Internal Incompressible Viscous Flow
Contents
Part A Fully Developed Laminar Flow
Part B Flow in Pipes and Ducts
Laminar versus Turbulent Flow
𝑅𝑒 = 𝜌 ത𝑉 𝐷 𝑅𝑒𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 ≅ 2300𝜇
Laminar versus Turbulent Flow
Laminar versus Turbulent Flow
Flow Regions in a Pipe
The Entrance Region
𝐼𝑛𝑣𝑖𝑠𝑐𝑖𝑑 𝐶𝑒𝑛𝑡𝑟𝑎𝑙 𝑅𝑒𝑔𝑖𝑜𝑛
𝐸𝑛𝑡𝑖𝑟𝑒𝑙𝑦 𝑉𝑖𝑠𝑐𝑜𝑢𝑠
Flow between Parallel Plates
Fully Developed Laminar Flow Between Infinite Parallel Plates
نایرج داجیا لیلاد :
1 - تاحفص اب یزاوم راشف نایدارگ
2 - تاحفص یبسن تکرح
3 - تاحفص اب یزاوم نزو یورین دننام یمجح یورین
4 - دراوم بیکرت
Flow between Parallel Plates
Both Plates Stationary
Steady State + Fully Developed + ∆𝒑
Flow between Parallel Plates
Flow between Parallel Plates
Flow between Parallel Plates
Flow between Parallel Plates
For a Newtonian Fluid: 𝝉𝒙𝒚 = 𝝁𝒅𝒖
𝒅𝒚
Flow between Parallel Plates
Boundary Conditions:
Flow between Parallel Plates
Shear Stress Distribution 𝝉𝒙𝒚 = 𝒂 𝝏𝒑
𝝏𝒙 [𝒚
𝒂 − 𝟏 𝟐] Volume Flow Rate:
For a depth l in the z direction,
Flow between Parallel Plates
Flow between Parallel Plates
Upper Plate Moving with Constant Speed, U Steady State + Fully Developed + ∆𝒑 + Plate Movement
𝑼
Flow between Parallel Plates
تسا هدرک رییغت یزرم طیارش طقف ،یلبق لح و تلاداعم نامه .
New Boundary Conditions:
Flow between Parallel Plates
Gravity-Driven Flow on a Plate
Example 8.3 LAMINAR FILM ON A VERTICAL WALL
A viscous, incompressible, Newtonian liquid flows in steady, laminar flow down a vertical wall. The thickness, δ, of the liquid film is constant. Since the liquid free surface is exposed to atmospheric pressure, there is no pressure gradient. For this gravity-driven flow, apply the momentum equation to differential control volume 𝒅𝒙 𝒅𝒚 𝒅𝒛 to derive the velocity distribution in the liquid film.
Gravity-Driven Flow on a Plate
Gravity-Driven Flow on a Plate
Gravity-Driven Flow on a Plate
Gravity-Driven Flow on a Plate
Flow in a Pipe
Fully Developed Laminar Flow
in a Pipe
Flow in a Pipe
Flow in a Pipe
Flow in a Pipe
Boundary Conditions: 𝒂𝒕 𝒓 = 𝑹: 𝒖 = 𝟎 &
𝒂𝒕 𝒓 = 𝟎: 𝒖: 𝒇𝒊𝒏𝒊𝒕𝒆
Flow in a Pipe
Shear Stress Distribution
Volume Flow Rate:
Flow in a Pipe
Hagen-Poiseuille
Flow in a Pipe
Flow in a Pipe: Laminar or Turbulent
Flow in Pipes and Ducts
راشف تفا یلصا لماع هس :
1 - عطقم حطس شهاک
2 - لااب ور بیش Upward slope
3 Friction -
For Laminar Flow
Flow in a Pipe: Laminar or Turbulent
Shear Stress Distribution in Fully Developed Pipe Flow
Turbulent Flow?
𝑚𝑎𝑥. 𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠:
𝑢′& 𝑣′: randomly fluctuating velocity components in x-dir & y-dir
Reynolds Stress Viscous Shear Stress
Flow in a Pipe: Laminar or Turbulent
𝒏𝒆𝒂𝒓 𝒘𝒂𝒍𝒍: 𝒎𝒂𝒙 𝒚
𝑹 → 𝟎 , 𝒏𝒆𝒂𝒓 𝒕𝒉𝒆 𝒄𝒆𝒏𝒕𝒆𝒓: 𝒎𝒊𝒏 (𝒚
𝑹 → 𝟏)
سیو یشرب شنت هباشم زوک
Flow in a Pipe: Laminar or Turbulent
تسا رارقرب هراوید یور نانچمه شزغل مدع طرش .
𝒂𝒕 𝒘𝒂𝒍𝒍: 𝒖′& 𝒗′ = 𝟎
دوش یمن هدید لبق لکش یور قافتا نیا .
راوید دوخ یور
𝒚
𝑹 = 𝟎 لایس هتیزوکسیو زا یشان طقف شنت :
: وکسیو شنت ز
یحاون ریاس :
زوکسیو شنت +
زدلونیر شنت
میوش رت کیدزن هراوید هب هچ ره :
زدلونیر شنت
↑
The velocity profile for turbulent flow through a smooth pipe may also be approximated by the empirical power-law equation:
Flow in a Pipe: Laminar or Turbulent
𝑛 = 7
Flow in a Pipe: Energy Considerations
Energy Considerations in Pipe Flow
فرصم رب زوکسیو یاهورین ریثأت یسررب یژرنا
زوکسیوریغ ضرف اب 𝑬𝑮𝑳 :
تسا تباث .
هتیزوکسیو نتفرگ رظنرد اب 𝑬𝑮𝑳 ↓ :
یکیناکم یژرنا هدنروخ هتیزوکسیو
Flow in a Pipe: Energy Considerations
Flow in a Pipe: Energy Considerations
(1) 𝑊ሶ𝑠 = 0, ሶ𝑊𝑜𝑡ℎ𝑒𝑟 = 0.
(2) 𝑊𝑠ℎ𝑒𝑎𝑟 = 0 (although shear stresses are present at the walls of the elbow, the velocities are zero there, so there is no possibility of work).
(3) Steady flow.
(4) Incompressible flow.
(5) Internal energy and pressure uniform across sections 1 and 2 .
Flow in a Pipe: Energy Considerations
we have not assumed the velocity to be uniform at sections 1 and 2 , since we know that for viscous flows the velocity at a cross-section cannot be uniform.
رض زا هدافتسا اب نیگنایم تعرس فیرعت بی
یشبنج یژرنا حیحصت 𝜶
Flow in a Pipe: Energy Considerations Kinetic Energy Coefficient
For laminar flow in a pipe 𝛼 = 2
From n=5 to n=6 for high Reynolds numbers, α varies from 1.08 to 1.03;
For n=7, α=1.06.
Use the approximation α=1 in pipe flow calculations.
Flow in a Pipe: Head Loss
Head Loss
Using the definition of α, the energy equation:
÷ 𝑑𝑚:
𝑅𝑒𝑎𝑟𝑟𝑎𝑛𝑔𝑖𝑛𝑔:
Mechanical energy per unit mass at a cross section
Flow in a Pipe: Head Loss
نایم یکیناکم یژرنا فلاتا 1
و 2 ( مرج دحاو رب :)
𝑢2 − 𝑢1 :
ینورد یژرنا رییغت
𝛿𝑄
: 𝑑𝑚
زا یشان یترارح یژرنا لکش هب ریذپان تشگزاب فلاتا Friction
𝑖𝑓 𝛼 = 1 & ℎ𝑙 𝑇 = 0:
𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝐸𝑞.
𝑳𝟐/𝒕𝟐
Flow in a Pipe: Head Loss
÷ 𝑔: [𝑳]
Calculation of Head Loss
ℎ𝑙 𝑇 ൝ 𝑀𝑎𝑗𝑜𝑟 𝑙𝑜𝑠𝑠𝑒𝑠: 𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝐸𝑓𝑓𝑒𝑐𝑡𝑠: ℎ𝑙
𝑀𝑖𝑛𝑜𝑟 𝑙𝑜𝑠𝑠𝑒𝑠: 𝑓𝑖𝑡𝑡𝑖𝑛𝑔𝑠, 𝑏𝑒𝑛𝑑𝑖𝑛𝑔𝑠, 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑎𝑟𝑒𝑎: ℎ𝑙𝑚
Calculation of Head Loss
Major Losses: Friction Factor
For fully developed flow through a constant-area pipe
ℎ𝑙𝑚 = 0 𝒉𝒍
Calculation of Head Loss: Laminar Flow
رد یراذگیاج :
Calculation of Head Loss: Turbulent Flow
ن دوجو راشف تفا هبساحم یارب یلیلحت هطبار هتفشآ نایرج یارب دراد
.
زا یداعبا زیلانآ مینک یم هدافتسا
:
تباث عطقم حطس اب یقفا هلول کی رد هتفای هعسوت نایرج یارب :
Calculation of Head Loss: Turbulent Flow
دهد یم ناشن ار تیعبات هوحن طقف یداعبا زیلانآ .
دیاب قیقد ریداقم ندروآ تسد هب یارب جیاتن زا
experiment دوش هدافتسا
.
Experiments show that the nondimensional head loss is directly proportional to L/D
𝐿𝐻𝑆 ÷ 1 2
Kinetic Energy per Unit Mass
Darcy Friction factor, 𝒇
Calculation of Head Loss: Turbulent Flow
دیآ یم تسد هب یبرجت تروص هب کاکطصا بیرض .
Moody Diagram
لوهجم 𝑯𝒍
؟ 1 - هبساحم ،𝑹𝒆
2 - یربز ندناوخ ،لودج زا (𝒆)
3 - زا هدافتسا اب
𝒆
𝑫 & 𝑹𝒆 𝒇 ،
زا
دیآ یم تسد هب رادومن .
4 𝑯𝒍 -
Moody Diagram
Calculation of Head Loss: Turbulent Flow
Calculation of Head Loss: Laminar Flow
For Laminar Flow:
𝒇𝒍𝒂𝒎𝒊𝒏𝒂𝒓 = 𝟔𝟒 𝑹𝒆
Calculation of Head Loss: Turbulent Flow
To avoid having to use a graphical method for obtaining f for turbulent flows, various mathematical expressions have been fitted to the data. The most widely used formula for friction factor is from Colebrook.
Wall Shear Stress Eq.:
Calculation of Head Loss
Calculation of Head Loss: Minor Loss
Minor Losses
𝑀𝑖𝑛𝑜𝑟 𝑙𝑜𝑠𝑠𝑒𝑠 (ℎ𝑙𝑚)
𝑖𝑛𝑙𝑒𝑡 𝑎𝑛𝑑 𝑜𝑢𝑡𝑙𝑒𝑡
𝑒𝑛𝑙𝑎𝑟𝑔𝑒𝑚𝑒𝑛𝑡 𝑎𝑛𝑑 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑝𝑖𝑝𝑒 𝑏𝑒𝑛𝑑
𝑣𝑎𝑙𝑣𝑒 𝑎𝑛𝑑 𝑓𝑖𝑡𝑡𝑖𝑛𝑔
دراد دوجو یئزج فلاتا هبساحم یارب شور ود :
ℎ𝑙𝑚 = 𝐾 ത𝑉2
2 ℎ𝑙𝑚 = 𝑓𝐿𝑒
𝐷 ത𝑉2
2
𝐾: 𝐿𝑜𝑠𝑠 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝐿𝑒: 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 𝑝𝑖𝑝𝑒
Calculation of Head Loss: Minor Loss
Minor Losses: Inlets and Exits
negligible
Calculation of Head Loss: Minor Loss
Minor Losses: E𝑛𝑙𝑎𝑟𝑔𝑒𝑚𝑒𝑛𝑡s 𝑎𝑛𝑑 C𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛s For circular ducts
Calculation of Head Loss: Minor Loss
Losses caused by area change can be reduced somewhat by installing a nozzle or diffuser between the two sections of straight pipe.
Calculation of Head Loss: Minor Loss
Losses in diffusers: Pressure Recovery Coefficient
دوش یم هبساحم راشف تفایزاب بیرض مان هب یبیرض زا هدافتسا اب رزویفید رد فلاتا .
تسا هدش راشف شیازفا هب لیدبت یدورو یشبنج یژرنا زا نازیم هچ هکنیا اب لداعم .
= شیازفا راشف کیتاتسا راشف یکیمانید یدورو
1 2
𝒉𝒍𝒎?
Calculation of Head Loss: Minor Loss
Ideal (frictionless) pressure recovery coefficient:
𝐶𝑝𝑟𝑒𝑎𝑙 < 𝐶𝑝𝑖𝑑𝑒𝑎𝑙
𝒉𝒍𝒎?
Calculation of Head Loss: Minor Loss
𝒉𝒍𝒎?
Calculation of Head Loss: Minor Loss
For real fluid flow:
Calculation of Head Loss: Minor Loss
Minor Losses: Pipe Bends
Calculation of Head Loss: Minor Loss
Minor Losses:
Valves and Fittings
Pumps, Fans, and Blowers in Fluid Systems
Driving force for maintaining the flow against friction: a pump (for liquids)/ a fan or blower (for gases)
We generally neglect heat transfer and internal energy changes of the fluid (we will incorporate them later into the definition of the pump efficiency)
Pumps, Fans, and Blowers in Fluid Systems
∆ℎ𝑝𝑢𝑚𝑝 = 𝑊ሶ𝑝𝑢𝑚𝑝
ሶ
𝑚 = ∆𝑝𝑝𝑢𝑚𝑝 𝜌
When applying the energy equation to a pipe system, we may sometimes choose points 1 and 2 so that a pump is included in the system. For these cases we can simply include the head of the pump as a “negative loss”.
Noncircular Ducts
Hydraulic diameter
Internal Viscous Flow
Example 8.5 PIPE FLOW INTO A RESERVOIR: PRESSURE DROP UNKNOWN
A 100-m length of smooth horizontal pipe is attached to a large reservoir. A pump is attached to the end of the pipe to pump water into the reservoir at a volume flow rate of 0.01 𝑚
3
𝑠 . What pressure (gage) must the pump produce at the pipe to generate this flow rate? The inside diameter of the smooth pipe is 75 mm.
Internal Viscous Flow
Internal Viscous Flow
Internal Viscous Flow
Internal Viscous Flow