mme.modares.ac.ir
:
1 2
*
1 -
2 -
* 9177948944
01 :
1393 1393 22 : 01 : 1393
.
- .
.
- -
- -
-
- .
5
.
model for the effective thermal conductivity of nanofluids–effect of interfacial layer and non-uniform size distribution of nanoparticles
Zohreh Shams
1*,Mohammad Moghiman
21- Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran 2- Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
*P.O.B. 9177948944, Mashhad, Iran, [email protected]
A RTICLE I NFORMATION A BSTRACT
Original Research Paper Received 23 September 2014 Accepted 14 October 2014 Available Online 22 November 2014
This work presents model for calculating the effective thermal conductivity of nanofluids. In this method, the effect of non-uniform sizes of nanoparticles and interfacial layer is investigated simultaneously. The developed model for the thermal conductivity of nanofluids takes into account the effects of thermal conductivity of base fluids, thermal conductivity, volume fraction and the size of nanoparticles, the interfacial layer, non-uniform sizes of nanoparticles, Brownian motion and temperature. Hence, this model has the capability of offering both analytical and numerical predictions.The accuracy of the proposed model for the effective thermal conductivity of water-Al O ethylene glycol-Al O water-CuO ethylene glycol-CuO ethylene glycol-Al,water- TiOis investigated. The effect of temperature, size of nanoparticles and volume fraction of nanoparticles are determined. Results show that the interfacial layer at the nanoparticle-liquid interface and non-uniform sizes of nonparticles are the most important parameters for calculating the thermal conductivity of nanofluids. Comparison between the result and available experimental data of several types of nanofluids indicates that the proposed model provides accurate results with maximum error of 5%.
Keywords:
Nanofluid Nanoparticle
Effective thermal conductivity,Non-uniform size
Interfacial layer
1 -
] 2 .[
5 29 60
3 .[
] 4 [
4
35 20
5
.[ 30
[ Downloaded from mme.modares.ac.ir on 2023-12-13 ]
25 /0 -
4/
10
80 9/
11
] 6 [ 5/
0
74 / 10 29 / 14
.
.
] 7 [
. ]
8
1
[
2
] 9 [
-
. ]
10 [
] 11 [ ]
12 [
] .
13 [
] .
14 [
.
] 15 [ ] 16 [
. -
] 17 [ .
] 18 [ -
.
3] 19 [
.
] 20 [ -
-
1-Brownian motion 2-Cluster 3-Fractal low
.
.
- -
. -
- -
-
- -
2 -
2 - 1 -
7 :[
) 1 (
= + 2 + 2 ( )
+ 2 ( )
.
2 - 2 -
2 13 :[
) 2 (
=
[2 + 1] + + 2 ( ) +
+ 2 [ + 1]
= 1 +
= 1 +
.
2 - 3 -
] 14 .[
3 .
[ Downloaded from mme.modares.ac.ir on 2023-12-13 ]
) 3 (
= + 1 2
3 1 1.5
2 +6 +
(3 + 4 + 16 + 2
+ 3 + 2 +
k k [2 + 1] + k + 2k (k k ) + k
k + 2k k k [ + 1]
1DLVO
.
2 - 4 -
] 20 :[
) 4 (
= + 2 2
+ 2 + + 2.0 + 0.5
3 -
- .
. .
"
2"
3
.
) 1 .(
.
-
- -
- -
1-Derjaguin-Landau-Verwey-Overbeck 2-Interfacial layer
3-Complex nanoparticle (cp)
-
-
- 5 ]
18 .[
) 5 (
= 1 3
4
/3 - 1 -
.
6
) 6 ( + 1
sin ( sin ) = 0
= p, lr, f6
7 ) 7 ( ( 0) = , ( ) =
) 8 (
= , = =
9
) 9 (
= , = = +
10 - 12 ]
13 [
) 10 (
= 3 + 2
) 11 (
= 1 + 1
1 + /2 + 2
) 12 (
=
.
cos13 ]
13 :[
( )
( )
1 ( (
[ Downloaded from mme.modares.ac.ir on 2023-12-13 ]
) 13 (
= =
, ,( )
, ,
( )
.
14
=
,
, ( + 2 , + , + 1 + + 2
,
, ( + 2 ) , ,+ 1 + + 2
) 14 (
= 1 +
= 1 + .
15
) 15 -
,
=
,( 1)
) 15 -
= 1
) 15 - (
= 1
) 15 -
= ,
3 - 2 -
.
16 14
:[
) 16 (
"
1
2
= 0.893
. 17
) 17 (
"
,
1
2
,,
-
18 ] 14 :[
) 18 (
= 2 1 1.5
"
18
,17 19
) 19 (
= 1 2
2 1 1.5
,19
) 20 (
= 1 2
3 1 1.5
2
,= +
= /
3 - 3 -
.
17 18 .[
. )
-
( 21
] 20 [
) 21 (
=
) ( 22
) 22 (
= 2 ln ln( )
23 ]
20 [
) 23 (
= 1
/=
1
< <
] 18 [ .
20
10.[
( )
24
) 24 (
= 1
= 1,2,3, …
3 - 4 -
1.
22
2.
23 .
3.
< <
4
2
[ Downloaded from mme.modares.ac.ir on 2023-12-13 ]
4.
24 .
5.
14 20 .
. 25
-
) 25 (
= 1
( )= 1,2,3, … ,
4 - .
- -
- -
-
- .
- 2
- 150
.
-
15 1
25
150 3
. 032 /1
. 0332
/1
2 -
) 15 (
1 150
3 -
15
1
150
. 4
] 3 [ -
33
25 .
. .
5/
1
7 .
. 4
-
13
5 .
] 20
] [
14 [
] 2 . [
4 ] 3 [ -
33
0 50 100 150
0 2 4 6 8 10 12x 104
0 50 100 150
1.032 1.0325 1.033 1.0335 1.034 1.0345
k eff
0 0.01 0.02 0.03 0.04 0.05 0.06
1 1.05 1.1 1.15 1.2 1.25 1.3 1.35
k
eff keffkeff
[ Downloaded from mme.modares.ac.ir on 2023-12-13 ]
5 ] 2 [ -
13
. -
.
-
36
- 35
-
6 7 .
. 6
] 3
] [
14 [ .
- 36
5
75 /0 45 /1 .
7 ]
13 [
] 4
. [
8 -
80 .
- ] 3 [
5/
2 .
8
6
] 3 [ -
36
7 ]
4 [
- 35
8 ] 3 [ -
80
-
9 .
28 38
. 10
-
4 5 .
15 .
1 .
] 21 [ .
5 -
12 1
%
0 0.01 0.02 0.03 0.04 0.05 0.06
1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4
k
eff0 0.01 0.02 0.03 0.04 0.05 0.06
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
k
eff0 0.01 0.02 0.03 0.04 0.05
1 1.05 1.1 1.15 1.2 1.25
k eff
0 0.01 0.02 0.03 0.04 0.05 0.06
1 1.1 1.2 1.3 1.4 1.5
k eff
keff
keff
keff
keff
[ Downloaded from mme.modares.ac.ir on 2023-12-13 ]
4 3 ] 9 [
- 28
38
10
-
1 ]
21 [
Al O (28nm)/W
3
50 / 12 12
02 /2
Al O (33nm)/W
5
20 / 28 29
74 /2
Al O (80nm)/W
5
25 / 24 24
00 /1
Al O (29nm)
4
/EG88 / 17 18
65 /0
Al O (38nm)
5
/EG60 / 18 18
00 /3
Al O (60.4nm)
5
/EG16 / 29 30
71 /2
CuO(12nm)/EG
1
70 /5 6
00
/5
CuO(29nm)/EG
5
35 / 22 23
82 /2
CuO(35nm)/EG
4
51 / 22 22
33 /2
11 - 38
1 4 4
21
51 4/
9 3/
24 22
.[
4 8
30
] 23 [
- 21
1
2 12
. 12
5 -
.
- -
-
- -
-
11
- 38
12
- 21
0 0.01 0.02 0.03 0.04 0.05 0.06
0.9 1 1.1 1.2 1.3 1.4
k eff
- 38
- 28
- 38
- 28
0 10 20 30 40 50 60 70
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
dp(nm) k eff
4 5
15 20 25 30 35 40 45 50 55
1 1.05 1.1 1.15 1.2 1.25 1.3 1.35
T(oC) keff
- 1
- 4
- 1
- 4
10 15 20 25 30 35 40
1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.1 1.11
T(oC) k eff
- 1
- 2
-
1
- 2
T(°C)
T(°C)
dp(nm) keff
keff
keff
keff
[ Downloaded from mme.modares.ac.ir on 2023-12-13 ]
5 . .
6 -
) (nm
) Wm-1K-1
(
) (K
) (nm
) kgm-3
( ) kgm-1s-1
(
Ave
cp
eff
f
lr
nf
p
7 -
[1] S. U. S. Choi, Enhancing thermal conductivity of fluids with nanoparticles,Developments and Applications of Non-Newtonian Flows Vol. 231, No. 66, pp. 99-105, 1995.
[2] T.Masuda, A. Ebata, K. Teramae, N. Hishinuma, Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (Dispersion of Al2O3, SiO2 and TiO2 ultra-fine particles), Netsu Bussei Vol. 4, pp. 227–233, 1993
.
[3] J.A. Eastman, S.U.S. Choi, S. Li, L.J. Thompson, Enhanced thermal conductivity through the development of nanofluids,Proceedings of the Symposium on Nanophase and Nanocomposite Materials II,Materials Research Society Vol.457,pp.3-11 1997
[4] S. Lee, S.U.S. Choi, S. Li, J.A. Eastman, Measuring thermal conductivity of fluids containing oxide nanoparticles Journal of Heat Transfer Vol.
121,pp. 280–289,1999.
[5] M. Kole, T.K. Dey, Role of interfacial layer and clustering on the effective thermal conductivity of CuO–gear oil nanofluids, Experimental Thermal and Fluid Science, Vol. 35, pp. 1490–1495, 2011.
[6] C. Pang, J. Jung, J. Lee, Y. T. Kang, Thermal conductivity measurement of methanol-based nano luids with Al2O3 and SiO2 nanoparticles, International Journal of Heat and Mass Transfer Vol. 55, pp. 5597–5602, 2012.
[7] J. C. Maxwell, Treatise on Electricity and Magnetism Third Edittion, Oxford, UK, 1891.
[8] P. Keblinski, S. R. Phillpot, S. U. S. Choi, J. A. Eastman, Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids), International Journal of Heat and Mass Transfer,Vol. 45, No. 4, pp. 855–863, 2002.
[9] G. A. Longon, C. Zilio, E. Ceseracciu,M. Reggiani, Diffusion in disordered media, Nano Energy Vol. 1, pp. 290–296, 2012.
[10]M. Tajik Jamal-Abadi, A. H. Zamzamian, Optimization of thermal conductivity ofAl O Nanofluid by using ANN and GRC methods, International Journal of Nanoscience and Nanotechnology, Vol. 9,No. 4, pp. 177–184, 2013.
[11] W. Yu, S.U.S. Choi, The role of interfacial layers in the enhanced thermal conductivity of nanofluids: renovated Maxwell model, Journal of Nanoparticle Research, Vol. 5, pp. 167–171, 2003.
[12] H.Xie, M. Fujii, X. Zhang, Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle–fluid mixture, International Journal of Heat and Mass Transfer, Vol. 48, pp. 2926–2932, 2005.
[13] K. C. Leong, C. Yang, S.M.S. Murshed, model for the thermal conductivity of nanofluids the effect of interfacial layer, Journal of Nanoparticle Research, Vol.8, pp. 245–254, 2006.
[14] S. M. S. Murshed, K.C. Leong, C. Yang, combined model for the effective thermal conductivity of nanofluids,Journal of Thermal Engineering Vol.
29, pp. 2477-2483, 2009.
[15] H. Jiang, H. Li, Q. Xu, L. Shi, Effective thermal conductivity of nanofluids Considering interfacial nano-shells, Journal of Materials Chemistry and Physics pp. 1-6, 2014.
[16] Z. Shams, S. H. Mansouri, M. Baghbani, proposed model for calculating effective thermal conductivity of nanofluids, effect of nanolayer and non- uniform size of nanoparticles, Journal of Basic and Applied Scientific Research pp. 9370-9377, 2012.
[17] S. Havlin, D. Ben-Avraham, Diffusion in disordered media, Advanced Physics, Vol. 36, No. 6, pp. 695–798, 1987.
[18] B. X.Wang L. P. Zhou, X. F. Peng, fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles, International Journal of Heat and Mass Transfer, Vol. 46, pp. 2665–2672, 2003.
[19] J. Xu, B.M.Yu, M. Q. Zou, P. Xu, new model for heat conduction of nanofluids based on fractal distributions of nanoparticles, Journal of Physics Appl Phys, Vol. 39, pp. 4486–4490, 2006.
[20] Y. Feng, B. Yu, K. Feng, P. Xu, M. Zho, Thermal conductivity of nanofluids and size distribution of nanoparticales by Monte Carlo simulation, Journal of Nanoparticle Research, Vol. 10, pp. 1319-1328, 2008.
[21] S. M. S. Murshed, K.C. Leong, C. Yang, Thermophysical and electrokinetic properties of nanofluids-A critical review, Applied Thermal Engineering, Vol. 28, pp. 2109–2125, 2008.
[22] S.K. Das, N. Putra, P. Thiesen, W. Roetzel, Temperature dependence of thermalconductivity enhancement for nanofluids, Journal of Heat Transfer Vol. 125, pp. 567-574,2003.
[23] W. Duangthongsuk, S. Wongwises, Measurement of temperature- dependent thermal conductivity and viscosity of TiO2-water nanofluids, Experimental Thermal and Fluid Science, Vol. 33, pp. 706–714, 2009.
[ Downloaded from mme.modares.ac.ir on 2023-12-13 ]