95
参考文献
[1] B. Ammann, R. Lauter, and V. Nistor, On the geometry of Riemannian manifolds with a Lie structure at infinity,Int.
J. Math. Math. Sci.1-4(2004), 161–193.
[2] M. T. Anderson, Geometric aspects of the AdS/CFT correspondence,AdS/CFT correspondence: Einstein metrics and their conformal boundaries, IRMA Lect. Math. Theor. Phys. vol. 8, Eur. Math. Soc., Zürich, 2005, pp. 1–31.
[3] T. Aubin, Espaces de Sobolev sur les variétés riemanniennes,Bull. Sci. Math. (2)100(1976), no. 2, 149–173.
[4] ,Some nonlinear problems in Riemannian geometry, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998.
[5] E. Bahuaud, Intrinsic characterization for Lipschitz asymptotically hyperbolic metrics,Pacific J. Math.239(2009), no. 2, 231–249.
[6] E. Bahuaud and R. Gicquaud, Conformal compactification of asymptotically locally hyperbolic metrics,J. Geom.
Anal.21(2011), no. 4, 1085–1118.
[7] O. Biquard, Métriques d’Einstein asymptotiquement symétriques,Astérisque265(2000), vi+109.
[8] ,Asymptotically symmetric Einstein metrics, SMF/AMS Texts and Monographs vol. 13, American Mathemat- ical Society, Providence, RI; Société Mathématique de France, Paris, 2006. Translated from the 2000 French original by Stephen S. Wilson.
[9] R. D. Canary, D. B. A. Epstein, and P. L. Green, Notes on notes of Thurston,Fundamentals of hyperbolic geometry:
selected expositions, London Math. Soc. Lecture Note Ser. vol. 328, Cambridge Univ. Press, Cambridge, 2006, pp. 1–115. With a new foreword by Canary.
[10] J. Cheeger and D. G. Ebin,Comparison theorems in Riemannian geometry, AMS Chelsea Publishing, Providence, RI, 2008. Revised reprint of the 1975 original.
[11] J. Cheeger, M. Gromov, and M. Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds,J. Differential Geom.17(1982), no. 1, 15–53.
[12] J. Eichhorn, Sobolev-Räume, Einbettungssätze und Normungleichungen auf offenen Mannigfaltigkeiten,Math. Nachr.
138(1988), 157–168.
[13] J. Eichhorn, The boundedness of connection coefficients and their derivatives,Math. Nachr.152(1991), 145–158.
[14] C. Fefferman and C. R. Graham, Conformal invariants,Astérisque Numero Hors Serie(1985), 95–116, The mathe- matical heritage of Élie Cartan (Lyon, 1984).
[15] ,The ambient metric, Annals of Mathematics Studies vol. 178, Princeton University Press, Princeton, NJ, 2012.
[16] C. L. Fefferman, Monge-Ampère equations, the Bergman kernel, and geometry of pseudoconvex domains,Ann. of Math. (2)103(1976), no. 2, 395–416.
[17] M. P. Gaffney, The conservation property of the heat equation on Riemannian manifolds,Comm. Pure Appl. Math.
12(1959), 1–11.
[18] C. R. Graham and J. M. Lee, Einstein metrics with prescribed conformal infinity on the ball,Adv. Math.87(1991), no. 2, 186–225.
[19] R. E. Greene and H. Wu,C∞ approximations of convex, subharmonic, and plurisubharmonic functions,Ann. Sci.
École Norm. Sup. (4)12(1979), no. 1, 47–84.
[20] M. J. Gursky and Q. Han, Non-existence of Poincaré-Einstein manifolds with prescribed conformal infinity,Geom.
Funct. Anal.27(2017), no. 4, 863–879.
96 参考文献
[21] S. W. Hawking and D. N. Page, Thermodynamics of black holes in anti-de Sitter space, Comm. Math. Phys.87 (1982/83), no. 4, 577–588.
[22] S. Helgason, Functions on symmetric spaces,Harmonic analysis on homogeneous spaces (Proc. Sympos. Pure Math., Vol. XXVI, Williams Coll., Williamstown, Mass., 1972), Amer. Math. Soc., Providence, R.I., 1973, pp. 101–146.
[23] ,Groups and geometric analysis, Mathematical Surveys and Monographs vol. 83, American Mathematical Society, Providence, RI, 2000. Integral geometry, invariant differential operators, and spherical functions, Corrected reprint of the 1984 original.
[24] ,Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in Mathematics vol. 34, American Mathematical Society, Providence, RI, 2001. Corrected reprint of the 1978 original.
[25] C. R. LeBrun,H-space with a cosmological constant,Proc. Roy. Soc. London Ser. A380(1982), no. 1778, 171–185.
[26] J. M. Lee, Fredholm operators and Einstein metrics on conformally compact manifolds,Mem. Amer. Math. Soc.183 (2006), no. 864, vi+83.
[27] Y. Matsumoto, A construction of Poincaré-Einstein metrics of cohomogeneity one on the ball,Proc. Amer. Math.
Soc.147(2019), no. 9, 3983–3993.
[28] R. Mazzeo, The Hodge cohomology of a conformally compact metric,J. Differential Geom.28(1988), no. 2, 309–
339.
[29] , Unique continuation at infinity and embedded eigenvalues for asymptotically hyperbolic manifolds,Amer.
J. Math.113(1991), no. 1, 25–45.
[30] R. R. Mazzeo and R. B. Melrose, Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature,J. Funct. Anal.75(1987), no. 2, 260–310.
[31] H. P. McKean, An upper bound to the spectrum of∆on a manifold of negative curvature,J. Differential Geometry4 (1970), 359–366.
[32] R. B. Melrose, Spectral and scattering theory for the Laplacian on asymptotically Euclidian spaces,Spectral and scattering theory (Sanda, 1992), Lecture Notes in Pure and Appl. Math. vol. 161, Dekker, New York, 1994, pp. 85–
130.
[33] D. N. Page and C. N. Pope, Inhomogeneous Einstein metrics on complex line bundles,Classical Quantum Gravity4 (1987), no. 2, 213–225.
[34] H. Pedersen, Einstein metrics, spinning top motions and monopoles,Math. Ann.274(1986), no. 1, 35–59.
[35] R. Penrose and W. Rindler, Spinors and space-time. Vol. 1, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1984. Two-spinor calculus and relativistic fields.
[36] R. S. Phillips and P. Sarnak, The Laplacian for domains in hyperbolic space and limit sets of Kleinian groups,Acta Math.155(1985), no. 3-4, 173–241.
[37] J. G. Ratcliffe,Foundations of hyperbolic manifolds, Second, Graduate Texts in Mathematics vol. 149, Springer, New York, 2006.
[38] J. Rosenberg, Manifolds of positive scalar curvature: a progress report,Surveys in differential geometry. Vol. XI, Surv.
Differ. Geom. vol. 11, Int. Press, Somerville, MA, 2007, pp. 259–294.
[39] T. Schick, Manifolds with boundary and of bounded geometry,Math. Nachr.223(2001), 103–120.
[40] N. R. Wallach,Harmonic analysis on homogeneous spaces, Marcel Dekker, Inc., New York, 1973. Pure and Applied Mathematics, No. 19.
[41] F. W. Warner, Foundations of differentiable manifolds and Lie groups, Graduate Texts in Mathematics vol. 94, Springer-Verlag, New York-Berlin, 1983. Corrected reprint of the 1971 edition.
[42] E. Witten, Anti de Sitter space and holography,Adv. Theor. Math. Phys.2(1998), no. 2, 253–291.
[43] 小林俊行and大島利雄,リー群と表現論,岩波書店, 2005.
[44] ⻄川⻘季,幾何解析への誘い,数学52(2000), no. 3, 245–256.
[45] 黒田成俊,関数解析,共立数学講座,共立出版, 1980.
97
索引
AdS Schwarzschild計量 . . . 33
AdS/CFT対応 . . . 9
AH-Einstein充塡 . . . 9
AH共形コンパクト多様体 . . . 14
Einstein計量 . . . 19
Fubini–Study計量 . . . 40
Klein群 . . . 24
Minkowski空間 . . . 22
Poincaré計量 . . . 6
Ricciテンソル . . . 18
Schwarzschild計量 . . . 32
Schwarzschild半径 . . . 32, 34 Wick回転 . . . 33
一次分数変換 . . . 25
境界定義関数 . . . 12
共形コンパクト多様体 . . . 13
共形無限遠 . . . 7, 13 共形類 . . . 7
極限集合 . . . 27
局所余枠 . . . 15
双対――― . . . 15
局所枠 . . . 15
くり込み . . . 29
ゲージ・重力対応 . . . 9
座標近傍 境界――― . . . 12
内部――― . . . 12
作用 固有不連続な――― . . . 20
自由な――― . . . 20
真性不連続な――― . . . 20
スカラー曲率 . . . 18
漸近的双曲性 . . . 14
双曲面モデル . . . 22
双対余枠 . . . 15
通常集合 . . . 27
凸ココンパクト . . . 31
―――商 . . . 20, 32 捩れ元 . . . 24
反de Sitter計量 . . . 33
ホロ開球 . . . 28
ホロ球面 . . . 28
無限遠境界 . . . 6
離散部分群 . . . 24
理想境界 . . . 7
立体射影 . . . 22