• Tidak ada hasil yang ditemukan

単層カーボンナノチューブ - Maruyama-Chiashi Lab.

N/A
N/A
Protected

Academic year: 2024

Membagikan "単層カーボンナノチューブ - Maruyama-Chiashi Lab."

Copied!
17
0
0

Teks penuh

(1)

単層カーボンナノチューブ

Single-Walled Carbon Nanotubes 電子顕微鏡観察と分光

Electron Microscopy & Spectroscopy 単層カーボンナノチューブ

Single-Walled Carbon Nanotubes 電子顕微鏡観察と分光

Electron Microscopy & Spectroscopy

Molecular Thermo-Fluid Engineering 2010

Electron Microscopy & Spectroscopy Electron Microscopy & Spectroscopy

2 1 0.9 0.8 0.7

units)

Diameter (nm)

5 nm

http://www.photon.t.u-tokyo.ac.jp

0 500 1000 1500

100 200 300 400

Raman Shift (cm–1)

Intensity (arb.

Raman Shift (cm–1)

丸山 茂夫

Shigeo Maruyama

東京大学大学院工学系研究科 機械工学専攻

Energy (J)

HeNe 633nm

Ar 488nm ArF 193nm

G 1590cm–1

RBM 200cm–1 YAG

1064nm

Ar

1.67x10–21J SEM

1keV

Microw ave 2.45GHz

Docomo 800MHz

H2–H2

3.18meV

C–C

2.4meV BS 12GHz C1s

284.5eV Al–K

1468.6eV TEM

120keV NHK Radio

594KHz TV 1–12ch 93–219MHz UHF 13ch 473MHz

Toky oFM 80MHz

–15 –18 –21 –24

Length, Wavelength and Energy Scale

Raman

Frequency (Hz)

THz GHz

Energy (eV)

eV meV

keV

gy ( )

Temperature (K)

sun 6000K

300K

SWNT absorb.

(7,5)

103 100 10–3

106 103 100

1015 1018 1021 1024

Planck

Absorb.

PLE XPS

Length (m)

nm m mm m

Å

Wavenumber (cm–1) Frequency (Hz)

10–9 10–6 10–3 100

106 103 100

1018 1015 1012 109

(2)

Energy (J)

HeNe 633nm

Ar 488nm ArF

193nm

G 1590cm–1

RBM 200cm–1 YAG

1064nm

–18 –19 –20

Length, Wavelength and Energy Scale 2

Raman

Frequency (Hz) Energy (eV) eV

gy ( )

Temperature (K)

sun 6000K

300K

(7,5)

101 100 10–1

105 104 103

1018 1019 1020

Planck

Absorb. PLE

Length (m)

m

Wavenumber (cm–1) q y ( )

10–7 10–6 10–5 10–4

105 104 103 102

1015 1014 1013

Energy (J)

HeNe 633nm

Ar 488nm ArF

193nm

G 1590cm–1 YAG

1064nm

10–18 10–19

Length, Wavelength and Energy Scale 3

Raman

Frequency (Hz) Energy (eV) eV

Temperature (K)

sun

6000K 300K

(7,5)

101 100

105 104

1018 1019

Planck

Absorb.

PLE

Length (m)

m

Wavenumber (cm–1) q y ( )

10–7 10–6 10–5

105 104 103

1015 1014

(3)

Characterization of Carbon Nanotubes

Electron Microscopy

Transmission Electron Microscopy (TEM) Scanning Electron Microscopy (SEM) Scanning Electron Microscopy (SEM)

Scanning Transmission Electron Microscopy (STEM) Scanning Probe Microscopy

Atomic Force Microscopy (AFM) Scanning Tunneling Microscopy (STM) Optical Spectroscopyy

Resonant Raman Scattering

Absorption Spectroscopy (UV-Vis-NIR) Fluorescence Spectroscopy

X-ray

X-ray diffraction

X-ray photoelectron spectroscopy (XPS, ESCA)

Transmission Electron Spectroscopy

透過型電子顕微鏡(TEM)

高分解能像(Phase contrast) 電子線回折(Electron diffraction)

電子線分光(EELS Electron energy loss spectroscopy) 電子線分光(EELS, Electron energy loss spectroscopy)

末永和知,カーボンナノチューブの基礎と応用,培風館

(4)

Transmission Electron Spectroscopy

Phase Contrast

末永和知,カーボンナノチューブの基礎と応用,培風館

Diffraction

EELS

TEM Images of Carbon Nanotubes

S.Iijima, Nature, 354, pp.56-58 (1991).

(5)

TEM Pictures of SWNT Ropes

5 nm

By ACCVD

Individual tube diameter: 1.3 nm Spacing: 0.34 nm

Misalignments and Terminations

TEM from Smalley et al. at Rice University About 100 SWNTs

HRTEM images of DWNTs & TWNTs HRTEM images of DWNTs & TWNTs HRTEM images of DWNTs & TWNTs HRTEM images of DWNTs & TWNTs

バンドルの

DWNTs

(直径分布は

1

2nm

2nm

Bundles of

DWNTs

2nm

N. Shinohara’s Powerpoint

(6)

Peapods

Suenaga et al., PRL 2003

Peapod with Sc2@C84 Shinohara,

培風館

Scanning Electron Spectroscopy

Hitachi S4800, 日立ハイテクHPより

http://www.remus.dti.ne.jp/~kkkkwing/

(7)

Images of As-Grown Sample Images of As-Grown Sample

Vertically Aligned SWNTs on Quartz Substrate

Y. Murakami, S. Chiashi, Y. Miyauchi, M. Hu, M. Ogura, T. Okubo, S. Maruyama, Chem. Phys. Lett. 385 (2004) 298

(8)

STEM Image of Vertically Aligned SWNTs

Amorphous Carbon Support

Substrate

150 nm Slice by FIB

Scanning Probe Microscopy

中山喜萬,カーボンナノチューブの基礎と応用,培風館

(9)

SWNTs Directly Generation on the AFM Stage

isolated SWNT (not bundle)

length : 100150 nm diameter : 1.32.2 nm density : 10 m-2

0 100 200 300

0 1 2 3

Position (nm)

Height (nm)

AFM image of SWNTs directly grown on silicon.

STM Image of Individual Atoms

http://vortex.tn.tudelft.nl/~dekker/nanotubes.html

(10)

Absorption Spectra

(a) On quartz As Grown

2

gy [eV]

c1

c2

2

]

E E

c1

c2

bsorbance (arb. unit)

(c) HiPco Isolated

(b) On zeolite Isolated As–Grown

–20 0

Energ

v1

v2

–20 0

DOS E22 E11

v1

v2

2 3

paration (eV)

500 1000 1500

Ab

Wavelength (nm) (d) HiPco Bundle

0.5 1 1.5 2

0 1

Nanotube Diameter (nm)

Energy Se

Resonance Raman Spectra of SWNTs A.M. Rao et al, Science 275(1997) 187

• RBM (Radial breathing Mode) – 100-400cm-1dt-1

• G Band (Graphite)

Diameter Selective

• G-Band, (Graphite)

– 1550-1600cm-1, Splitting dt-2

• BWF (Breit-Wigner-Fano) peaks dt-1 – 1520-1540cm-1, Metallic SWNT

D-band, (Disorder)depends ondt – 1250-1350cm-1, depends on Elaser

BWF

Electronic density of states 500 1000 1500 [cm

-1

]

 

(11)

ラマン分光装置

AFM/STM

Micro and Macro Raman

2 1 0.9 0.8 0.7

Diameter (nm)

Raman Scattering (Excitation 488nm)

248

G band (Tangential

Mode)

100 200 300 400

ensity (arb. units) Raman Shift (cm–1)

) ( ) 248

(  1

nm cm

d

Radial B thi

0 500 1000 1500

Raman Shift (cm–1)

Inte

laser CCVD 800

D band Breathing

Mode (RBM)

(12)

Kataura Plot

(5,5)

)

t cc t

M d a d

E 11( )6 0/ ES11(dt)2acc0/dt

2 3

aration (eV)

2.54

±0.1eV

EM11 ES22

ES11 (10,10)

(10,0)

of States (states/1C–atom/eV)

E11 E22

0 1 2

0 1

Nanotube Diameter (nm)

Energy Sepa

0=2.9 eV, acc=0.144nm

–2 0 2

0 1

(17,0)

Energy (eV)

Density

Raman Spectra

2.4 2.6

2 1 0.9 0.8 0.7

Nanotube Diameter (nm)

aration (eV)

488 nm 514.5 nm

488

1.8 2 2.2

Energy Sepa

633 nm

b.units) (c) HiPco

(b) On zeolite (a) On quartz

(d) On quartz 488 nm

nsity (arb.units)

488 nm

(b) ACCVD on zeolite (a) ACCVD on quartz

100 200 300 400

Intensity(arb

Raman Shift (cm–1) (f) HiPco (e) On zeolite

(i) HiPco (h) On zeolite (g) On quartz 514.5 nm

633 nm

* *

* *

* * 0 500 1000 1500

Inten

Raman Shift (cm–1) (c) HiPco

(13)

Kataura Plot

市田正夫,中村新男,カーボンナノチューブの基礎と応用,培風館

Observed RBM RBM

Resonance Raman spectroscopy

(7,5)

(10 3) (7,6)

3

2

200 300

ation (eV)

Calculated RBM

(10,3)

1 2

nergy Separation (eV)

200 300

1

Raman shift (cm–1)

Energy Separa

0.5 1 1.5 2

0 1

Nanotube Diameter (nm)

En

Tight–Binding LDAempirical TB

) 5 . 12 /(

5 .

223

d

(14)

Optical absorption and Raman RBM

2 1 0.9 0.8 0.7

Diameter (nm) by d = 248/

Diameter (nm) by d = 223.5/(–12.5) 0.6 0.7 0.8 0.9 1 2

s)

(a) 850 °C

A

ensity (arb.units)

(a) 850 °C

(b) 750 °C

(c) 650 °C

B

Absorbance (arb.units (a) 850 °C

(b) 750 °C

(c) 650 °C

Absorption of Isolated SWNTs

100 200 300 400

Inte

Raman Shift  (cm–1) (d) HiPco

(c) 650 C

500 1000 1500

Wavelength (nm) (d) HiPco

Raman RBM of ‘as grown’ samples

Band Gap Fluorescence

D2O 1.1g /cm3 SDS or NaDDBS

Strong Sonication 60min

1.0g / cm3

NaDDBS

0 2

Energy [eV]

absorption fluorescence

v1 c1

c2

0 2

Energy [eV]

absorption fluorescence

v1 c1

c2

DOS (10,5)

M. J. O’Connell et al., Science 297 (2002) 593

Centrifugation 20,627g x 24h

S. M. Bachilo et al., Science 298 (2002) 2361.

InGaAs Detector

–20

Density of Electronic States (arb. units)

v2

–20

Density of Electronic States (arb. units)

v2

Centrifugation 180,000g x 1h

(15)

Comparison of ACCVD and HiPco

(12,1) (10,5)

(7,5) (7,6)

(8,6) (9,4) (10,2)

(8,4) ( , )

(11,3)

(7,5) (7,6)

(8,3)

(8,7)

(9,5) (10,3)

(11,1) (8,6)

(a) ACCVD 850℃ (b) HiPco

(8,4) (6,5)

Photoluminescence from Individual Nanotube

45°

1.0

rb. units)

expfit

90°

135°

180°

5m

0 45 90 135 180 0

0.5

PL Intensity (ar

Excitation Polarization (degrees)

Strong polarized emission: ideal 1D electronic structure IPL|p(θ)µ|2

µ:dipole moment p:light polarization

θ:angle of light polarization and dipole

Collaboration with K. Matsuda (KAST, Saeki Group) (2004)

(16)

XPS

日東分析センタ

HP

より,

http://www.natc.co.jp/index.html

Demonstration of Root Growth and Yield by XPS

Co: 0.05 at%, Mo: 0.03 at%

C: 91.23 at%, O: 8.69 at%

C/M=114,000

Root Side (10,10) x 5 m

=813,005 atoms

C/M = 271000

Co: 0.04 at%, Mo: 0.01 at%

C: 98.67 at%, O: 1.29 at%

Co: 0.41 at%, Mo: 0.15 at%

C: 19.65 at%, O: 79.8 at%

C/M=197,300

Removed & Left

Metal of 1.3 nm

= 300 atoms

Acknowledgement to Shimazu for the use of KRATOS (AXIS-NOVA) Tip Side

Hatas’s SuperGrowth 0.013Fe Supergrowth:50,000 wt%

(17)

X-Ray Diffraction

SWNTs

触媒金属

真庭 豊,カーボンナノチューブの基礎と応用,培風館

Referensi

Dokumen terkait

e) Mikroskop elektron terbagi menjadi dua jenis, yaitu mikroskop elektron pemindai (SEM: Scanning Electron Microscope) dan mikroskop elektron transmisi (TEM: Transmission

CoCl2, NaOH, purified soybean oil, Tween 80 and distilled water were used for precipitation of cobalt oxide nanotubes.. shows the scanning electron microscopy SEM images of cobalt oxide

Several analytical methods including transmission electron microscope TEM, X-ray diffraction XRD, particle size analyzer, scanning electron microscope SEM, SEM energy dispersive X-ray

The microstructure of the component was characterized using optical microscopy, scanning electron microscopy SEM equipped with energy dispersive X-ray spectroscopy EDS, transmission

LIST OF ABBREVIATIONS CO2 Carbon Dioxide EIS Electrochemical Impedance Spectroscopy LPR Linear Polarisation Resistance NaCl Sodium Chloride SEM Scanning Electron Microscopy

of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 Anisotropic optical absorption properties of single-walled carbon nanotubes SWNTs are determined from a vertically aligned SWNT film

1036 --- アルコールからつくる 単層カーボンナノチューブ Single-Walled Carbon Nanotubes Generated from Alcohol ============================================================= 執筆者プロフィール 丸山 茂夫 Shigeo