
1 / 0 a
4 / 0 15±
/ 15 51a
/ 0 66±
/ 19 a
75 / 0 74±
/ 39 01a
/ 0 46±
/ 1 32a
/ 0 6±
/ 89 09a
/ 0 6±
/ 44 2a
/ 75 4±
/ 3885
92 LSD
/ 0 01 / 1 6
/ 1 05
/ 0 96 / 0 34 / 0 26
/ 198
^_H )@
Y 50 N %>
0 +, 37b
/ 0 3±
/ 17 66a
/ 0 72±
/ 25 07a
/ 1 3±
/ 45 032b
/ 0 / 0 1±
53b
/ 0 7±
/ 77 12b
/ 0 69±
/ 42 6b
/ 132 5±
/ 2134
1 / 0 3a
/ 0 7±
/ 20 58a
/ 0 52±
/ 25 52b
/ 0 34±
/ 34 034a
/ 0 19±
/ 1 58a
/ 0 4±
/ 82 14a
/ 0 74±
/ 43 6a
/ 92 3±
/ 3001
87 LSD
/ 0 72
/ 0 66
/ 1 08
/ 0 21 / 1 29
/ 0 6
/ 262
, 89 ) , N
= + , n Y
)
%&8$, * 9 )
@ z_9 LSD
" M8Y g&
%>
K L +&`
% % .