Zagreb Energy and Zagreb Estrada Index of Graphs
Nader Jafari Rad
1,ā,Akbar Jahanbani
1,Ivan Gutman
21Department of Mathematics, Shahrood University of Technology, Shahrood, Iran
[email protected] , [email protected]
2Faculty of Science, University of Kragujevac, P.O.Box 60, 34000 Kragujevac, Serbia
[email protected] (Received July 10, 2017)
Abstract
LetGbe a graph of ordernwith vertices labeled asv1, v2, . . . , vn. Letdibe the degree of the vertexvi, fori= 1,2, . . . , n. The (first) Zagreb matrix ofGis the square matrix of ordernwhose (i, j)-entry is equal todi+djifviis adjacent tovj, and zero otherwise. We introduce and investigate the Zagreb energy and Zagreb Estrada index of a graph, both base on the eigenvalues of the Zagreb matrix. In addition, we establish upper and lower bounds for these new graph invariants, and relations between them.
1 Introduction
All graphs considered in this paper are assumed to be simple. LetGbe a (molecular) graph with vertex setV(G) ={v1, v2, . . . , vn}and edge setE(G). Ifviandvjare adjacent vertices ofG, then the edge connecting them is denoted byvivj. Bydiwe denote the degree of the vertexviāV(G).
In mathematical chemistry, there is a large number of topological indices of the form T I=T I(G) =
vivjāE(G)
F(di, dj)
whereF is a pertinently chosen function with the propertyF(x, y) =F(y, x). The most popular topological indices of this kind are the:
āCorresponding author and in Computer Chemistry
⢠first Zagreb index,F=x+y,
⢠second Zagreb index,F=x·y,
⢠RandiĀ“c connectivity index,F= 1/āxy,
⢠harmonic index,F= 2/(x+y),
⢠atomābond connectivity (ABC) index,F=
(x+yā2)/(xy),
⢠geometricāarithmetic index,F= 2āxy/(x+y).
Note that there are several more indices, see [11]. To each of such topological indices, a matrixTIcan be associated, defined as
(TI)ij=
ā§
āØ
ā©
F(di, dj) ifvivjāE(G)
0 otherwise.
Iff1, f2, . . . , fnare the eigenvalues of the matrixTI, then an āenergyā can be defined as
ET I=ET I(G) =
n
i=1
|fi|.
The most extensively studied such graph energy is theRandi“c energy [4, 5, 8], based on the eigenvalues of the Randi“c matrixR, where
(R)ij=
ā§
āØ
ā©
1
didj ifvivjāE(G)
0 otherwise.
Recently, the analogous concepts of harmonic energy [16], ABC energy [10], and geometricāarithmetic energy [23] were put forward.
Bearing this in mind, it seems to be purposeful to consider also the graph energies pertaining to the first and second Zagreb indices, especially in view of the fact that these are the oldest [13ā15,20] and most thoroughly examined vertexādegreeābased topological indices, see the recent reviews [2, 3] and the references cited therein. If so, then we would have to introduce thefirst Zagreb matrixZ(1)and thesecond Zagreb matrix Z(2), respectively, defined as:
Z(1)
ij=
ā§
āØ
ā©
di+dj ifvivjāE(G)
0 otherwise
and
Z(2)
ij=
ā§
āØ
ā©
diĀ·dj ifvivjāE(G)
0 otherwise.
If the eigenvalues ofZ(1)areζ1(1), ζ2(1), . . . , ζn(1), then thefirst Zagreb energywould be ZE1=ZE1(G) =
n
i=1
|ζi(1)|.
If the eigenvalues ofZ(2)areζ1(2), ζ2(2), . . . , ζn(2), then thesecond Zagreb energywould be ZE2=ZE2(G) =
n
i=1
|ζi(2)|.
Remark. At this point it is worth noting that a quantity somewhat similar to the first Zagreb index was earlier examined under the name āvertex sum energyā [16, 17, 22]. It is defined as the sum of absolute values of the eigenvalues of the matrix whose (i, j)-element is equal todi+djifi=j, and zero ifi=j. Thus, the first Zagreb energy and the vertex sum energy coincide if and only ifGā¼=KnorGā¼=Kn.
2 First Zagreb index and first Zagreb energy
The first and second Zagreb index, usually denoted byM1andM2, are defined as [14,15]
M1=M1(G) =
viāV(G)
d2i and M2=M2(G) =
vivjāE(G)
didj
whereas the first Zagreb index satisfies the identity M1=
vivjāE(G)
(di+dj).
In what follows, we shall be also concerned with the closely related quantity HM=HM(G) =
vivjāE(G)
(di+dj)2 (1)
which is the so-calledhyperāZagreb index, recently introduced in [24], see also [1, 12, 21].
In this paper, we are concerned only with the first Zagreb index and the corresponding first Zagreb matrix and first Zagreb energy. The study of the analogous secondāZagreb quantities will be communicated in a forthcoming paper [18]. In view of this, in what follows, for the sake of simplicity, the indicatorfirst will be omitted and we denote the (first) Zagreb matrix byZ, its (i, j)-element byzij, its eigenvalues byζ1, ζ2, . . . , ζn, and its energy byZE. Thus,
zij=
ā§
āŖāŖ
āØ
āŖāŖ
ā©
di+dj if the verticesviandvjare adjacent 0 if the verticesviandvjare not adjacent
0 ifi=j
and
ZE=ZE(G) =
n
i=1
|ζi|.
This paper is organized as follows. In Section 3, we state some previously known results. In Section 4, we introduce and investigate the Zagreb energy and obtain lower and upper bounds for it. In Section 5, we put forward the concept of Zagreb Estrada index, and obtain lower and upper bounds for it. In Section 6, we investigate relations between Zagreb Estrada index and Zagreb energy.
3 Preliminaries and known results
In this section, we present previously known results that will be needed in the forthcoming sections. We first calculatetr(Z2),tr(Z3), andtr(Z4), wheretrdenotes the trace of the respective matrix.
Denote byNkthek-th spectral moment of the Zagreb matrixZ, i. e., Nk=
n
i=1
(ζi)k (2)
and recall thatNk=tr(Zk).
Lemma 1. LetGbe a graph withnvertices and Zagreb matrixZ. Then
(1) N1=tr(Z) = 0 (3)
(2) N2=tr(Z2) = 2HM (4)
(3) N3=tr(Z3) = 2HM
i,j,kā{1,2,...,n}
iā¼jā¼k , iā¼k
d2k (5)
(4) N4=tr(Z4) =n(HM)2+
i,jā{1,2,...,n}
iā¼j
(di+dj)2
ā
ā
ā
ā
kā{1,2,...,n}
iā¼kā¼j
d2k
ā
ā
ā
ā
2
, (6)
whereiā¼jindicates pairs of adjacent verticesviandvj.
Proof. (1) By definition, the diagonal elements of Zare equal to zero. Therefore the traceofZis zero.
(2) The diagonal elements ofZ2are (Z2)ii=
n
j=1
zijzji=
n
j=1
(zij)2=
jā{1,2,...,n}
iā¼j
(zij)2=
jā{1,2,...,n}
iā¼j
(di+dj)2
and therefore tr(Z2) =
n
i=1
jā{1,2,...,n}
iā¼j
(di+dj)2= 2
i,jā{1,2,...,n}
iā¼j
(di+dj)2= 2HM .
In addition, fori=j (Z2)ij=
n
j=1
zijzji=ziizij+zijzjj+
kā{1,2,...,n}
iā¼kā¼j
zikzkj= (di+dj)
kā{1,2,...,n}
iā¼kā¼j
(dk)2.
(3) Since the diagonal elements ofZ3are (Z3)ii=
n
j=1
zij(Z2)ji=
jā{1,2,...,n}
jā¼i
(di+dj)(Z2)ij=
jā{1,2,...,n}
jā¼i
(di+dj)2
kā{1,2,...,n}
iā¼kā¼j
(dk)2
we obtain tr(Z3) =
n
i=1
jā{1,2,...,n}
jā¼i
(di+dj)2
kā{1,2,...,n}
iā¼kā¼j
(dk)2
= 2
i,jā{1,2,...,n}
iā¼j
(di+dj)2
kā{1,2,...,n}
iā¼kā¼j
(dk)2= 2HM
i,j,kā{1,2,...,n}
iā¼jā¼k , iā¼k
(dk)2.
(4) The proof of formula (6) is analogous.
Lemma 2.For any non-negative realx,exā„1 +x+x22+x33+x44. Equality holds if and only ifx= 0.
Lemma 3. Letx1, x2, . . . , xnbe positive numbers. Then n
1
x1+Ā· Ā· Ā·+x1
n
ā¤ānx1x2Ā· Ā· Ā·xn. Proof. By the arithmeticāgeometric mean inequality, we have
1 n
1 x1
+Ā· Ā· Ā·+ 1 xn
ā„ n 1
x1
1 x2Ā· Ā· Ā· 1
xn
.
Lemma 4.(Chebishevās inequality[7]) Leta1ā¤a2⤠· Ā· Ā· ā¤anandb1ā¤b2⤠· Ā· Ā· ā¤bnbe real numbers. Then
n
i=1
ai
n
i=1
bi
ā¤n
n
i=1
aibi.
Equality occurs if and only ifa1=a2=Ā· Ā· Ā·=anorb1=b2=Ā· Ā· Ā·=bn.
Lemma 5. For non-negativex1, x2, . . . , xnandkā„2,
n
i=1
(xi)k⤠n
i=1
xi2
k/2
. (7)
Denote by Mk the number of closed walks of lengthk, equal to the k-th spectral moment of the adjacency matrix [6].
Lemma 6. [25] Let G be a graph withm edges. Then fork ā„ 4, Mk+2 ā„ Mk with equality for all evenkā„4if and only ifGconsists ofmcopies of the complete graph on two vertices and possibly isolated vertices, and with equality for all oddkā„5if and only ifGis a bipartite graph.
4 Bounds for Zagreb energy
Letnandmdenote the number of vertices and edges of the graph under consideration.
Recall thatE, the (ordinary) energy of a graph, is equal to the sum of absolute values of the eigenvalues of its adjacency matrix [19]. There exist several bounds onE, depending on the parametersnandm[19].
Now, 2mis equal to the sum of the squares of the elements of the adjacency matrix.
This implies that in the theory of Zagreb graph energy, the quantity 2HM will play the same role as 2mplays in the theory of ordinary graph energy, whereHM is the hyperāZagreb index, Eq. (1).
Bearing this in mind, we immediately arrive at the following estimates:
Theorem 1.LetGbe a graph withnvertices and hyperāZagreb indexHM. Then
ā2HMā¤ZE(G)ā¤ā 2nHM , ZE(G)ā„
2HM+n(nā1)|detZ(G)|2/n, ZE(G)ā„nn
|detZ(G)|.
Theorem 2.LetGbe a graph with hyperāZagreb indexHM. Then
eāā2HMā¤ZE(G)ā¤eā2HM. (8)
Proof. For the sake of simplicity, we writeξi=|ζi|.
Lower bound. By definition of the Zagreb energy and by the arithmeticāgeometric mean inequality,
ZE(G) =
n
i=1
ξi=n 1
n
n
i=1
ξi
ā„n n
ξ1ξ2· · ·ξn
.
By Lemma 3, we have
nn
ξ1ξ2Ā· Ā· ·ξnā„n
ā
ā
ā
ā n
n
i=1 1 ξi
ā
ā
ā
ā ā„n
ā
ā
ā
ā n
n
i=1 1 ξi
n
i=1
ξi
ā
ā
ā
ā ā„n
ā
ā
ā
ā n n
n
i=1 1 ξiξi
ā
ā
ā
ā
(by Lemma 4)
ā„n
ā
ā
ā
ā n n2
n
i=1
ξi
ā
ā
ā
ā > n
ā
ā
ā
ā n n2
n
i=1
eξi
ā
ā
ā
ā = 1
n
i=1
kā„0 (ξi)k
k!
= 1
kā„0 1 k!
n
i=1
(ξi)k
ā„ 1
kā„0 1 k!
n
i=1
(ξi)2
k/2 (by inequality (7))
= 1
kā„0 1 k!
n
i=1
(ξi)2
k/2= 1
kā„0 1 k!
ā 2HM
k (by Eq. (4)).
Therefore, we haveZE(G)ā„eāā2HM.
Upper bound. Starting with the definition of Zagreb energy, we get ZE(G) =
n
i=1
ξi<
n
i=1
eξi=
n
i=1
kā„0
(ξi)k k! =
kā„0
1 k!
n
i=1
(ξi)kā¤
kā„0
1 k!
n
i=1
(ξi)2 k/2
by inequality (7), and
kā„0
1 k!
n
i=1
(ξi)2 k/2
=
kā„0
1 k!
n
i=1
(ξi)2 k/2
=
kā„0
1 k!
2HM
k/2
, (by Eq. (4))
=
kā„0
1 k!
ā 2HM
k
=eā2HM.
Theorem 3.LetGbe a non-empty graph with hyperāZagreb indexHM. Then ZE(G)ā„ 1
2HM. (9)
Proof. By definition of the Zagreb energy and by the arithmeticāgeometric mean inequal- ity, we have
ZE(G) =
n
i=1
ξi=n 1
n
n
i=1
ξi
ā„nn
ξ1ξ2· · ·ξn. By Lemma 3,
nn
ξ1ξ2Ā· Ā· ·ξnā„n
ā
ā
ā
ā n
n
i=1 1 ξi
ā
ā
ā
ā ā„n
ā
ā
ā
ā n
n
i=1 1 ξi
n
i=1
ξi
ā
ā
ā
ā ā„n n
nn i=1
1 ξiξi
by Lemma 4, and
ā„n
ā
ā
ā
ā n n2
n
i=1
ξi
ā
ā
ā
ā ā„ 1
n
i=1
(ξi)k ℠1 n
i=1
(ξi)2 k/2
by inequality (7), and
= 1
n
i=1
(ξi)2
k/2= 1 (2HM)k/2
by Eq. (4). Hence, fork= 2, we arrive at (9).
5 Bounds on the Zagreb Estrada index
In this section, we consider the Zagreb Estrada index of a graphG, and give lower and upper bounds for it. We first recall that the Estrada index of a graphGis defined in [9]
as
EE=EE(G) =
n
i=1
eλi,
whereλ1, λ2, . . . , λnare the eigenvalues of the adjacency matrix of the graphG, forming its spectrum [6]. Denoting byMk=Mk(G) thek-th spectral moment of the graphG,
Mk=Mk(G) =
n
i=1
(λi)k, we have
EE=
ā
i=1
Mk(G) k! .
Let thusGbe a graph of ordern whose Zagreb eigenvalues areζ1, ζ2, . . . , ζn. Then theZagreb Estrada indexofG, denoted byZEE(G), is defined to be
ZEE=ZEE(G) =
n
i=1
eζi. Recalling Eq. (2), it follows that
ZEE(G) =
ā
i=1
Nk
k! . Theorem 4.LetGbe a graph withnvertices. Then
ZEE(G)ā„n+ 2HM+ 2HM
sinh(1)ā1
i,j,kā{1,2,...,n}
iā¼kā¼j,iā¼j
(dk)2
+
cosh(1)ā1
ā”
ā¢
ā¢
ā£
n(HM)2+
i,jā{1,2,...,n}
iā¼j
(di+dj)2
kā{1,2,...,n}
iā¼kā¼j
(dk)2 2
ā¤
ā„
ā„
⦠.
Proof. Note thatN2= 2HM. By Lemma 6, ZEE(G) =n+ 2HM+
kā„1
N2k+1
(2k+ 1)!+
kā„1
N2k+2
(2k+ 2)!
ā„n+ 2HM+
kā„1
N3
(2k+ 1)!+
kā„1
N4
(2k+ 2)!
=n+ 2HM+ 2HM
sinh(1)ā1
i,j,kā{1,2,...,n}
iā¼kā¼j,iā¼j
(dk)2
+
cosh(1)ā1
ā”
ā¢
ā¢
ā£
n(HM)2+
i,jā{1,2,...,n}
iā¼j
(di+dj)2
kā{1,2,...,n}
iā¼kā¼j
(dk)2 2
ā¤
ā„
ā„
⦠.
Theorem 5.LetGbe a non-empty graph with hyperāZagreb indexHM. Then ZEE(G)ā¤nā1 +eā2HMā1.
Proof. Let n+ be the number of positive Zagreb eigenvalues of G. Since f(x) = ex monotonically increases in the interval (ā,+ā) andm= 0, we get
ZEE=
n
i=1
eζi<(nān+) +
n+
i=1
eζi= (nān+) +
n+
i=1
kā„0
(ζi)k k!
=n+
kā„1
1 k!
n+
i=1
(ζi)k (10)
ā¤n+
kā„1
1 k!
n+
i=1
ζi2
k/2
=n+
kā„1
1 k!
n+
i=1
ζi2
k/2
.
Since every (n, m)-graph withm= 0 hasK2as its induced subgraph and the spectrum ofK2is 1,ā1, it follows from the interlacing inequalities thatζn ⤠ā1, which implies thatn
i=n++1(ζi)2ā„1. Consequently, ZEEā„n+
kā„1
1
k!(2HMā1)k/2=nā1 +eā2HMā1.
Theorem 6.LetGbe a graph withnvertices and hyperāZagreb indexHM. Then ZEE(G)ā„
n2(1 +HM) + 2nHM+2
3HM
i,j,kā{1,2,...,n}
iā¼kā¼j,iā¼j
(dk)2+ 1 12nN4.
Proof. Suppose thatζ1, ζ2, . . . , ζnis the Zagreb spectrum ofG. Using Lemma 2, we have ZEE(G)2=
n
i=1 n
j=1
eζi+ζj
ā„
n
i=1 n
j=1
1 +ζi+ζj+(ζi+ζj)2
2 +(ζi+ζj)3
6 +(ζi+ζj)4 24
=
n
i=1 n
j=1
1 +ζi+ζj+ζi2
2 +ζj2
2 +ζiζj+ζi3
6 +ζj3
6 +ζi2ζj
2 +ζiζj2
2 +ζi4
24+ζj4 24+ζi2ζj2
4 +ζi3ζj
6 +ζiζj3 6
. From Eqs. (3)ā(6) it follows,
n
i=1 n
j=1
(ζi+ζj) =n
n
i=1
ζi+n
n
j=1
ζj= 0
n
i=1 n
j=1
ζiζj= n
i=1
ζi
2
= 0
n
i=1 n
j=1
ζi2
2 +ζj2
2
=n 2
n
i=1
ζi2+n 2
n
j=1
ζj2= 2nHM
n
i=1 n
j=1
ζi3
6 +ζj3 6
=n 6
n
i=1
ζi3+n 6
n
j=1
ζj3=2
3HM
i,j,kā{1,2,...,n}
iā¼kā¼j,iā¼j
(dk)2
n
i=1 n
j=1
ζi4 24+ζj4
24
= n 24
n
i=1
ζi4+ n 24
n
j=1
ζj4= 1 12n N4 n
i=1 n
j=1
ζi2ζj2
4 =n2HM
n
i=1 n
j=1
ζiζj3
6 =1 6
n
i=1
ζi n
j=1
ζj3= 0
n
i=1 n
j=1
ζi3ζj
6 =1 6
n
i=1
ζ3i n
j=1
ζj= 0
n
i=1 n
j=1
ζiζj2
2 =1 2
n
i=1
ζi n
j=1
ζj3= 0
n
i=1 n
j=1
ζi2ζj
2 =1 2
n
i=1
ζ2i n
j=1
ζj= 0.
Combining the above relations, we get the inequality stated in Theorem 6.
Theorem 7.LetGbe a graph withnvertices and hyperāZagreb indexHM. Then
ān2+ 4HMā¤ZEE(G)ā¤nā1 +eā2HM. (11) Proof. Lower bound. Directly from the definition of the Zagreb Estrada index, we get
ZEE(G)2=
n
i=1
e2ζi+ 2
i<j
eζieζj. (12) In view of the inequality between the arithmetic and geometric means,
2
i<j
eζieζjā„n(nā1)
"
i<j
eζieζj
2/[n(nā1)]
=n(nā1) n
"
i=1
eζi
nā12/[n(nā1)]
=n(nā1)
eni=1ζi 2/n
=n(nā1). (13)
By means of a power-series expansion, and bearing in mind the properties ofN0, N1, and N2, we get
n
i=1
e2ζi=
n
i=1
kā„0
(2ζi)k
k! =n+ 4HM+
n
i=1
kā„3
(2ζi)k k! .
Because we are aiming at an (as good as possible) lower bound, it may look plausible to replace
kā„3 (2ζi)k
k! by 8
kā„3 (ζi)k
k! . However, instead of 8 = 23we shall use a multiplier Ļā[0,8],so as to arrive at
n
i=1
e2ζiā„n+ 4HM+Ļ
n
i=1
kā„3
(ζi)k k!
=n+ 4HMāĻnāĻHM+Ļ
n
i=1
kā„0
(ζi)k k!
i.e.,
n
i=1
e2ζiā„(1āĻ)n+ (4āĻ)HM+ĻZEE(G). (14) By substituting (13) and (14) back into (12), and solving forZEE, we obtain
ZEEā„Ļ 2+
nāĻ
2 2
+ (4āĻ)HM . (15)
It is elementary to show that fornā„2 andHM ā„1, the function f(x) :=x
2+
nāx 2
2
+ (4āx)HM
monotonically decreases in the interval [0,8]. Consequently, the best lower bound for ZEEis attained not forĻ= 8, but forĻ= 0. SettingĻ= 0 into (15) we arrive at the first half of Theorem 7.
Upper bound. By the definition of the Zagreb Estrada index, ZEE=n+
n
i=1
kā„1
(ζi)k k! ā¤n+
n
i=1
kā„1
(ζi)k k!
=n+
kā„1
1 k!
n
i=1
=(ζi)2>k/2
ā¤n+
kā„1
1 k!
n
i=1
(ζi)2 k/2
=n+
kā„1
1 k!
2HM
k/2
=nā1 +
kā„0
1 k!
ā 2HM
k
=nā1 +eā2HM, which directly leads to the rightāhand side inequality in (11). Thus, the proof of Theorem 7 is completed.
Theorem 8.LetGbe a graph withnvertices. Then ZEE(G)ā¤nā1 +eā4N4. Proof. By definition of the Zagreb Estrada index, we have
ZEE(G) =
n
i=1
eζi=
n
i=1
ā
k=0
ζik
k! ā¤n+
n
i=1
ā
k=1
ζik
k!
=n+
ā
k=1
1 k!
n
i=1
(ζi4)k/4ā¤n+
ā
k=1
1 k!
n
i=1
ζi4
k/4
=n+
ā
k=1
1 k!(N4)k/4
=nā1 +
ā
k=0
4
N4k
k! =nā1 +eā4N4.
Theorem 9.LetGbe a graph with hyperāZagreb indexHM. Then
ZEE(G)ā¤eā2M H. (16)
Proof.
ZEE(G) =
kā„0
1 k!
n
i=1
(ζi)kā¤
kā„0
1 k!
n
i=1
(ζi)2 k/2
(by inequality (7))
=
kā„0
1 k!
n
i=1
(ζi)2 k/2
=
kā„0
1
k!(2M H)k/2 (by Eq. (4))
=
kā„0
1 k!(ā
2M H)k=eā2M H.
6 Bounds for Zagreb Estrada index involving Zagreb energy
Theorem 10. Let G be a graph on n vertices, with n+ positive Zagreb eigenvalues.
Then the Zagreb Estrada indexZEE(G)and the graph Zagreb energyZE(G)satisfy the following inequalities:
1
2(eā1)ZE(G) +nān+ā¤ZEE(G)ā¤nā1 +eZE(G)/2.
Proof. Lower bound. Note thatexā„1 +x, with equality if and only ifx= 0. Also, exā„ex, with equality if and only ifx= 1. Thus,
ZEE(G) =
n
i=1
eζi=
ζi>0
eζi+
ζiā¤0
eζi
ā„
ζi>0
eζi+
ζiā¤0
(1 +ζi)
=e(ζ1+ζ2+Ā· Ā· Ā·+ζn+) + (nān+) + (ζn++1+Ā· Ā· Ā·+ζn)
= (eā1)(ζ1+ζ2+Ā· Ā· Ā·+ζn+) + (nān+) +
n
i=1
ζi
=1
2ZE(G)(eā1) +nān+.
Upper bound. From (10), ZEE(G)ā¤n+
kā„1
1 k!
n+
i=1
(ζi)kā¤n+
kā„1
1 k!
n+
i=1
ζi
k
=nā1 +eZE(G)/2.
Theorem 11. LetGbe a graph with largest Zagreb eigenvalueζ1and letp, Ļ andqbe, respectively, the number of its positive, zero and negative Zagreb eigenvalues. Then
ZEE(G)ā„eζ1+Ļ+ (pā1)e
ZE(G)ā2ζ1
2(pā1) +qeāZE(G)2q . (17)
Proof. Letζ1, . . . , ζpbe the positive, andζnāq+1, . . . , ζnthe negative eigenvalues ofZ. As the sum of eigenvalues is zero, one has
ZE(G) = 2
p
i=1
ζi=ā2
n
i=nāq+1
ζi. By the arithmeticāgeometric mean inequality,
p
i=2
eζiā„(pā1)e
(ζ2+···+ζp)
(pā1) = (pā1)e
ZE(G)ā2ζ1 2(pā1) . Similarly,
n
i=nāq+1
eζiā„qeāZE(G)2q . For the zero eigenvalues, we also have
nāq
i=p+1
eζi=Ļ . Thus, inequality (17) follows.
Theorem 12. LetGbe a graph withnvertices and hyperāZagreb indexHM. Then ZEE(G)āZE(G)ā¤nā1āā
2HM+eā2HM.
Proof. By the definitions of the Zagreb energy and Zagreb Estrada index, we have ZEE(G) = n+
n
i=1
kā„1
(ζi)k k! ā¤n+
n
i=1
kā„1
ζik
k!, ZEE(G) ⤠n+ZE(G) +
n
i=1
kā„2
ζik
k!
implying
ZEE(G)āZE(G)ā¤n+
n
i=1
kā„2
ζik
k! ā¤nā1āā
2HM+eā2HM.
Theorem 13. LetGbe a graph withnvertices. Then ZEE(G)ā¤nā1 +eZE(G). Proof.
ZEE(G) =n+
n
i=1
kā„1
ζki
k! =n+
kā„1
1 k!
n
i=1
ζik
ā¤n+
kā„1
(ZE(G))k k! .
7 Concluding Remarks
For a graph of ordern, the first Zagreb matrix is defined as the square matrix whose (i, j)- element is equal to the sum of degrees of adjacent verticesviandvj, and zero otherwise.
The new concepts of first Zagreb energy and first Zagreb Estrada index are introduced.
These graph invariants depend on the eigenvalues of the first Zagreb matrix in the same manner as the ordinary graph energy and Estrada index depend on the eigenvalues of the adjacency matrix. Their basic properties are determined. In particular, bounds for the Zagreb energy and for the Zagreb Estrada index are established, as well as relations between them.
The analogous second Zagreb energy and second Zagreb Estrada index, based on the eigenvalues of the second Zagreb matrix, are planned to be studied in a forthcoming paper [18].
References
[1] B. Basavanagoud, S. Patil, A note on hyperāZagreb index of graph operations,Iran.
J. Math. Chem.7(2016) 89ā92.
[2] B. BoroviĀ“canin, K. C. Das, B. Furtula, I. Gutman, Zagreb indices: Bounds and ex- tremal graphs, in: I. Gutman, B. Furtula, K. C. Das, E. MilovanoviĀ“c, I. MilovanoviĀ“c (Eds.),Bounds in Chemical Graph Theory ā Basics, Univ. Kragujevac, Kragujevac, 2017, pp. 67ā153.
[3] B. BoroviĀ“canin, K. C. Das, B. Furtula, I. Gutman, Bounds for Zagreb indices, MATCH Commun. Math. Comput. Chem.78(2017) 17ā100.
[4] SĀø. B. Bozkurt, A. D. GĀØungĀØor, I. Gutman, RandiĀ“c spectral radius and RandiĀ“c energy, MATCH Commun. Math. Comput. Chem.64(2010) 321ā334.
[5] SĀø. B. Bozkurt, A. D. GĀØungĀØor, I. Gutman, A. S CĀø evik, RandiĀ“c matrix and RandiĀ“c energy,MATCH Commun. Math. Comput. Chem.64(2010) 239ā250.
[6] D. Cvetkovi“c, P. Rowlinson, S. Simi“c,An Introduction to the Theory of Graph Spec- tra, Cambridge Univ. Press, Cambridge, 2010.
[7] Z. Cvetkovski,Inequalities, Theorems, Techniques and Selected Problems, Springer, Berlin, 2012.
[8] K. C. Das, S. Sorgun, K. Xu, On RandiĀ“c energy of graphs, in: I. Gutman, X. Li (Eds.),Graph Energies ā Theory and Applications, Univ. Kragujevac, Kragujevac, 2016, pp. 111ā122.
[9] H. Deng, S. RadenkoviĀ“c, I. Gutman, The Estrada Index, in: D. CvetkoviĀ“c, I. Gutman (Eds.),Applications of Graph Spectra, Math. Inst., Belgrade, 2009, pp. 123ā140.
[10] E. Estrada, The ABC matrix,J. Math. Chem.55(2017) 1021ā1033.
[11] I. Gutman, Degreeābased topological indices,Croat. Chem. Acta86(2013) 351ā361.
[12] I. Gutman, On hyperāZagreb index and coindex, Bull. Acad. Serbe Sci. Arts (Cl.
Math. Natur.), in press.
[13] I. Gutman, K. C. Das, The first Zagreb index 30 years after, MATCH Commun.
Math. Comput. Chem.50(2004) 83ā92.
[14] I. Gutman, B. RuĖsĖciĀ“c, N. TrinajstiĀ“c, C. F. Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes,J. Chem. Phys.62(1975) 3399ā3405.
[15] I. Gutman, N. TrinajstiĀ“c, Graph theory and molecular orbitals. Total Ļ-electron energy of alternant hydrocarbons,Chem. Phys. Lett.17(1972) 535ā538.
[16] S. M. Hosamani, B. B. Kulkarni, R. G. Boli, V. M. Gadag, QSPR analysis of certain graph theoretical matrices and their corresponding energy,Appl. Math. Nonlin. Sci.
2(2017) 131ā150.
[17] S. M. Hosamani, H. S. Ramane, On degree sum energy of a graph,Europ. J. Pure Appl. Math.9(2016) 340ā345.
[18] N. Jafari Rad, A. Jahanbani, I. Gutman, Second Zagreb energy and second Zagreb Estrada index of graphs, forthcoming.
[19] X. Li, Y. Shi, I. GutmanGraph Energy, Springer, New York, 2012.
[20] S. NikoliĀ“c, G. KovaĖceviĀ“c, A. MiliĖceviĀ“c, N. TrinajstiĀ“c, The Zagreb indices 30 years after,Croat. Chem. Acta76(2003) 113ā124.
[21] K. Pattabiraman, M. Vijayaragavan, Hyper Zagreb indices and its coindices of graphs,Bull. Int. Math. Virt. Inst.7(2017) 31ā41.
[22] H. S. Ramane, D. S. Revankar, J. B. Patil, Bounds for the degree sum eigenvalues and degree sum energy of a graph,Int. J. Pure Appl. Math. Sci.6(2013) 161-167.
[23] J. M. Rodr“ıguez, J. M. Sigarreta, Spectral properties of geometricāarithmetic index, Appl. Math. Comput.277(2016) 142ā153.
[24] G. H. Shirdel, H. Rezapour, A. M. Sayadi, The hyperāZagreb index of graph opera- tions,Iran. J. Math. Chem.4(2013) 213ā220.
[25] B. Zhou, Z. Du, Some lower bounds for Estrada index,Iran. J. Math. Chem.1(2010) 67ā72.