• Tidak ada hasil yang ditemukan

Journal of Innovation

N/A
N/A
Protected

Academic year: 2023

Membagikan "Journal of Innovation"

Copied!
10
0
0

Teks penuh

(1)

Journal of Innovation

& Knowledge

https://www.journals.elsevier.com/journal-of-innovation-and-knowledge

Conceptual paper

Information technology for supporting the development and maintenance of open innovation capabilities

Emmanuel Adamides, Nikos Karacapilidis

IndustrialManagementandInformationSystemsLab,MEAD,UniversityofPatras,Greece

a r t i c l e i n f o

Articlehistory:

Received6June2018 Accepted2July2018 Availableonlinexxx

Keywords:

Openinnovation ICT

Capabilities

Knowledgeengineeringandmanagement Collectiveandcollaborativeintelligence

a b s t r a c t

WediscussICTforOpenInnovation(OI)fromacapabilitiesperspective.Wedistinguishtwotypesof capabilitiesforOI:strategic,whichneedtobedevelopedsothattheorganizationcantakeadvantage ofanOIstrategyproactively,andoperationalfortheefficientimplementationofOIprocesses.ICTat thestrategiclevelsupportsdynamiccapabilitiesandrelatedcognitiveprocessesofmanagerialstafffor developingandusingtheappropriatelevelofabsorptivecapacityandactivetransparency,whereasICT aspartofoperationalcapabilitiesaimsatenhancingtheday-to-dayperformanceofOIactivities.Through analysisofcapabilities,weassociatespecificICTwiththefunctionalitiesrequiredintheentireOIprocess.

Payingparticularattentiontotheissuesofcollaborationandsophisticateddataanalysis,wealsocomment ontheseamlessintegrationofthesetechnologiesandtheirembedmentinOI-relatedorganizational processes.

©2018JournalofInnovation&Knowledge.PublishedbyElsevierEspa?a,S.L.U.Thisisanopenaccess articleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Undoubtedly, Open Innovation (OI) has become an estab- lished paradigm in innovation strategy. According to its main proponent, it is “the useof purposive inflows and outflows of knowledgetoaccelerateinternalinnovation,andexpandthemar- ket for external use of innovation, respectively” (Chesbrough, 2006). The adoption of OI by an organization implies that its innovationmanagementprocess(Tidd&Bessant,2014)becomes porous,andideas,concepts,designs,products,services,etc.,flow in and out of its boundaries. At the same time, internal and externalorganizationactors,suchasmanagers,users/customers, employees,suppliers,competitors,researchersandregulatorsare interconnectedinmanydifferentways.Infact,itisthedifferent human and non-human knowledge sources that are intercon- nected, while informational and knowledge items of different formsflowbetweenthemandaretransformedinmanydifferent ways.Clearly,inlargecomplexorganizations,thisisaccomplished inacomplexwebofsocialprocesses(Anderson&Hardwick,2017), inwhichparticipateagentsofdifferentviews,interests,cultures andpowerstatus(MotaPedrosa,Välling,&Boyd,2013),usually situatedgeographicallyandcontextuallyatadistance.

It hasbeenarguedthatorganizations aimingatan OIstrat- egymust beabletomanage theserelationships, processes and

Correspondingauthor.

E-mailaddresses:[email protected](E.Adamides),[email protected] (N.Karacapilidis).

agencieseffectively,inordertogainfromtheirdiversity(Sarker, Sarker,Sahaym, &Bjørn-Andersen, 2012).In other words,they need todevelop a setof capabilitiesfor making theirinterface totheexternalenvironment moretransparent,aswellastobe abletoabsorband assimilateknowledge fromdifferentsources inanefficientandeffectivemanner,inadditiontodisseminating knowledge-containing artefacts of value totheir external envi- ronment(Hosseini,Kees,Manderscheid,Röglinger,&Rosemann, 2017).Thesecapabilities arebased on, aswellascontribute to thedevelopmentof,anorganisation’sabsorptive(anddesorptive) capacity that leverages its knowledge management operational processes,sothat knowledgefromtherightsource(s)arrivesat therighttime,inthemosteffectivemanner.

This suggests that, in order to embrace OI, an organization shoulddevelopcapabilitiesattwolevels:(i)atthestrategiclevel (dynamiccapabilities),bypreparingitsmemberssothattheyare abletoabsorb,utilizeandtransformtherightexternalandinternal knowledgeintovaluetobedisseminatedtotheeconomythrough thedevelopmentoftheappropriateoperationalcapabilitiesand(ii) attheoperationallevel,forconnectingknowledgesources,aswell asforsupportingthetransferandtransformationoftherequired knowledge right.Given thecomplexity ofthese tasks(Sanchez, Heene,&Thomas,1996),inthecontextofpluralisticanddistributed modernorganizations,informationandcommunicationtechnolo- gies(ICT)haveaveryimportantroletoplayinthedevelopment, maintenanceandappropriationofthesecapabilities(Majchrzak&

Malhotra,2013).

Theuseof ICTinOIimplementationshasbeenstudiedfrom differentperspectives(e.g.Bengtsson&Ryzhkova,2013;Bugshan,

https://doi.org/10.1016/j.jik.2018.07.001

2444-569X/© 2018 Journal of Innovation & Knowledge. Published by Elsevier Espa?a, S.L.U. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

2015;Corvello,Gitto,Carlsson,&Migliarese,2013;Cui,Ye,Teo,&

Li,2015;Dodgson,Gann,&Salter,2006;Hrastinski,Kviselius,Ozan,

&Edenius,2010),andanumberofOIplatformsarenowavailable (Bieler,2016).Nevertheless,sofar,researchhasnotconsideredthe importanceandstructureofICTinfrastructureforOIoperational capabilitiesinaholisticmanner:themajorityoftheseeffortsasym- metricallyconcernpredominatelythefront-endoftheinnovation process,i.e.concentrateontheinteraction/interfacingoftheorgan- isationwithexternalparties,andpaylittleattentiontoknowledge integrationand(re)generation(Malhotra&Majchrzak,2016).They considerindividualfront-endOIprocesses,mainlyfromafunctional simplificationperspective,i.e.howtoreducethecomplexityofreal processesbyimposingstructure(orderedproceduralsequences), tosealoffprocessesfromtheirmessyandambiguousenvironment, and tomake them “transferable” bydetachingthem fromtheir socialcontext(Kallinikos,2011).Thisfragmentedandstylisedfocus toindividualOIprocessesandstakeholders(Corvelloetal.,2013) isdesirableonlywhentheobjectiveistodevelopstaticstrategies of(knowledge)depth/intensity,asfarasexternalknowledgeman- agementisconcerned(Cuietal.,2015),throughintegrationofan organisation’sinformationsystemswithspecificexternalknowl- edgesources(Barua,Konana,Whinston,&Yin,2004;Rai&Tang, 2010).LimitedresearchhasaddressedtheroleofICTinthedevel- opmentandmaintenanceofthedynamiccapabilitiesrequiredfor thedeploymentofmoredynamicOIstrategies(Cuietal.,2015).

AholisticconsiderationofICTforopeninnovationcanbefacili- tatedbyadoptingacapability-basedperspective.ICTartefactsof various forms are assets engaged in capability-defining knowl- edgeandsocialprocesses/routinesatdifferentlevelsandmodes.

Forinstance,thereareanumberofICTtoolsthatcanbeusedon thesideofactualOIoperationalprocessestodevelopandexploit organizationalabsorptive(anddesorptive)capacityina cooper- ativemanner for enhancingOI-related dynamic capabilities (in therestofthepaper,withoutlossofgenerality,weusetheterm absorptivecapacitytoincludetheintangibleassetofdesorptive capacity).These,togetherwithabouquetofICTtechnologiesfor supportingoperationallevelcapabilities,canprovidethebasisofa technologyinfrastructureforOI.Towardsthisend,inthispaper,by adoptinganinboundOIperspective(Gassmann&Enkel,2004),and byjuxtaposingOIcapabilities’requirementswithbasicinforma- tionsystemfunctionalitiesandassociatedtechnologyandsystems characteristics,wediscuss,for theentireOIprocess,theassoci- ationofknowledgemanagementcapabilitiestoICTsastheyare moderatedbyspecificOImodels/strategies.Theaimis tofacili- tatedmanagementdecisionsontheemploymentoftechnologyfor OpenInnovationstrategies.Theresearchanddiscussionarebased onsecondarysources,aswellasonthefindingsandtheexperi- encefromthedevelopmentanduseofrelatedcollaborativeand knowledge-managementinformationsystemsintheframeworkof asetofprivateandpublic,nationalandmulti-nationalprojects.

Thepaperalsodiscussestechnologiesfortheseamlessintegration oftheabovementioned ICTsand theirembedment inthe orga- nizationalprocesses,payingparticularattentiontotheissuesof collaborationandsophisticateddataanalysis.

OpenInnovation,organisationalcapabilitiesandICT requirements

StrategiccapabilitiesforOI

In the resource-based view (RBV) of strategy, competitive advantage is a function of the availability of certain resources and capabilities (Grant, 1997). Capabilities are constituted by assets/resources,suchasICTartefacts,androutines/processesfor deployingtheseassets (Amit&Schoemaker,1993).Ina generic capabilitiesperspective,strategiclevelcapabilitiesforOIarelinked

tothenotionofdynamiccapabilities(Teece,Peteraf,&Leih,2016), i.e.totheabilitytoselectorchangeoperational/ordinarycapabil- itiesandswitchstrategiesbetweenbreadth(diversity)anddepth (intensity)intheeffectiveuseofknowledgesources(Laursen&

Salter,2006).More specifically,theyarelinkedtoan organiza- tion’sability toinnovatethroughtheappropriationof theright knowledgebysensingtheenvironment,seizingopportunitiesand transformingitsinnovationprocess(es)andvalueofferings.Sensing isassociatedwithexploration,whereasseizingwithbothexploita- tion of the internalized environmental signals, ideas, concepts, technologies,etc.,aswellaswiththeexplorationoftheexternal environmentforgainingeconomicvaluefromtheinnovativeprod- uctsand/orservicesdevelopedthroughtransformingactivities.In theinboundopeninnovationapproach,alltheseactivitieswillhave acertaindegreeofopennesstoo(Tavakoli,Schlagwein,&Schoder, 2017),whiletheireffectivenesswilldependonthelevelofabsorp- tivecapacity(ACAP)oftheorganization(Cohen&Levinthal,1990), aswellasonitslevelof“activetransparency”,whichmaybedefined asaformof“generativesensing”(Cuietal.,2015;Dong,Garbuio,

&Lovallo,2016).

Activetransparencyallowsanorganisationtocontrolproac- tivelyandeffectivelyitsinterfacewiththeexternalenvironment, asfarasknowledgeinflowsandoutflowsareconcerned.Boththe activetransparencyandACAPofanorganisationdependonthe correspondingqualitiesofitsindividualmembers.Activetrans- parencyreferstoanactiveorganisationalinterfacethathasthe abilitytodevelophypothesesonthepossibleuseand effectsof incomingand outgoingknowledge items, and to test them for theirvalidity(Dongetal.,2016).ACAPdeterminesanorganiza- tion’scapabilitytorecognizethevalueofnewexternalinformation, assimilateit,andapplyittocommercialends(Cohen&Levinthal, 1990).Recentresearchdirectlyassociatesabsorptivecapacityto thedynamic capabilitiesframeworkandstressesitsimportance asadegrees-of-freedomprovidertowardsinnovationandchange (Teeceet al., 2016;Zahra&George,2002).Absorptive capacity isafunctionoftherichness/diversityofthepre-existingknowl- edgestructure,personalized(tacit)andimpersonalized(codified).

Hence,althoughsomeauthorsconsiderACAPasdynamiccapabil- ity(e.g.Lichtenthaler&Lichtenthaler,2009),inourviewitmore appropriateforOI,andclosertotheactualdefinitionofcapabilities, toconsideritasanintangibleaccumulatinganddepletingstrategic assetemployed/usedinorganisationalprocesses/routines.

Understanding dynamic capabilities requires understanding theirmicrofoundations(Dongetal.,2016;Helfat&Martin,2015).

Atthatlevel,theimportanceofthediversityofpriorknowledge inlearning(Cohen&Levinthal,1990)canbebetterunderstoodby consideringtwokeyattributesofmentalmodelsthataredirectly relatedtoabsorptivecapacity:complexityandcentrality(Nadkarni

& Narayanan,2005). Complexity is the result of the degree of differentiation(therange/diversityofinternalandexternalorga- nizationalconceptsincludedinthementalmodel)andintegration (degree ofconnectedness among concepts) ofthemodel. Com- plexchange-andinnovation-related mentalmodelsallowfirms tonoticeandrespondtoalargernumberofdifferentstimuli,thus increasingtheirinnovationcapacity.Theyallowmanagerstoscan theenvironmentandrespondtoincomingstimulimoreeffectively byassociatingenvironmentaleventswithelementsoftheexisting organizationalknowledgebase.Centrality,ontheotherhand,refers tothefocusandhierarchyofmentalmodels.Acentralizedmodel isfocusedaroundalimitednumberofcoreconcepts.Asaresult, it is complexmental models thatare responsible forincreased absorptivecapacityandactivetransparency,makingtheorgani- zationmoreresponsivetoexternalsignals,andbetterpositioned asfarasexploitationofthebenefitsofOIareconcerned(Doz,2013).

Knowledge creation is largely associated with interaction and socialisation (Nonaka & Takeuchi, 1995). So, a knowledge

(3)

management strategy for OI that aims at the efficient and effectivecreation ofknowledge fromdifferentintra-and inter- organizationalsources,aswellasataugmentinglearningcapacity, shouldbeprimarilytargetedontheuseofICT forthedevelop- mentofsocialcapital,ratherthanontheinstallationoftechnology systemsforthestorage,transformation anddistributionofcod- ified knowledge (Lichtenthaler &Lichtenthaler, 2009).Towards thisobjective,threemainareasofinterventionareofparticular importance:(i)interveningonthewaymentalmodelcharacteris- ticsinfluencetheaccumulationoflearningcapacity,(ii)improving managerialparticipationinthedevelopmentofinnovationstrate- gies and in the deployment of required operational processes, and(iii)improvingtheprocesses,methodsandtoolsforassess- ingthefutureenvironment.Inotherwords,theobjectiveofopen innovationand flexible learning asstrategic capabilitysuggests a personalization rather than a codification knowledge manage- ment meta-strategy (Scheepers,Venkitachalam, &Gibbs, 2004), payingparticularattentiontoidentifyinglearninggaps,ratherthan knowledgeones.Informationandcommunicationtechnologyhas animportantroletoplayinthisstrategicchoice.Thereisawide rangeoftechnologiesthatcanbeusedforaugmentinglearningpro- cessesandbuildingACAPandactivetransparency.In“Technologies forstrategicOIcapabilities”section,wediscussthesetechnologies inthecontextoftheirusefordevelopingandsupportingdynamic capabilitiesforOI.

OperationalcapabilitiesforOI

Inadditiontothestrategic(dynamic)OIcapabilitiesthatare associated with the development of an infrastructure for aug- mentingorganisationallearning,thedevelopmentofoperational levelcapabilitiesisnecessarysothatOIprocessesaresupported appropriatelyintermsofefficiencyandeffectiveness(Chen,Wang, Nevo,Benitez-Amado,&Kou,2015).ThestructureofOIprocesses dependsonthemodelofOIadopted.Ingeneral,therearefouroper- ationsmodelsassociatedwiththeinboundOIapproach(Möslein, 2013).Ininnovationmarkets,organizationsandindividualsactas seekersofinnovationsolutionsandsolversofinnovationproblems.

Thismodelis usuallyimplementedthrough intermediariesthat facilitatethematchingofproblemstosolutions.Inthemodelof firm-sponsoredinnovationcommunitiesagentsofdifferentsizeand complexitydevelopideas,discussconceptsandpromoteinnova- tion.Crowdsourcingisaparticularstrategyintheframeworkof thismodel.Ininnovationcontests,afirmgetsideasforproducts, services,solution,orevenbusinessmodelsfromdifferentsources (customers,suppliers,etc.)whicharealsoinvolved,inassociation withpanelsof experts,intheirevaluationand selection. When innovationtoolkitsareused,usersdevelopsolutionsinprescribed steps,sometimesusing standardcomponentsand modulesin a predefinedsolutionspace,andinteractingwiththecompanyto getfeedback.Theformertwoapproachesarebasedonadyadic (1:1),whereas thelattertwo ina network collaborationmodel (1:n/n:n).Innovationmarketsandtherelatedsocialproductdevel- opmentforums,aswellastheideascontests,providesolutionspaces witha highnumber ofdegreesof freedom,whereasinnovation andco-designtoolkitsandinnovationcommunities,throughpre- definedprocedures,restrictthesolutionspaceandprocesses(Piller

&Ihl,2013).

Regardingthe capabilitiesrequired to supportopeninnova- tion,afterreviewingrelatedliteratureanddistillingitsaggregate formulations (e.g. in Hosseini et al., 2017 and Lichtenthaler &

Lichtenthaler,2009),wecanconcludethat,inadditiontocollabora- tion(COLB),themostimportantcapabilitiesfortheimplementation of OI are: knowledge exploration (KXPL), knowledge exploitation (KXPT),knowledgeretention(KRTN),decisionmaking(DMKG),part- nerrelationshipmanagement(PREM),socialintegration(SINT),and

intellectualpropertymanagement(IPMA).Clearly,theimportance ofthesecapabilitiesvariesacrossthespectrumoftheabovemod- elsofOI,especiallyasfarastheupstreamstagesoftheinnovation processareconcerned.Acoarse-graininnovationprocessconsists ofthesequenceofactivities:ideageneration,selectionandcon- ceptualizationofproduct/service/process,technicaldevelopment, product/servicelaunch,and(possibly)improvementoftheconcept (Tidd&Bessant,2014).

Knowledge exploration (KXPL) is a capability needed in all modelsofOIfortheideagenerationphasetosupportthesourc- ing,internallyandexternally,ofasmanyaspossibleanddiverse ideasforproducts,concepts,etc.KXPLmayconcerntheexperi- enceavailable in theorganisation, experimentationcarried out withconceptsandideasintheorganisation,ortheacquisitionof externalknowledge(Tidd&Bessant,2014).Itisdirectlylinkedto absorptivecapacity,andifthereisnotavailableatasufficientlevel, intermediariescanactascompensators.Inaddition,intheinno- vation communitymodel, inthe samephase, social integration (SINT)capability (capabilitytofacilitateinteractionand coordi- nateindividualsbuildingrelationswithexternalentities,suchas universitiesandresearchinstitutes,orprojectsandprojectman- agersinotherorganisations)isrequiredtostrengthenrelationships inthecommunityandtodevelopsocialcapital(trustandqual- ity communications) and commonunderstanding.Moreover,in theinnovationtoolkitsmodelthat offersa morerestrictiveand structuredinteractionprocess,closerrelationshipswithexternal agenciesrequirehigherpartnerrelationshipmanagement(PREM) capability(capabilitytoidentify,assessandselecttherightpart- ners, as well as to motivate them so that they contribute to innovation).

In thesamemodel, PREM isnecessary fortheselection and conceptualizationphase,asexternalpartnersareactivelyengaged.

InallOImodels,thisphaserequiresacertainlevelofknowledge exploitationcapability(KXPT)tocombineexternalknowledgewith existinginternalone,motivateinternalsourcestocontribute,make tacit knowledgeexplicitandcommercializeit throughproducts andservices.Italsorequiresdecisionmakingcapability(DMKG) forconstructingandmanagingaportfolioofprojects(principally investment and resource allocation decisions) for the selected ideas/conceptsandformakingdecisionsonissuesrelatedtoIntel- lectualPropertyRights.DMKGandKXPTcapabilitiesarenecessary forthetechnicaldevelopmentstagetoo.Inaddition,organizations havetohaveeffectivemechanismsformaintainingtheirknowl- edge (knowledge retention capability (KRTN))that is produced duringthe technicaldevelopmentof theconcept/producttobe usedinconsecutiveprojectstoshortenthedevelopingtimeand thetimetomarket(marketlaunchphase).Knowledgeretention isalsoachieved,indirectly,byretainingrelationshipswithimpor- tantpartners-holdersofknowledge.Tohaveaneffectivemarket launchphasewithtimelyproduct/serviceintroductions,useofpre- viousknowledgeisnecessary(KXPT),aswellaseffectivepartner management(PREM).Before,oratthesametime,activitiesforthe managementofintellectualpropertymustbeundertakenbydecid- ingwhattodiscloseandwhatnot(needforintellectualproperty managementcapability,IPMA).IPMAcapabilityisrequiredinmost innovationprocessstagestoassessIPheldintheorganisation,to identifyIPneededandpossiblyheldbypartners,tovalueIPexposed tootherparties(importantininnovationcommunitiesmodel)and tosearchforIPforsourcing.

Operationalcapabilitiesarereifiedinorganizationalprocesses thatusespecificassets.Forinstance,theknowledgeexploration capabilityistypicallyreifiedina“knowledgeseekingandfinding”

organisationalprocesses.Infact,alltheaforementionedcapabili- tiesareassociatedwithprocessesthataredominatedbyactivities of collaborative interaction (between information sources) and transformation/processing(ofdata/informationitems).Inthecom-

(4)

Fig.1.Theproposedcapability-basedframeworkforOpenInnovationanditsassociationwithICT.

plex and pluralistic context of modern organizations, efficient deploymentoftheseactivitiesrequiresthesupportofICT(Cuietal., 2015).Intermsofbasicinformation systemsfunctionalities and operationstheserequirementscorrespondtoencodingtheuser(s) willandemotions,theautomaticorhuman-assistedaggregation of the encoded data, the computability of the data/information forconstructingmeaning(Alaimo&Kallinikos,2017),aswellas exchangeandtransformation,andstorageandretrievalofdatain variousformats.Morecomplexoperations/functionalities,suchas experimentation,dialoguing,processrepresentation,etc.arebased onthesebasicoperations.Technologiesfor implementingthese functionalitiesarediscussedin “TechnologiesforoperationalOI capabilities”section.Someofthesetechnologiescanbeassetsto both strategicand operationallevel capabilities. Ourdiscussion hasacriticalperspectivetowardsisolated/fragmentedadoption, arguingfor theirintegrationintheframework of a flexible ICT infrastructure.Fig.1depictstheentirecapability-basedframework forOpenInnovationdiscussedaboveanditsassociationwithICT.

ThespecificICTdepictedinthefigureforbothlevelcapabilitiesare discussedinSections“Technologiesfor strategicOIcapabilities”

and“TechnologiesforoperationalOIcapabilities”.

TechnologiesforstrategicOIcapabilities

Onthebasisofthethreeabovementioned(see“Strategiccapa- bilitiesforOI”section)areasofinterventionforbuildingstrategic dynamic OI capabilities for scanning, seizing and transform- ingknowledge, three knowledge-management-related practices (boundaryspanning,collaborativeproblemsolvingandparticipa- tivescenarioplanning)withtheirassociatedprocesses(routines) andICTtoolsets(assets)arepresentedbelow.Table1presentsthem inacompactform.

Boundaryspannersandboundaryobjects

Inmodernorganizationswithmodularanddistributed char- acteristics,there isaninherenttendencytolocalizeand embed knowledgeandlearningpracticeswithintheboundariesofindi- vidualmodules.Interfacing withothermodules isby meansof pre-defined,standardizedinterfaces.Clearly,thislogicincreases mental model centrality and fragments knowledge and know- ing,and theircreativeinterplay in strategicprocesses (Amin&

Cohendet,2004).However,OIrequiresthecreationof“hotspots”of

creativityandinnovationwherepeople“workingacrossfunction, nationalandorganizationalboundaries”areenergeticallyinvolved (Gratton,2013).Therequirementforcrossingboundariesisnotjust tofacilitatecommunication,butprincipallytoresolvethenegative consequencesoftheattitudesoftheindividualsfromeachorgani- zationandmoduleagainstalteringtheirownknowledge,aswell astoleveragetheircapabilitiesofinfluencingortransformingthe knowledgeusedbyothers.Knowledgeboundarieslimitnotonly organisationalprocessesforrespondingtoenvironmentalsignals whenchangesattheinterior,exteriorandarchitecturallevelofpro- cessesandproductsneedtotakeplace,butalsotheplanningforthe futurewhenknowledgegeneratedisbeingexploited.Twointerre- latedconceptshavebeendevelopedforovercomingtheproblems ofknowledgeboundariesandfacilitatingdistributedcoordination:

boundaryspannersandboundaryobjects.

Boundaryspannersareorganizationmembersassignedthespe- cificroleoffacilitatingthecollaborationofindividualsindifferent organizationsordifferentorganizationmodules.Theycoordinate activitiesacrossandontheedgeofboundariestheycrossoroverlap.

BoundaryspannerscanbecomplementedbyICTboundaryobjects, whichareartefactsusedtocreatesharedcontextamongdifferent partiesincross-moduleactivities.Carlile(2002)formedaclassi- ficationofboundaryobjectsintorepositories,standardizedforms andmethods,andobjects,modelsandmaps.Thislastcategoryis theonlyonethatdirectlysupportsthetransformationofknowl- edge,inadditiontorepresentationandlearning,andthereforeis suitableforovercomingknowledgeboundaries.

Boundaryobjectssuchasprocessmaps,strategymaps,process andsystemdynamicssimulationmodels,collaborativelymanipu- lated/drawn2Dand3Dobjects,aswellascomputer-basedlearning environments, can trigger and support learning-by-adaptation, eliminating,probablywiththehelpofaboundaryspanner,knowl- edge boundaries. From a different perspective, theyconstitute

“transitionalobjects”(Morecroft,2004)foraligningin theshort term,andexpanding,inthelongterm,mentalmodelsofindivid- ualsindifferentfunctionsandorganisations,thusincreasingthe effectivenessofcollaboration.Graphicalmodellingandsimulation environmentsin which models arebuilt include discrete-event simulations systems such as Arena, Extend, ProModel, etc., sys- temdynamicsmodellingsystems,suchasVensin,Powersimand ithink,aswellasagent-basedsimulationenvironments(AnyLogic, etc.).Allcanbeintegrated,technicallyandoperationally,inwider enterprise-levelinformationsystems,suchasERP.

(5)

Table1

MethodsforthedevelopmentofOIstrategiccapabilitiesandtheirsupportingICT.

Requiredstrategiclevelcapabilitiesdevelopmentactivities(processes) MethodsandsupportingICT(assets) Activities:

Interveneonthewaymentalmodelcharacteristicsinfluencethe accumulationoflearningcapacity

Requirements:

Developmentoftheconditionsforboundaryspanningthroughboundary objects

Graphicalmodellingandsimulationenvironments(discrete-event:Arena, Extend,ProModel,etc.,systemdynamics:Vensin,Powersim,ithink,etc.,as agent-based:AnyLogic,etc.

Integrated,technicallyandoperationally,inwiderenterprise-level informationsystems,suchasSAP

Activities:

Improvemanagerialparticipationinthedevelopmentofinnovation strategiesandinthedeploymentofrequiredoperationalprocesses Requirements:

Supportcollaborationforissueresolutionandstrategicthinking

Participativesystemsmethodologies(problem-structuringmethodologies, suchasSSM,SODA,etc.)

Simulation-basedparticipativemodelling,methodologies

Informationsystemssupportingcollaborationandargumentation Activities:

Improveprocesses,methodsandtoolsforassessingthefutureenvironment Requirements:

Establishpracticesforparticipativescenarioplanning

Methodsofintuitivelogics(qualitative)

MethodsthatbelongtotheareaofProbabilisticModifiedTrends(PMT)(IFS (InteractiveFuturesSimulations),INTERAX(InteractiveCrossImpact Simulation),SMIC(CrossImpactSystemsandMatrices)withtheir correspondingsupportsoftwaretools

Methodof“LaProspective”(Micmac,ProbExpert,ScenaringTools,etc.)

Methodsandsystemsforcollaborativeproblemsolving

Whenusedatcross-functionalandcross-organizationallevel, collaboration supporting methods and systems can be consid- ered as a particular class of boundary objects that promote diverseparticipation and facilitate theactivation of the micro- instantiationoftheorganizationalknowledgecycleoverparticular cross-organisational/functionalissuesandproblems(Adamides&

Karacapilidis,2006).Asindicatedin“Web2.0collaboration”and

“Argumentative knowledge construction”, computer-based col- laboration and argumentation systems can actively supportOI operational processes. Similar methods and artefacts can also beusedatthestrategiclevel tostructureproblem-solving/issue- resolvingprocessesandtherelateddialoguing.Bythecollaborative developmentand manipulationofstructuredmodels,aswellas bytheembedmentofdialecticlogicintheformofargumentation schemesinthecollaborationprocesses(dialecticlogicfacilitates synthesis of perceptions), they can increase the organization’s problem-solvingand planningcapability.Informationand com- municationtechnologiesareusedtosupporttheknowledgeflows amongtherelevantactorsandartefacts,inawaythatenhancesthe creationofnewknowledge(theprocessofknowing).Thesearethe maintasksofaclassofComputer-basedKnowledgeManagement Systems(CKMS),whicharesystemsthatprovideacorporatemem- ory,i.e.anexplicit,disembodiedpersistentrepresentationofthe knowledgeandinformationinanorganisation(asortofknowledge base)andmechanismsthatimprovethesharinganddissemina- tion of knowledge by facilitating interaction and collaboration.

Moreover,theprovisionof anassociatedICTinfrastructure that supportsvirtuality(dispersedgroups,asynchronouscollaboration) attractswidermembershipandhenceincreasesthediversityand richnessofknowledge,promotesactiveparticipation,andfurther increasestheproductivityofstrategicissueresolution(Adamides

&Karacapilidis,2006;Adamides&Pomonis,2008).

Themethodsandsystemsdevelopedoverthelasttwodecades forsupportingcollaborationinissueresolutionincludeparticipa- tivesystemsmethodologies(problem-structuringmethodologies, such as SSM, SODA, etc.), methodologies that rely on simula- tionmodelling,methodologiesthatusecollaborativeinformation technology,andinformationsystemssupportingcollaborationand argumentation(Adamides&Karacapilidis,2006).Thesesystems haveasignificantroletoplayasfarasthedemocratizationofinno- vationisconcerned(vonHippel,2006),whichgoesbeyondmere gatheringideas/conceptsfromdiversesources.Whilesomeofthe availablenetworkingandcollaborationsupportingsoftwarepack- ages,suchasLotusNotes,contributetofunctionalspecificationand

homogenisationininformationdistributionandtotheconserva- tionofpowerstructures(Lilley,Lightfoot,&Amaral,2004),thus limitingpluralisminactualinnovation,moresophisticatedtools, asthosementionedin“Web2.0collaboration”and“Argumentative knowledgeconstruction”,reachingwiderparticipationandimple- mentingmoredemocraticrationalesinargumentationandconflict resolution,embeddedinspecificorganisationalcontextsappropri- ately, canactas enablersoftheenlargement oftheinnovation discourse,andasarbitratorsthatfacilitatethere-distributionof power.

Participativescenarioplanning

Scenario planning is the most frequently used tool of the

“prosessualistic”, or learning, school of strategic management (Schoemaker,1995)thathaspenetratedthefieldofstrategicinno- vationmanagement(Tidd&Bessant,2014)andthedevelopmentof dynamiccapabilities(Teeceetal.,2016).Thevalueofscenarioplan- ningdoesnotstemfromtheoutcomesitproducesbutratherfrom theprocessofscenarioconstruction,whichthroughthedynamic interactionbetweentheorganizationandtheenvironment,stim- ulates learning byconsidering possibleand “impossible”future eventsandtheirconsequences.Writtenscenarios,frequentlycom- plemented by computer simulations, are used to explore the concurrentimpactofvariousuncertaintiesbymodifyingmultiple variablesatatimeandbyspeculatingontheiroutcomes.Inthis way,theprocessofscenarioconstructionstimulatesandfacilitates thesharingandrecombinationofpersonalknowledgetobuilda holisticunderstandingoftheinternalandexternalenvironment oftheorganization.Scenarioplanningmakesexplicittheimplicit assumptionsofindividualsaboutthefuture,stimulatingcreative andinnovativethinking(Karacapilidis&Gordon,1995;Meissner&

Wulf,2013).

Scenarioplanningconstitutesoneofthemostpopularandeffec- tiveexercisesforknowledgecreationandlearninginknowledge management initiatives suchas communities of practice (CoP).

Managersfromdifferentdepartments,aswellasexternalactors, participateinatypicalscenarioconstructionprocess,whichisusu- allycomprisedbyanumberofdistinctstages(Schoemaker,1995) usingICTthatcomprisesdatabaseswithspecialisedoptimisation and simulation methods. A largenumber of publicand private organizationsusesscenarioplanninginconnectionwithadvanced informationsystems (corporatedataand knowledgebases,eco- nomicintelligencedatabases,GIS,technologydatabases,etc.)for mentallyvisitingthefutureinordertobuildtherequiredflexibility intheirtangibleandintangiblestrategicresources.

(6)

Scenariomethodsandtoolsincludemethodsofintuitivelogics, whichdonotapplyquantitativeassessmentandrequirelimitedIS support,methodsthatbelongtotheareaofProbabilisticModified Trends(PMT)andincludemethods,suchas,IFS(InteractiveFutures Simulations),INTERAX(InteractiveCrossImpactSimulation),SMIC (CrossImpactSystemsandMatrices)withtheircorrespondingsup- portsoftwaretools,andtheFrenchmethodof “LaProspective”, supportedbyanumberofsoftwaresystems(Micmac,ProbExpert, ScenaringTools,etc.)(Amer,Daim,&Jetter,2013).

TechnologiesforoperationalOIcapabilities

Asithasalreadybeenmentioned,collaborationisthedominant characteristicofOIprocesses.Fromthetechnologypointofview, comparedtotraditionalgroupwareapplicationsforbrainstorming, argumentationandgroupdecisionsupport,thediversetypesof ICT-basedopeninnovationsystemsdifferintermsofthenumber ofusers(scale)andgoalofthesystem,inthatopeninnovationsys- temsassume,bydesign,alargernumberofusersandanarrower goal(Klein&Convertino,2015).Thisgoalislargelysupportedby Web2.0technologies(O’Reilly,2008), whichledtonewknowl- edgesharingparadigms due totheirinherentuser-friendliness, intuitivecharacterandflexibility.Atthesametime,asdiscussed intheprevioussections,ithasbeenbroadlyadmittedthatknowl- edgemanagementplaysaninvaluableroleininnovation,inthat itfostersaknowledge-drivencultureandassistsincreatingtools, platformsandprocessesfortacitknowledgecreation,sharingand leverage,whichplayanimportantroleintheinnovationprocess (Adamides&Karacapilidis,2006;duPlessis,2007).

Keyknowledgemanagement(micro)processes(i.e.retrieving, sharing and developing knowledge) ensure informed decision- making and stimulate organizational learning. Recent research suggeststhattheICTtoolsforfacilitatingsuchprocessesshould(i) attractwideparticipation,howeverinacontrolledmanner,(ii)sim- plifycollaborationtowardsknowledgeco-creation,(iii)enablea formalknowledgestructureforre-useandreasoningpurposes,and (iv)supportasophisticatedcollectionandanalysisofassociated bigdatamostlycomingfromrelatedsocialmedia(delGiudice&

dellaPeruta,2016;Hrastinskietal.,2010;Mount&Martinez,2014).

BelowwepresentandcommentonthemainICT-basedpractices andassociatedtoolsforbuildingthistypeofOIcapabilities.

Web2.0collaboration

TheemergenceoftheWeb2.0eraintroducedaplethoraofcol- laborationtools,whichenableengagementatamassivescaleand featurenovelparadigms.Thesetoolscovera broadspectrumof needsrangingfromknowledgeexchange,sharingandtagging,to socialnetworking,groupauthoring,mindmappinganddiscussing.

FacebookandLinkedInarerepresentativeexamplesofsocialnet- workingtoolsthatfacilitatetheformationofonlinecommunities amongpeoplewithsimilarinterests; toolssuchasMindMeister and Mindomo aimto collectively organize, visualize and struc- tureconceptsviamapstoaidbrainstormingandproblemsolving;

DebatepediaandCohere(http://cohere.open.ac.uk)aretypicaltools aimingtosupportonlinediscussions over theWeb;phpBB and bbPressareWeb2.0applicationsenablingtheexchangeofopin- ions,focusing especiallyonproviding anenvironmentin which userscanexpresstheirthoughtswithoutpayingmuchattention tothestructureofthediscussion.

Generallyspeaking, theabove technologiesenable themas- siveandunconstraintcollaborationofusers;however,this very feature is the source of the information overloadproblem. The amountofinformationproducedandexchangedandthenumber ofeventsgenerated withinthesetoolsexceeds byfarthemen-

talabilities ofusersto: (i)keep pacewiththeevolution ofthe collaborationinwhichtheyengageand(ii)keeptrackoftheout- comeofpastsessions.CurrentWeb2.0collaborationtoolsexhibit two important shortcomings making them proneto the prob- lemsofinformationoverloadandcognitivecomplexity.First,these toolsare“informationislands”,thusprovidingonlylimitedsupport forinteroperation,integrationandsynergywiththirdpartytools.

WhilesomeprovidespecializedAPIswithwhichintegrationcanbe achieved,theseareprimarilyaimedatdevelopersandnotatend users.Second,Web2.0collaborationtoolsareratherpassivemedia, i.e.theylackreasoningserviceswithwhichtheycouldactivelyand meaningfullysupportcollaboration.Inotherwords,theyconcen- tratemoreonencodingtheuserandexchangeoperationsthanon informationaggregationandcomputability.

Overall, Web 2.0 collaboration support tools can contribute directly to the development and support of processes associ- atedwith thecollaboration(COLB) capability, and indirectlyto thoseassociatedwithknowledgeexploration(KXPL),knowledge exploitation(KXPT),knowledgeretention(KRTN),andsocialinte- gration(SINT).Inmanycases,throughsophisticatedmechanisms foruserprofilingandnetworking,theycanalsosupportthedevel- opmentofthepartnerrelationshipmanagement(PREM)capability.

Argumentativeknowledgeconstruction

Collaborativeknowledgeco-creationandlearningprocessesare oftenbasedonwrittenargumentativediscourseofvariousstake- holders,who discuss theirperspectives ona problemwiththe goaltoresolveitandacquireknowledge(Weinberger&Fischer, 2006).Asfarasargumentationrelatedprocessesareconcerned, varioustechnologiesfocusingonthesharingandexchangeofargu- ments, diverse knowledge representations and visualization of argumentationhavebeendeveloped.ToolssuchasAraucaria(Reed

&Rowe,2001),Reason!Able(vanGelder,2002)andCompendium (http://compendium.open.ac.uk)allowuserstocreateissues,take positionsontheseissues, and makeproand contraarguments.

Theycancapturekeyissuesandideas,andcreatesharedunder- standingin a teamof knowledge workers;in somecases, they canbeusedtogatherasemanticgroupmemory.However,these argumentationsupporttoolsexhibitthesameproblemswiththe aforementionedWeb2.0collaborationtools.Theyarestandalone applications,lackingsupportforinteroperabilityandintegration withothertools(e.g.withdataminingservicesforagingtheWeb todiscover interesting patterns or trends) limiting information aggregation,computabilityandexchange.Theyalsocopepoorly withvoluminousandcomplexdataastheyprovideonlyprimi- tivereasoningservices.Thismakesthemalsopronetotheproblem ofinformationoverload.Argumentationsupportservicesrecently developedinthecontextoftheDicodeproject(Karacapilidis,2014) addressthe majorityof theseshortcomings through innovative virtualworkspacesofferingalternativevisualizationschemasthat helpstakeholderscontroltheimpactofvoluminousandcomplex data,while also accommodatingthe outcomesof external web services,thusaugmentingindividualandcollectivesense-making (Lau,Yang-Turner,&Karacapilidis,2014).

Armedwiththelatterfunctionalities,argumentativeknowledge constructionsupporttoolscontributesignificantlytothesupport ofknowledgeexploration(KXPL),knowledgeexploitation(KXPT), andknowledgeretention(KRTN)capabilities.However,theyhavea fewshortcomingsthatmakethemmoresuitableforuseprincipally in“OItoolkits”strategies.Theiremphasisonprovidingfixedand prescribedwaysofinteractionwithincollaborationspacesmake themdifficulttouseinmore“open”modelsastheyconstrainthe expressivenessofusers,whichinturnresultsinmakingthesesys- temsbeingusedonlyinnichetool-proficientcommunities.

(7)

Informeddecisionmaking

Datawarehouses,on-lineanalyticalprocessing,anddatamining havebeen broadlyrecognizedastechnologiesplayinga promi- nent role in the development of current and future Decision Support Systems. They may aid users make better, faster and informeddecisions,andconsequentlydevelopthedesiredorgani- zationaldecisionmaking(DMKG)capability.However,thereisstill roomforfurtherdevelopingtheconceptual,methodologicaland application-orientedaspectsofcomputer-supporteddecisionmak- ing.Aholisticperspectiveoncomputer-supporteddecisionmaking isstillmissing,andthereisagrowingneedtodevelopapplications byfollowingamorehuman-centric(andnotproblem-centric)view (Karacapilidis,2006).Decisionmakinghastobeconsideredasa socialprocesswherehumaninteractionisofprimaryimportance (Smoliar,2003).Thestructuringandmanagementofthisinterac- tion,especiallyinnetworkorganizations,requirestheappropriate technologicalsupportand hastobeexplicitlyembeddedinthe solutionoffered.Atthesametime,muchoftheavailabledatais oftenunderutilizedinthedecisionmakingprocessduetoalack ofproficiencyindataanalysis;thereismuchprogresstobemade whenitcomestoanalysingdatatodriveinnovation.

Theaboverequirementsdelineateasetofchallengesforfurther decisionsupporttechnologydevelopment.Suchchallengescanbe addressedbyadoptingaknowledge-baseddecision-makingview, whilealsoenablingthemeaningfulaccommodationoftheresults of the social knowledge and related mining processes (Tsiliki, Karacapilidis,Christodoulou,&Tzagarakis,2014).Accordingtothis view,whichbuildsonbottom-upinnovationmodels,decisionsare consideredaspiecesofdescriptiveorproceduralknowledgerefer- ringtoanactioncommitment.Insuchaway,thedecisionmaking processisabletoproducenewknowledge,suchasevidencejus- tifyingorchallenginganalternativeorpracticestobefollowedor avoidedaftertheevaluationofadecision,thusprovidingarefined understandingof theproblem. Ontheotherhand,ina decision makingcontexttheknowledgebaseoffactsandroutinesalters, sinceithastoreflecttheever-changingexternalenvironmentand internalstructuresoftheorganization.

An effective decision making toolset for OI should be able tointegrate(aggregate) and manage(store/retrieve) in asingle repository allthe relevant data,metrics, and objectives; more- over,toproperlysharethemacrossandbeyondtheorganization andusethemasbasisofend-to-enddecisionmakingprocesses (exchange/transformationoperations);inaddition,toembedcog- nitivecapabilitiessothatuserswillbeaidedintheirdatasearch, collectionandanalysis.Itisstressedthatknowledgemanagement activitiessuchasknowledgeelicitation,representationanddistri- butioninfluencethecreationofthedecisionmodelstobeadopted, thusenhancingthedecisionmakingprocess,whileevaluationof contributionsinthedecisionmakingprocessmayactasareputa- tionmechanismandprovideincentivesforengagement(Anadiotis, Kafentzis,Pavlopoulos,&Westerski,2012).

Socialmediamonitoringandanalytics

Socialmediamonitoringandanalyticsisanevolvingmarketing researchfieldthatreferstothetrackingorcrawlingofvarioussocial mediacontentasawaytodeterminethevolumeandsentimentof onlineconversationaboutabrandortopic(Bekkers,Edwards,&

deKool,2013).Theiraddedvalueliesonthefactthatsuchpro- cessescanbeperformedatrealtimeandinahighlyscalableway (highaggregationandcomputabilityfunctionality).Representative toolsofthiscategoryincludeSocialMention,Sysomos,Hootsuite, and Trackur.Such toolsare abletoreveal theissues, ideasand argumentsthatcanbestcontributeinanopeninnovationprocess.

Inaddition,theycansupporttherequired“attentionmediation”

(Klein&Convertino,2015),byprovidingastructuredwaytorep- resentthe“bigpicture”.

Theemploymentofthesetoolssupportstheknowledgeexplo- ration(KXPL)anddecisionmaking(DMKG)capabilities.However, despitetheirenormouspotential,sofar,theyhavenotbeenwidely –andmeaningfully–adopted,basicallydueto:(i)thepoorqual- ityandreliabilityoftheexistingsolutions,and(ii)thedifficulty ofintegrationintotheexistingcompanystructuresandmarketing procedures.IntheOIsettings,datasourcesareassociatedwithvar- ioustypesofinformation,eachofthemcoveringdistinctaspects.

Asystematicwayisneededtogeneratedifferentpointsofviewfor suchkindofdata.Contemporaryapproachesneedtohelpusersuti- lizingcomplexmulti-sourcedatainareasonablewaybysupporting theminfindingrelevantinformationandbyprovidingpersonalized recommendations(Bugshan,2015).

Another category of requirementsconcerns theexploration, delivery and visualization of the pertinent information. These shouldbebasedon:(i)anintelligentsemanticannotation,struc- turingandaggregationofvoluminousandcomplexdata,(ii)the meaningfulanalysisandexploitationofdatapatternsandinterre- lations,(iii)thecapturingofstakeholders’tacitknowledge,asfaras informationanalysisandproblemsolvingareconcerned,througha socialwebapproach,and(iv)theexploitationofparticularuserand groupcharacteristicstoproperlydirectoradaptdata(Karacapilidis, Loeffler,Maassen,&Tzagarakis,2012;Karacapilidis,Tzagarakis,&

Christodoulou,2013).

Opinionmining

Opinionmining(orsentiment analysis)technologiesemploy naturallanguageprocessing,machinelearning,textanalysisand computationallinguisticstoextractrelevantinformationfromthe hugeamountsofhumancommunicationovertheInternetorother (offline)sources.Hence,theyexhibitahighdegreeofcomputabil- ity.In fact,thepropagationof opinionateddatahascaused the developmentofwebopinionmining(MarreseTaylor,Rodríguez Opazo, Velásquez, Ghosh, &Banerjee, 2013) as a new concept in Web Intelligence, which deals with the issue of extracting, analyzing and aggregating data aboutopinions.The analysisof users’opinions,knownassentimentanalysis,isimportantbecause throughthemitispossibletodeterminehowpeoplefeelabouta productorserviceandknowhowitwasreceivedbythemarket.

Wecandistinguishbetweentwotypesoftoolsinthiscategory:

thosethatprovideaframeworkfordataminingalgorithms,e.g.

Rapidminer,WEKA,andKNIME,andonlineplatformsthatcanvisu- alize(inrealtime)opinionmininganalyticsonpredefinedWeb2.0 Sources,e.g.sentimentvizandSocialmention.

Opinionminingmethodsandtoolsmakepossiblefororgani- zationstoreachcrowd’sopinionsaboutdiversetopicsofinterest.

Asholdsforsocialmediamonitoringandanalytics,theysupport thedevelopmentoftheknowledgeexploration(KXPL)anddeci- sionmaking(DMKG)capabilities.Generallyspeaking,traditional opinionminingtechniquesapplytosocialmediacontentaswell.

However,therearecertainfactorsthatmakeWeb2.0datamore complicatedanddifficulttobeparsed.Aninterestingstudyabout theidentificationofsuchfactorswasmadebyMaynard,Bontcheva, andRout,2012,inwhichtheyexposedimportantfeaturesthatpose certaindifficulties totraditional approaches whendealing with social mediastreams,suchastheshortlengthofmessages, the existenceofnoisycontent,andthedisambiguationinthesubject ofreference.

Intellectualpropertymanagement

Theintellectualpropertymanagement(IPMA)capabilitycon- cernsthetrackingof trademarks,patents,copyrights,and other

(8)

Table2

OImodelsandassociatedoperationalcapabilities.

ModelofOpenInnovation Mainoperationalcapabilitiesrequired Innovationmarkets Collaboration(COLB)

Knowledgeexploration(KXPL)

Knowledgeexploitation(KXPT)

Decisionmaking(DMKG)

Knowledgeretention(KRTN) Innovationcommunities Collaboration(COLB)

Knowledgeexploration(KXPL)

Knowledgeexploitation(KXPT)

Socialintegration(SINT)

Decisionmaking(DMKG)

Intellectualpropertymanagement(IPMA)

Knowledgeretention(KRTN) Innovationcontests Collaboration(COLB)

Knowledgeexploration(KXPL)

Knowledgeexploitation(KXPT)

Decisionmaking(DMKG) Innovationtoolkits Collaboration(COLB)

Knowledgeexploration(KXPL)

Knowledgeexploitation(KXPT)

Partnerrelationshipmanagement(PREM)

Decisionmaking(DMKG)

Intellectualpropertymanagement(IPMA)

Knowledgeretention(KRTN)

intellectualproperty, as wellas to decide what to disclose. In additionto decision-support tools,organizations utilizediverse ICT-basedtoolstomanagetherelateddatabases,automateforms and correspondence for new and ongoing intellectual property ownership, and track potentialviolations of legal rights. These tools, which are often integrated with case management tools tostreamlinethelifecycle of intellectualpropertyprocurement andlitigation,aidorganizationsinmaintainingup-to-dateclient information,licenseagreements,anddiverseintellectualproperty materialinasinglerepository.Representativetoolsofthiscategory includeInteum,AnaquaandFoundationIP.

Table 2 summarises the above discussed capabilities with respecttoopeninnovationmodels.

Integrationissues

ThevastmajorityofICTtoolspresentedabovehavebeenorig- inallydesigned toworkasstandaloneapplications.However,in complexcontextssuchasthatofOIprocesses,thesetoolsneedto beintegratedandmeaningfullyorchestrated. Inmostcases,this isahardandchallengingissue,whichdependsonmanyfactors, suchasthetypeoftheresourcestobeintegrated,performance requirements,dataheterogeneityandsemantics,userinterfaces, andmiddleware(Ziegler&Dittrich,2007).Atthesametime,OI stakeholdersare confronted with therapidly growingproblem ofinformationoverload; theyneedtoefficientlyandeffectively collaborateandmakedecisionsbyappropriatelyassemblingand analysingenormousvolumesofcomplexmulti-faceteddataresid- ingindifferentsources.Admittedly,whenthingsgetcomplex,we needtoaggregatebigvolumesofdata,andthenmineitforinsights thatwouldneveremergefrommanualinspectionoranalysisofany singledatasource(Karacapilidis,2014).

Theaboverequirementscanbefullyaddressedbyaninnova- tiveweb-basedplatformthatensurestheseamlessinteroperability andintegrationofdiversecomponentsandservices.Theproposed solutionshouldbeabletoloosely combinewebservicestopro- videanall-inclusiveinfrastructure(‘single-access-point’)forthe effectiveandefficientsupportofdiverseOIstakeholders.Itwillnot

onlyprovideaworkingenvironmentforhostingandindexingof services,seamlessretrievalandanalysisoflarge-scaledatasets;it willalsoleverageWebtechnologiesandsocialnetworkingsolu- tionstoprovidestakeholderswithasimpleandscalablesolution fortargetedcollaboration,resourcediscoveryandexploitation,ina waythatfacilitatesandboostsOIactivities.Muchattentionneeds tobepaidtostandardizationtomakeexistingdataandsoftware reusablewiththeminimumeffortandwithoutintroducingnew standards.Interoperabilityissuesshouldbeconsideredfromatech- nical,conceptualanduserinterfacepointofview.Whennecessary, theforeseenplatformshouldexploitrichsemantics atmachine level toenable themeaningful incorporation and orchestration ofinteroperablewebservicesincustomizedOI-relatedworkflow settings,aimingtoreducethedata-intensivenessandsmooththe associatedworkloadstoamanageablelevel.

Theproposedintegrationcanbebasedonestablishedtechnolo- giesandstandardsofaservice-orientedarchitecture.Application ProgrammingInterfaces(APIs)allowdifferentapplicationstocon- nectand interactwith each other, while web servicesprovide astandardized wayof integratingweb-basedapplicationsusing openstandards suchas XML, SOAP, WSDL and UDDI. Such an integration approach has been fully adopted in the context of theDicodeEUproject(http://dicode-project.eu/),whereawidget- basedsolutionwasconceivedtodeliverdiversewebservicesto end-users,adedicatedregistryofservicesservedlocationandrec- ommendationpurposes,andalternativeserviceintegrationmodes wereproposedandthoroughlytested intheproject’susecases.

Ithasbeenshownthatthis approach,namelytheDicodeWork- bench(de laCalle,Alonso-Martinez, Tzagarakis, &Karacapilidis, 2012),ensuresaflexible,adaptableandscalableinformationand computationinfrastructure,andexploitsthecompetencesofstake- holderstoproperlyconfrontinformationmanagementissues,such asinformationcharacterization,classificationandinterpretation, thusgivingaddedvaluetotheunderlyingcollectiveintelligence.

Moreover, it facilitates knowledge sharing and knowledge co- creation,andassuresbetter-informedcollaboration.Atthesame time,suchanapproachpaysmuchattentiontotheissuesofusabil- ity and ease-of-use, not requiring any particular programming expertisefromtheendusers.

Conclusions

In this paper, based on an organisational capabilities per- spective, we discussed ICT as enhancer of strategic- and operational-level processes ofOI. Asit hasbeen madeclear in theprevioussections,ICTsupportforthetwolevelsdifferssig- nificantly,asfarasthehuman–machinerelationshipisconcerned.

Strategic processesare creative,complex,and highlysubjective processesthatcannotbeautomatedandobjectified.Hence,ICTsup- portisfocusedonthemicrofoundationsofdynamiccapabilities:

“opening”mentalmodelsandonthedevelopmentofsocialcapital throughcollaborationandknowledgemanagement.ICTartefacts, suchascomputersimulationmodels,playtheimportantroleof

“transitionalobjects”.Ontheotherhand,supportforencodingthe user,aggregationandcomputabilitythroughmachine-reasoning and dataprocessing is required inOI operationalprocesses for supportingthecorrespondingcapabilities.Nevertheless,evenat this level, for exploiting knowledge from diverse sources, for switchingfastbetweenexternalpartners,andmostofall,fordevel- opingabsorptivecapacityandactivetransparency,flexibilityand

“breadth”aremoreimportantthanrigidintegrationand“depth”.

Thetechnologiesandtoolsdiscussedinthispaperaddressthese requirements;throughtheirflexibleandmeaningful integration foraggregatingandtransferringinformationtoconstructmeaning, theycanactasenablersoftheentireOIprocess.Theextenttowhich thisistrueinsuccessfulOIimplementationsisunderinvestigation

Referensi

Dokumen terkait

Research aims: This study aims to examine how contextual variables which include innovation strategy, management accounting infor- mation system and internal business

The Bush Administration has tried to address these problems, inter alia, by establishing the National Forest System Land Management Planning, reopening the forest for

Prior to the establishment of the national research and innovation talent management program by President Joko Widodo, the Indonesian government also had a strategy for

For this reason, a culture of innovation and implementation of the strategy has a role in encouraging the owner-management of the company to implement strategic management accounting

Firms Processes Systems Innovation Product Role Transfer Learning Organizational Knowledge Management Organizations Study Information Based Research Organization Firms New Process

Although most of the dimensions of those cultures affect the innovation strategy of the firm as expected, there are some aspects of these cultures management of employees in adhocracy

"Relationship of transformational leadership with employee creativity and organizational innovation", Journal of Strategy and Management, 2019 Publication Submitted to The