• Tidak ada hasil yang ditemukan

⾃⼰回帰モデルを⽤いた重⼒波データ解析(2):
  LIGO/Virgo O2までのカタログデータ解析

N/A
N/A
Protected

Academic year: 2025

Membagikan "⾃⼰回帰モデルを⽤いた重⼒波データ解析(2):
  LIGO/Virgo O2までのカタログデータ解析"

Copied!
21
0
0

Teks penuh

(1)

Inspiral

Merger

Ringdown

BH 準固有モード(quasi-normal modes)

⇦ BH 摂動理論

⇨ (M, a)

強い重⼒場の表れ

⇨ ⼀般相対論の検証ができる テンプレートを使わず,データから波形を再構築.

⾃⼰回帰モデルを⽤いた重⼒波データ解析(2): 


 LIGO/Virgo O2までのカタログデータ解析

真貝寿明(大阪工大) 

2019/9/20  物理学会 @ 山形大学 

ブラックホールリングダウン波形の

(2)

⾃⼰回帰モデルを⽤いた重⼒波データ解析:LV O2までのカタログデータ解析

真⾙ 寿明 (⼤阪⼯⼤) 2019/09/20 物理学会 @ ⼭形⼤学

2

O1/O2 カタログ

O1: September 12, 2015 -- January 19, 2016

▶ GW150914 BHBH

O2: November 30, 2016 -- August 25, 2017

▶ GW170817 NSNS

▶ GWTC-1 catalogue paper [arXiv:1811.12907]

▶ data released to public Feb, 2019

O3a: April 1, 2019 -- September 30, 2019

▶ data released to public April, 2021 O3b: November 1, 2019 -- May 1, 2020

FIG. 10. Time-frequency maps and reconstructed signal waveforms for the ten BBH events. Each event is represented with three panels showing whitened data from the LIGO detector where the higher SNR is recorded. The first panel shows a normalized time- frequency power map of the GW strain. The remaining pair of panels shows time-domain reconstructions of the whitened signal, in units of the standard deviation of the noise. The upper panels show the 90% credible intervals from the posterior probability density functions of the waveform time series, inferred using CBC waveform templates from Bayesian inference (LALINFERENCE) with the PhenomP model (red band) and by the BAYESWAVEwavelet model (blue band)[53]. The lower panels show the point estimates from the cWB search (solid lines), along with a 90% confidence interval (green band) derived from cWB analyses of simulated waveforms from the LALINFERENCECBC parameter estimation injected into data near each event. Visible differences between the different reconstruction methods are verified to be consistent with a noise origin (see the text for details).

GWTC-1: A GRAVITATIONAL-WAVE TRANSIENT CATALOG… PHYS. REV. X9,031040 (2019)

031040-21

(3)

⾃⼰回帰モデルを⽤いた重⼒波データ解析:LV O2までのカタログデータ解析

真⾙ 寿明 (⼤阪⼯⼤) 2019/09/20 物理学会 @ ⼭形⼤学

3

O1/O2 カタログ

(4)

真⾙ 寿明 (⼤阪⼯⼤) 2019/09/20 物理学会 @ ⼭形⼤学

⾃⼰回帰モデルを⽤いた重⼒波データ解析:LV O2までのカタログデータ解析

4

ringdown search  60 mockdata

matched filtering Hilbert-Huan Transformation

Auto-Regression Method

Neural Network method

Ring-down modeを独⽴に⾒つける⼿法の⽐較 (mockdata challenge)

(5)

⾃⼰回帰モデルを⽤いた重⼒波データ解析:LV O2までのカタログデータ解析

真⾙ 寿明 (⼤阪⼯⼤) 2019/09/20 物理学会 @ ⼭形⼤学

Fitting data with linear func.

e.g.

Z 1 = e (r j! ) t Z 2 = e (r+j ! ) t

x n = Ae rn t cos(! n t)

5 10 15 20 25 30

-0.6 -0.4 -0.2 0.2 0.4 0.6 0.8

5 10 15

-0.5 0.5 1.0

can be applied also to noisy data by adjusting M

1. Auto-Regressive model (Method, general) I

5

(6)

⾃⼰回帰モデルを⽤いた重⼒波データ解析:LV O2までのカタログデータ解析

真⾙ 寿明 (⼤阪⼯⼤) 2019/09/20 物理学会 @ ⼭形⼤学

Fitting data with linear func.

• find a j (Burg method)

• find M (FPE final prediction error method)

• re-construct wave signal from fitted function

• apply FFT with arbitrary precision.

power spectrum

1. Auto-Regressive model (Method, general) II

・・・・・

・・・・・

6

(7)

真⾙ 寿明 (⼤阪⼯⼤) 2019/09/20 物理学会 @ ⼭形⼤学

⾃⼰回帰モデルを⽤いた重⼒波データ解析:LV O2までのカタログデータ解析

Auto-Regressive model vs Short FFT

segment = 1/64 sec = 64 points

shift = 1/512 sec = 8 points

freq.

P(f)

AR

FFT

Even for short segment, AR model shows precise power-spectrum.

[mock data, SNR=40, inspiral part]

h(t)

The order M can be fixed at 2〜8.

7

sampling rate=4096

(8)

⾃⼰回帰モデルを⽤いた重⼒波データ解析:LV O2までのカタログデータ解析

真⾙ 寿明 (⼤阪⼯⼤) 2019/09/20 物理学会 @ ⼭形⼤学

Fitting data with linear func.

• find a j (Burg method)

• find M (FPE final prediction error method)

• re-construct wave signal from fitted function

• apply FFT with arbitrary precision.

power spectrum

1. Auto-Regressive model (Method, general) III

characteristic eq.

8

(9)

9

Ringdown Search by Auto-Regressive Approach (O1/O2 public data, GWTC1 catalogue)

GW150914

LIGO paper

AR model

freq.

4096 sampling rate 150-450 Hz filter

1 segment = 1/64 sec= 64 points 1 shift = 1/512 sec = 8 points

Hanford

time freq [Hz]

▲merger

before whitening

after whitening

(10)

10

Ringdown Search by Auto-Regressive Approach (O1/O2 public data, GWTC1 catalogue)

Hanford (SNR=20.6)

GW150914

Livingston (SNR=14.2)

f [Hz] f [Hz]

ASD [1/√Hz] ASD [1/√Hz]

time

f [Hz] f [Hz]

time

(11)

11

Ringdown Search by Auto-Regressive Approach (O1/O2 public data, GWTC1 catalogue)

Hanford (SNR=20.6)

L100_SpectrogramAR H100_SpectrogramAR

GW150914

Livingston (SNR=14.2)

LV paper

(AR) Hanford (AR) Livingston

20 40 60 80 100 Mass

0.2 0.4 0.6 0.8 1.0

Kerr parameter a GW150914

(M, a) = (63.1 +3.4 3.0 , 0.69 +0.05 0.04 )

f 220 = 271.8 Hz, f 221 = 266.0 Hz, f 222 = 254.7 Hz f 210 = 380.7 Hz, f 211 = 225.7 Hz, f 200 = 252.8 Hz f 330 = 430.9 Hz, f 331 = 427.4 Hz, f 332 = 421.1 Hz f 320 = 387.9 Hz, f 310 = 351.1 Hz, f 300 = 320.3 Hz

f QNM ▶ LV paper ▶

100 200 300 400 500 f_real(Hz)

20 40 60 80 100

f_imag(Hz) GW150914

LV paper

(AR) Hanford (AR) Livingston

f̲real f̲imag

Mass Kerr 

param

(12)

12

Ringdown Search by Auto-Regressive Approach (O1/O2 public data, GWTC1 catalogue)

GW151012

Hanford (SNR=6.4)

L1n6_SpectrogramAR H1n6_SpectrogramAR

Livingston (SNR=5.8)

(M, a) = (35.6 +10.8 3.8 , 0.67 +0.13 0.11 )

f 220 = 474.4 Hz, f 221 = 463.6 Hz, f 222 = 442.7 Hz f 210 = 678.3 Hz, f 211 = 396.3 Hz, f 200 = 449.0 Hz f 330 = 752.8 Hz, f 331 = 746.3 Hz, f 332 = 734.4 Hz f 320 = 680.8 Hz, f 310 = 618.8 Hz, f 300 = 566.6 Hz

LV paper ▶ f QNM ▶

Mass is small. 

f

QNM 

is out of range.
(13)

13

Ringdown Search by Auto-Regressive Approach (O1/O2 public data, GWTC1 catalogue)

GW151226

Hanford (SNR=9.8)

L1n6_SpectrogramAR H1n6_SpectrogramAR

Livingston (SNR=6.9)

f 220 = 871.8 Hz, f 221 = 856.5 Hz, f 222 = 825.9 Hz f 210 = 1156. Hz, f 211 = 712.3 Hz, f 200 = 773.6 Hz f 330 = 1379. Hz, f 331 = 1369. Hz, f 332 = 1353. Hz f 320 = 1226. Hz, f 310 = 1097. Hz, f 300 = 991.8 Hz

(M, a) = (20.5 +6.4 1.5 , 0.74 +0.07 0.05 )

LV paper ▶ f QNM ▶

Mass is small. 

f

QNM 

is out of range.
(14)

14

Ringdown Search by Auto-Regressive Approach (O1/O2 public data, GWTC1 catalogue)

GW170104

Hanford (SNR=9.5)

L1n6_SpectrogramAR H1n6_SpectrogramAR

Livingston (SNR=9.9)

LV paper

(AR) Hanford (AR) Livingston

(M, a) = (48.9 +5.1 4.0 , 0.66 +0.08 0.11 )

f 220 = 342.8 Hz, f 221 = 334.7 Hz, f 222 = 319.2 Hz f 210 = 495.0 Hz, f 211 = 287.2 Hz, f 200 = 327.2 Hz f 330 = 544.2 Hz, f 331 = 539.3 Hz, f 332 = 530.5 Hz f 320 = 493.3 Hz, f 310 = 449.3 Hz, f 300 = 412.0 Hz

LV paper ▶

f QNM ▶

(15)

15

Ringdown Search by Auto-Regressive Approach (O1/O2 public data, GWTC1 catalogue)

GW170608

Hanford (SNR=12.1)

L1n6_SpectrogramAR H1n6_SpectrogramAR

Livingston (SNR=9.2)

f 220 = 963.5 Hz, f 221 = 942.9 Hz, f 222 = 902.9 Hz f 210 = 1350. Hz, f 211 = 800.2 Hz, f 200 = 896.1 Hz f 330 = 1528. Hz, f 331 = 1515. Hz, f 332 = 1493. Hz f 320 = 1375. Hz, f 310 = 1245. Hz, f 300 = 1136. Hz

(M, a) = (17.8 +3.4 0.7 , 0.69 +0.04 0.04 )

Mass is small. 

f

QNM 

is out of range.

LV paper ▶

f QNM ▶

(16)

16

Ringdown Search by Auto-Regressive Approach (O1/O2 public data, GWTC1 catalogue)

GW170729

Hanford (SNR=5.9)

L1n6_SpectrogramAR H1n6_SpectrogramAR

Livingston (SNR=8.3)

Virgo (SNR=1.7) V1n6_SpectrogramAR

LV paper

(AR) Hanford (AR) Livingston (AR) Virgo

(M, a) = (79.5 +14.7 10.2 , 0.81 +0.07 0.13 ) f 220 = 240.5 Hz, f 221 = 237.5 Hz, f 222 = 231.3 Hz

f 210 = 291.4 Hz, f 211 = 190.8 Hz, f 200 = 197.6 Hz

(17)

17

Ringdown Search by Auto-Regressive Approach (O1/O2 public data, GWTC1 catalogue)

GW170809

Hanford (SNR=5.9)

L1n6_SpectrogramAR H1n6_SpectrogramAR

Livingston (SNR=10.7)

Virgo (SNR=1.1) V1n6_SpectrogramAR

LV paper

(AR) Hanford (AR) Livingston (AR) Virgo

(M, a) = (56.3 +5.2 3.8 , 0.7 +0.08 0.09 ) f 220 = 307.0 Hz, f 221 = 300.7 Hz, f 222 = 288.4 Hz

f 210 = 425.6 Hz, f 211 = 254.2 Hz, f 200 = 283.0 Hz

(18)

18

Ringdown Search by Auto-Regressive Approach (O1/O2 public data, GWTC1 catalogue)

GW170814

Hanford (SNR=9.3)

L100_SpectrogramARam H100_SpectrogramARam

Livingston (SNR=14.3)

Virgo (SNR=4.1) V1n6_SpectrogramAR

(M, a) = (53.2 +3.2 2.4 , 0.72 +0.07 0.05 ) f 220 = 330.3 Hz, f 221 = 324.0 Hz, f 222 = 311.5 Hz f 210 = 447.9 Hz, f 211 = 271.7 Hz, f 200 = 298.8 Hz

LV paper

(AR) Hanford (AR) Livingston (AR) Virgo

20 40 60 80 100 Mass

0.2 0.4 0.6 0.8 1.0

Kerr parameter a

GW170814

(19)

19

Ringdown Search by Auto-Regressive Approach (O1/O2 public data, GWTC1 catalogue)

GW170818

Hanford (SNR=4.6)

L100_SpectrogramAR H100_SpectrogramAR

Livingston (SNR=9.7)

Virgo (SNR=4.2) V100_SpectrogramAR

(M, a) = (59.4 +4.9 3.8 , 0.67 +0.07 0.08 ) f 220 = 307.0 Hz, f 221 = 300.7 Hz, f 222 = 288.4 Hz f 210 = 425.6 Hz, f 211 = 254.2 Hz, f 200 = 283.0 Hz

LV paper

(AR) Hanford (AR) Livingston

20 40 60 80 100 Mass

0.2 0.4 0.6 0.8 1.0

Kerr parameter a

GW170818

(20)

20

Ringdown Search by Auto-Regressive Approach (O1/O2 public data, GWTC1 catalogue)

GW170823

Hanford (SNR=6.8)

L1n6_SpectrogramAR H1n6_SpectrogramAR

Livingston (SNR=9.2)

(M, a) = (65.4 +10.1 7.4 , 0.72 +0.09 0.12 )

f 220 = 268.7 Hz, f 221 = 263.5 Hz, f 222 = 253.4 Hz f 210 = 364.4 Hz, f 211 = 221.0 Hz, f 200 = 243.1 Hz f 330 = 425.3 Hz, f 331 = 422.2 Hz, f 332 = 416.6 Hz f 320 = 380.1 Hz, f 310 = 341.8 Hz, f 300 = 310.1 Hz

LV paper ▶ f QNM ▶

LV paper

(AR) Hanford (AR) Livingston

20 40 60 80 100 Mass

0.2 0.4 0.6 0.8 1.0

Kerr parameter a

GW170823

(21)

真⾙ 寿明 (⼤阪⼯⼤) 2019/09/20 物理学会 @ ⼭形⼤学

⾃⼰回帰モデルを⽤いた重⼒波データ解析:LV O2までのカタログデータ解析

21

LIGO/Virgo の O1/O2イベントデータに適⽤,リングダウン部分の抽出を試みた.

Summary & Outlook

⾃⼰回帰モデル x(t)

短いデータ (〜 60 pts) に対しても精度よく周波数・減衰率を特定できる.

シグナルを⾒つけるのにテンプレートは不要.

★ノイズ除去の⽅法や,他の⽅法と組み合わせ,より精密な周波数特定法を開発中.

★higher modesの特定へ,BHの特⻑量の特定へ,相対論検証へ.

★テンプレートを使わない⽅法は,今後,未知の重⼒波シグナルの候補検出に  役⽴つかも.

SN⽐が⾼ければ,独⽴にリングダウン部分が取り出せそうだ.

Referensi

Dokumen terkait