単層カーボンナノチューブ
Single-Walled Carbon Nanotubes 電子顕微鏡観察と分光
Electron Microscopy & Spectroscopy 単層カーボンナノチューブ
Single-Walled Carbon Nanotubes 電子顕微鏡観察と分光
Electron Microscopy & Spectroscopy
Molecular Thermo-Fluid Engineering 2010
Electron Microscopy & Spectroscopy Electron Microscopy & Spectroscopy
2 1 0.9 0.8 0.7
units)
Diameter (nm)
5 nm
http://www.photon.t.u-tokyo.ac.jp
0 500 1000 1500
100 200 300 400
Raman Shift (cm–1)
Intensity (arb.
Raman Shift (cm–1)
丸山 茂夫
Shigeo Maruyama
東京大学大学院工学系研究科 機械工学専攻
Energy (J)
HeNe 633nm
Ar 488nm ArF 193nm
G 1590cm–1
RBM 200cm–1 YAG
1064nm
Ar
1.67x10–21J SEM
1keV
Microw ave 2.45GHz
Docomo 800MHz
H2–H2
3.18meV
C–C
2.4meV BS 12GHz C1s
284.5eV Al–K
1468.6eV TEM
120keV NHK Radio
594KHz TV 1–12ch 93–219MHz UHF 13ch 473MHz
Toky oFM 80MHz
–15 –18 –21 –24
Length, Wavelength and Energy Scale
Raman
Frequency (Hz)
THz GHz
Energy (eV)
eV meV
keV
gy ( )
Temperature (K)
sun 6000K
300K
SWNT absorb.
(7,5)
103 100 10–3
106 103 100
1015 1018 1021 1024
Planck
Absorb.
PLE XPS
Length (m)
nm m mm m
Å
Wavenumber (cm–1) Frequency (Hz)
10–9 10–6 10–3 100
106 103 100
1018 1015 1012 109
Energy (J)
HeNe 633nm
Ar 488nm ArF
193nm
G 1590cm–1
RBM 200cm–1 YAG
1064nm
–18 –19 –20
Length, Wavelength and Energy Scale 2
Raman
Frequency (Hz) Energy (eV) eV
gy ( )
Temperature (K)
sun 6000K
300K
(7,5)
101 100 10–1
105 104 103
1018 1019 1020
Planck
Absorb. PLE
Length (m)
m
Wavenumber (cm–1) q y ( )
10–7 10–6 10–5 10–4
105 104 103 102
1015 1014 1013
Energy (J)
HeNe 633nm
Ar 488nm ArF
193nm
G 1590cm–1 YAG
1064nm
10–18 10–19
Length, Wavelength and Energy Scale 3
Raman
Frequency (Hz) Energy (eV) eV
Temperature (K)
sun
6000K 300K
(7,5)
101 100
105 104
1018 1019
Planck
Absorb.
PLE
Length (m)
m
Wavenumber (cm–1) q y ( )
10–7 10–6 10–5
105 104 103
1015 1014
Characterization of Carbon Nanotubes
Electron Microscopy
Transmission Electron Microscopy (TEM) Scanning Electron Microscopy (SEM) Scanning Electron Microscopy (SEM)
Scanning Transmission Electron Microscopy (STEM) Scanning Probe Microscopy
Atomic Force Microscopy (AFM) Scanning Tunneling Microscopy (STM) Optical Spectroscopyy
Resonant Raman Scattering
Absorption Spectroscopy (UV-Vis-NIR) Fluorescence Spectroscopy
X-ray
X-ray diffraction
X-ray photoelectron spectroscopy (XPS, ESCA)
Transmission Electron Spectroscopy
透過型電子顕微鏡(TEM)
高分解能像(Phase contrast) 電子線回折(Electron diffraction)
電子線分光(EELS Electron energy loss spectroscopy) 電子線分光(EELS, Electron energy loss spectroscopy)
末永和知,カーボンナノチューブの基礎と応用,培風館
Transmission Electron Spectroscopy
Phase Contrast
末永和知,カーボンナノチューブの基礎と応用,培風館
Diffraction
EELS
TEM Images of Carbon Nanotubes
S.Iijima, Nature, 354, pp.56-58 (1991).
TEM Pictures of SWNT Ropes
5 nm
By ACCVD
Individual tube diameter: 1.3 nm Spacing: 0.34 nm
Misalignments and Terminations
TEM from Smalley et al. at Rice University About 100 SWNTs
HRTEM images of DWNTs & TWNTs HRTEM images of DWNTs & TWNTs HRTEM images of DWNTs & TWNTs HRTEM images of DWNTs & TWNTs
バンドルの
DWNTs(直径分布は
1~
2nm)
2nm
Bundles of
DWNTs
2nm
N. Shinohara’s Powerpoint
Peapods
Suenaga et al., PRL 2003
Peapod with Sc2@C84 Shinohara,
培風館
Scanning Electron Spectroscopy
Hitachi S4800, 日立ハイテクHPより
http://www.remus.dti.ne.jp/~kkkkwing/
Images of As-Grown Sample Images of As-Grown Sample
Vertically Aligned SWNTs on Quartz Substrate
Y. Murakami, S. Chiashi, Y. Miyauchi, M. Hu, M. Ogura, T. Okubo, S. Maruyama, Chem. Phys. Lett. 385 (2004) 298
STEM Image of Vertically Aligned SWNTs
Amorphous Carbon Support
Substrate
150 nm Slice by FIB
Scanning Probe Microscopy
中山喜萬,カーボンナノチューブの基礎と応用,培風館
SWNTs Directly Generation on the AFM Stage
isolated SWNT (not bundle)
length : 100150 nm diameter : 1.32.2 nm density : 10 m-2
0 100 200 300
0 1 2 3
Position (nm)
Height (nm)
AFM image of SWNTs directly grown on silicon.
STM Image of Individual Atoms
http://vortex.tn.tudelft.nl/~dekker/nanotubes.html
Absorption Spectra
(a) On quartz As Grown
2
gy [eV]
c1
c2
2
]
E E
c1
c2
bsorbance (arb. unit)
(c) HiPco Isolated
(b) On zeolite Isolated As–Grown
–20 0
Energ
v1
v2
–20 0
DOS E22 E11
v1
v2
2 3
paration (eV)
500 1000 1500
Ab
Wavelength (nm) (d) HiPco Bundle
0.5 1 1.5 2
0 1
Nanotube Diameter (nm)
Energy Se
Resonance Raman Spectra of SWNTs A.M. Rao et al, Science 275(1997) 187
• RBM (Radial breathing Mode) – 100-400cm-1dt-1
• G Band (Graphite)
Diameter Selective
• G-Band, (Graphite)
– 1550-1600cm-1, Splitting dt-2
• BWF (Breit-Wigner-Fano) peaks dt-1 – 1520-1540cm-1, Metallic SWNT
• D-band, (Disorder)depends ondt – 1250-1350cm-1, depends on Elaser
BWF
Electronic density of states 500 1000 1500 [cm
-1]
ラマン分光装置
AFM/STM
Micro and Macro Raman
2 1 0.9 0.8 0.7
Diameter (nm)
Raman Scattering (Excitation 488nm)
248
G band (Tangential
Mode)
100 200 300 400
ensity (arb. units) Raman Shift (cm–1)
) ( ) 248
( 1
nm cm
d
Radial B thi
0 500 1000 1500
Raman Shift (cm–1)
Inte
laser CCVD 800
D band Breathing
Mode (RBM)
Kataura Plot
(5,5)
)
t cc t
M d a d
E 11( )6 0/ ES11(dt)2acc0/dt
2 3
aration (eV)
2.54
±0.1eV
EM11 ES22
ES11 (10,10)
(10,0)
of States (states/1C–atom/eV)
E11 E22
0 1 2
0 1
Nanotube Diameter (nm)
Energy Sepa
0=2.9 eV, acc=0.144nm
–2 0 2
0 1
(17,0)
Energy (eV)
Density
Raman Spectra
2.4 2.6
2 1 0.9 0.8 0.7
Nanotube Diameter (nm)
aration (eV)
488 nm 514.5 nm
488
1.8 2 2.2
Energy Sepa
633 nm
b.units) (c) HiPco
(b) On zeolite (a) On quartz
(d) On quartz 488 nm
nsity (arb.units)
488 nm
(b) ACCVD on zeolite (a) ACCVD on quartz
100 200 300 400
Intensity(arb
Raman Shift (cm–1) (f) HiPco (e) On zeolite
(i) HiPco (h) On zeolite (g) On quartz 514.5 nm
633 nm
* *
* *
* * 0 500 1000 1500
Inten
Raman Shift (cm–1) (c) HiPco
Kataura Plot
市田正夫,中村新男,カーボンナノチューブの基礎と応用,培風館
Observed RBM RBM
Resonance Raman spectroscopy
(7,5)
(10 3) (7,6)
3
2
200 300
ation (eV)
Calculated RBM
(10,3)
1 2
nergy Separation (eV)
200 300
1
Raman shift (cm–1)
Energy Separa
0.5 1 1.5 2
0 1
Nanotube Diameter (nm)
En
Tight–Binding LDAempirical TB
) 5 . 12 /(
5 .
223
d
Optical absorption and Raman RBM
2 1 0.9 0.8 0.7
Diameter (nm) by d = 248/
Diameter (nm) by d = 223.5/(–12.5) 0.6 0.7 0.8 0.9 1 2
s)
(a) 850 °C
A
ensity (arb.units)
(a) 850 °C
(b) 750 °C
(c) 650 °C
B
Absorbance (arb.units (a) 850 °C
(b) 750 °C
(c) 650 °C
Absorption of Isolated SWNTs
100 200 300 400
Inte
Raman Shift (cm–1) (d) HiPco
(c) 650 C
500 1000 1500
Wavelength (nm) (d) HiPco
Raman RBM of ‘as grown’ samples
Band Gap Fluorescence
D2O 1.1g /cm3 SDS or NaDDBS
Strong Sonication 60min
1.0g / cm3
NaDDBS
0 2
Energy [eV]
absorption fluorescence
v1 c1
c2
0 2
Energy [eV]
absorption fluorescence
v1 c1
c2
DOS (10,5)
M. J. O’Connell et al., Science 297 (2002) 593
Centrifugation 20,627g x 24h
S. M. Bachilo et al., Science 298 (2002) 2361.
InGaAs Detector
–20
Density of Electronic States (arb. units)
v2
–20
Density of Electronic States (arb. units)
v2
Centrifugation 180,000g x 1h
Comparison of ACCVD and HiPco
(12,1) (10,5)
(7,5) (7,6)
(8,6) (9,4) (10,2)
(8,4) ( , )
(11,3)
(7,5) (7,6)
(8,3)
(8,7)
(9,5) (10,3)
(11,1) (8,6)
(a) ACCVD 850℃ (b) HiPco
(8,4) (6,5)
Photoluminescence from Individual Nanotube
0°
45°
1.0
rb. units)
expfit
90°
135°
180°
5m
0 45 90 135 180 0
0.5
PL Intensity (ar
Excitation Polarization (degrees)
Strong polarized emission: ideal 1D electronic structure IPL|p(θ) •µ|2
µ:dipole moment p:light polarization
θ:angle of light polarization and dipole
Collaboration with K. Matsuda (KAST, Saeki Group) (2004)
XPS
日東分析センタ
HPより,
http://www.natc.co.jp/index.htmlDemonstration of Root Growth and Yield by XPS
Co: 0.05 at%, Mo: 0.03 at%
C: 91.23 at%, O: 8.69 at%
C/M=114,000
Root Side (10,10) x 5 m
=813,005 atoms
C/M = 271000
Co: 0.04 at%, Mo: 0.01 at%
C: 98.67 at%, O: 1.29 at%
Co: 0.41 at%, Mo: 0.15 at%
C: 19.65 at%, O: 79.8 at%
C/M=197,300
Removed & Left
Metal of 1.3 nm
= 300 atoms
Acknowledgement to Shimazu for the use of KRATOS (AXIS-NOVA) Tip Side
Hatas’s SuperGrowth 0.013Fe Supergrowth:50,000 wt%
X-Ray Diffraction
SWNTs
触媒金属