• Tidak ada hasil yang ditemukan

第 32 回 (平成 16 年度) 研究奨励金受領者研究報告

N/A
N/A
Protected

Academic year: 2023

Membagikan "第 32 回 (平成 16 年度) 研究奨励金受領者研究報告"

Copied!
9
0
0

Teks penuh

(1)

32 16

Ames

!"#$%&'()* + ,-./,012#3 DNA 456 789: ;<=>?@*

AB, CDEF;G-%HI!J KLE=@M#3 N@"#O(PQ$/412

#%R&STUV$WX SCFpof3 Y'5 Z() +*4* ;@AB,56[I!

PQ+,/412#3

%R& SCFpof3 () -\7#/ῌ SCFpof3 J ]J./@,23

SCFpof3 5Z01J2^* _

`a DNA (A 3@45 7#3

b67 c8dD DNA Ve9&f:H(g9+hi* (, 2:;j/b6J<klm#3 N6J=>Jnk o/pi12#q=< DNA ?rR@( SCFpof3

`9&8sHtpi,^,t* uABC4v wx* _`a DNA ?ryz%(D,{vwx/4 1|v}@M#/~!#3 ="#€@JEF

412v SCFpof3 5Z DNA DG‚ƒB„

[…† ‡ˆ* HZ/I‰* ŠJ4* 5 6[v‹*Z/41? K#N/ +/

4v3

! "

=PQ@*2vŒL‚MŽ /‹#/* HU

‘’“U”s…8• DNA 0N–‚— 2.5 mM / 5 m M.

Phleomycin  DNA O ˜ P Q ™ DSB ‚— 15

m

g / ml.

TsA H$š% V A: ‘%H48V›hN–‚—

50 mg/ml / 25 œ 200 J/m

2

UV R VžOSTU V—3 Œ[JWX2 30 1Ÿ0v3

#$%&%

SCFpof3 5ZŒL‚7#B„J ¡/

‹v3 Y 1 J HU / TsA 7#B„ * Y 2 J UV / DSB ‚ƒB„/ ¢/‹v3

NN@* SCFpof3 5ZJ DNA Z[\£* DNA O

˜PQ* UV R* ‡2…†L‚]^41* H

¤t9A2B„ ¥4v3 SCFpof3 J DNA DG

_`¦7# Rad Y'@J,23 }<<{§*

‡2…†4B„ ¥4vN/t* abL‚

%&$¨©}+*@n#?(A2N/ ªc7

#3 /t{«* HU [/n*2v* ¬…H@

%f9H89:@}ª,­(Šd@nvN/t* e

fL‚ g®89:4v2¯%(e^hWi

#E®%&$¨©DJi@M#3

v* SCFpof3 ( DNA O˜PQ41Jj9A 2B„ ¥7N/}{<0v3 NN/<* abL

‚ [7#/n* B„°±t* DNA ²

",DG* _`(|v<³ /20v* L‚´x(

<fk@n#?(Mt* µcl23 iJ DNA DG‚¶,§* TsA /20v‘%H_mš

’ ·7#N/@_`a¸=¹nº» !#L

‚41}B„ ¥7 Y 1 ¡o— N/t* ‡2L

‚…†%&$¨©}i*?@M#3

'()

=[wx* %R& SCFpof3 5Z *2* 5 6;,89:(@n#N/({<0v3 ¼a

*1 HU/TsA

*2 UV/DSB‚ƒB„

(2)

rad

!"#$ #$%&'()*+!

,-$./0!1

2 345!-&$ 346$

7%&89:34; %!<751

ῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌ

="#:#:>$%?:34? &' (

20 )@AB!*+?:,-C DE.F D/F G-H&I0J!1 E. ( K DNA) -C

#$ L0/%12%J345#/67,

$ 'MN89O$2P5!345Q::;

%&1 21 )@AJ D/F /#R*S T<=?:&5UV1 >W 345?@GX

"!9:AY/9:ZBGC/,DEGR0W F GHI[345JKZ,!1 34 G LMS\]G,N^,J_OZB

(MOPAC) PJ QRS`a!'MN89Ob

C%GHAYcMdecfJ gZBDE Ohi345TUJKZH&1 "#%

V7%&jWjWk 5 l 7 X!Y% 9:AY DEOhijWJKZm,,G-!"

Z%&1 / ZBDET[n\5!&o jWk9pqrs (

DH

) ZBGto0&

DH

]^u%&1

vwexycz{jW (TrxR) NADPH _`%

O 5vwexyc ( J/ 10 kDa) z{5!

FAD |ajWG-! }b 1 ~1 cd TrxR €ry rOef 2 gh)eNc‚*9O (SeCys)

I[)ejWG-!

1)

1 jWAYƒ„AJz{

i/ NADPH … FAD …kjk†r‡ˆxl/0

‰ m Š ‹ Œ ( T C e f n o (

Gln

Gly

Cys

SeCys

SeCys

Gly) Cys

SeCys S

Se  Ž z { % ) e NrOO5vwexycz{5!1 #pG-m / !&o SeCys Cys qP%& Cys jWk r<jW 0.1 ‘ ’“!1 "0 Cys vw rO (pKa K 8.5) SeCys )eNrO (pKa K 5.5) #

$”st%J&o/0J!1 g"G Cys498

•–,—u-! Gln494 ˜O'MN8 (His, Arg, Lys . . .) qP% Cys498 vwrO”svw5 0W Cys jWGjWk™GR!š&1

1. !"#$%&'()*+' ,-

vwexycz{jW C efnoxš%›

œržvx

N-

Acetyl

Ser

Ile

Leu

Gln

Ala

Gly

Cys

Cys

Cys

Gly (end) Chem3D !G„y%&1 “z@ Cys Cys 9 O SeCys … Cys Ÿ {|i5!1 "›œr

žvx MM2 ZBGAA7„}~9H

WinMOPAC }€~ ‚$¡¢G/9:ZBH

&1 C efƒgh Cys 9O„…,—u-!

Gln 9O†£'MN8qP%&›œržvxV

$ J?GX"! Cys Cys 9O”sAY¤MrT' AM1, PM3, PM5 PJZB%&1 g¥¦ Q494R

§ Q494H ¨'r©9O§ªv†9O 4

kcal/mol ‡[ˆJk9p«r© (

DH

) G Cys 9 O”s/ !"DE/0& }b 2 ~1

His 9O*M¬­r® Cys498 |¯VP,

‰W°ƒ[-!!*M¬­r®Ÿž±TŠ

#!”s ‹”sŒ²³/0!G"0 ,Ž%n\%& . "#n\wo!j G ‘/0& His 9O 3 9O!’-! Ser 9O His 9O´Rµ 0 g“8O N

III

Ÿn¶#

$*M¬­r®˜O”o0!,Z·/0

&1 g"G Ser 9O Ala 9OqP%& S491A/Q494 H ƒ*…[JAYDEH&¥¦ “8O

•¸ His ‘¹¦/ºo!DE/0&1 ZBPJ&¤MrT' AM1, PM3, PM5 jG AM1 H–»Œ”—˜%§5i O™š›

”œG¼‰[UB! AY (IRC) ”œž

.1 vwexycz{jW

῍ 6 ῍

(3)

PM3

Arg, His

! "#$% &' ( )"* +,-./0 123% 4& ! 5 &'.6

2)

. 7 839:$;

<=>?)7 @AB-.&C D07EFGH ID&@

JKLK ABM@N,OP!

Q .

2. TrxR

RST"U-.V#$W) TrxR %XY&- Z'$W[\

8]3 22 ^_4.

E. coli

BL 21 (DE 3)

CodonPlus ()-.V*-RS [\8]3+

E)7%X, 1.6 -`.- TrxR 1 Z'

pET32a %Xab;$/0-. Trx ;c1*23

4-.56- 47Td89ef:

;g (18 h ) &,<=i (22 h) %X>?@j Y&- %X-234 Trx

His

Tag A.

Ni k[$lm2n B6-o p3qrk s$t ;cCD-. TrxR1 )7 2005 ml EFu& 2 v 3 mg G23456 6 Gln494 wHx?0 TOYOBO KODplus yz{

2$t-.I)7 7.4 kb %X|2%}]

3 ~€4 J"56 6 .

3.

Q494H Q494R KHxT (L‚9

Hx?0MTN 5 - N 7 -.O-.

ƒP„…7 Cys498 †‡$ˆ‚9A

‰-QP 4 S491A-Q494H N 6.8 -‚

9RŠ S RSM Ser491 ‹) H 494 wŒT UV-)7‚9A‰- W-. 4 pH Žb3|r‘lL

’-“7 „HxTMXY pH ”Z9W- .…7 "U<(M6"HA"•–

3)

4. !"

‚9 f[-Hx—T Q494R, Q494H, S491A/Q 494H ,.\[˜K%|r‘l&T"U‚9A p3;ˆ9$ (

DH

) 5 T"U‚9Ap3;ˆ

9$\ ™] ^-

DH

\_`L’

6 abBcdDše" Q494R HxT,. Hx?0M X498C )7M‚9 Ap3;ˆ9$ (

DH

) ;›-.…7 ™]) ab\œ\ ^f gž rg ‹?

0,. &"7Bch234P di

ŸjkRS"'

4)

.

5. His#$%&'(

His €—Tab Arg —T)7Ml "m no–. ¡}¢£$ˆ¤~-.pdi 9¥ q,7

b

-CH

2

œrs¥

N

I

Cys498 t¦>I Ser491 His ŒT

&u av

b

-CH

2

&§¨s N

III

~"t¦>I N

I

w|rl3AŠ) '.~9 6HP 8u ¡}¢£$ˆ

w|rl3AŠw© ™]

)‚9Ap3;ˆ9$ab\ 2.09 & 34.19 kJ/

mol xªr" @\ 18.45 kJ/mol (xªr y 6M Arg —T«„abBc

"&' )" His ¬z{+ab JKLK/L}ˆl˜\3|},.

X­MV*~. .

 56- Q494H T‚9®X9 ;

T56¯L‚9/

DH

60, «&HxT)"r‘l° "

Q494H HxT€X‚ ƒ„

-) His ‹t¦>I x"l…83±² {$³´3 µ­-.•– @¶¡]

®X9mn·¸-. .ab\

L’V*~

6. )*!"+,-./+0/

7¹º ,ABƒ234P- .†.‰‡ 234r »6AB"U ,AB ab-.234P ¼¨

12 Arg-Cys‹i|rl3ˆZ"Uab

(4)

! "# $ %&'(' )*+$ " ,-

! .*/0 "1' 2345! 6789)' :); !<8= >?"<@A

#$ $BC %&'DE FGH(>?.

)I*JK+ ,)LA9-M , )$"$ .$ N/

0123O?PQ4$1R56S )$>T "

.

$BCU7& UV890-I W:X;YBC

<=Z>'[?$I-S

1) T. Tamura & T. C. Stadtman:Proc. Natl. Acad. Sci. USA, 93, 1006῎1011 (1996).

2) @A BCD\:E@F]G^_`HaI bc'defghijkN/J $;Y Z2004KLMZ WlD 2004. 3X

3) Nmn:@A B@F]G^_`Hdefghi

jkN/Gln 494oOpPQ@A $;YZ

2004KLMZ WlD 2004. 3X

4) Nmn:@A BFRqS^_`H

bc'defghijkN/CTUVWJ rXY16KL$;YZFZs[\MZW] D 2004. 9X

ῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌ C60

tuvwxyFMz{|3|}~ R^

_€`"`*=‚S v}3fa[b c ƒ„…†uFxc)‡u…3ˆ

Yd‰I

C60

)v}3fe

1

.S ŠfI

sp2

g/‰"M) t‹Œˆh*

(1)

a[b

(2)

ij)k/b

(3)

lmPb)mmPb

(4)

Žnopb)h7qb,S 9r8,

$ $<=Žstux34

C60

a[b bc'h‘bvw ,-

DNA

xy‘b

ƒ„b ’z)r“”0I

C60

* {|bˆh I• }–;“ }

C60

&S I•—~‘b

poly(vinylpyr-

rolidone)

€ˆ‚ƒ b€ˆh

‘bd;$I -I ‘b„˜ty™š‚(

›…)‘b(/† œ33ehzgžŸg5h ix} txY

EPR

$I;‡I

¡} )

C60

qb

C60

9ƒ„…†uFx‘

b) b.¢$ $BC£$

I…†uFxˆƒI• ¤‰F

C60

¥,S ‡u…3ˆYS wS

1. !"#$¦

o§yxb $

œdf\,S

C60

ŠPˆY ‡u…3ˆ

Y¨‹) ©H…3S I ©H…3

ˆYS ¨‹ ŒoHªFG,S ‘bŒ

C60

ŠPvf5«5u ˆY“”I e

2

œh3š.SŽ*

C60

£¬/S Fx­®g FGH( ¯55°± $²x³F´µ

‘I -M,Ivf5«5u ’“e

2

.S  v¶yx

2d

·’“-I9 &b9”' k/¨‹!$'$I•  ˜dx

2a

•k /¨‹$ I

2. %&'#$(

 ˜dxvf5«5u 

$ ©H…3ˆY“”I ¸–LAo§yx b,S ©H…3

3

E(¯5}g We

3X

œdf,S ©H…3

4

E¹…dd— We

4X

$ ˜™šI LAe

3

£¬e

4

.S’“©H…3- YºI

3. )'#$(

©H…3

3

£¬

6

$‡u …3ˆYd‰I } txO› F»§œ

¼d5y²ux

(AIBN)

$ ²x³ $ 

*1 C60¤‰

*2 vf5«5u ˆY

῍ 8 ῍

(5)

60

3

!

AIBN

"#

0.01

$

#%&

1.0

$#'()*+,- "./0

"12345167".8

AIBN

1.0

$#9 :;<

7

=>.0"?@+A&B CD" : E

AIBN

"#EFG#&BH= I : E JKL"K2MNOPQ"RS TU

AIBN

"

V0=WX&BHX 345Y#"

AIBN

Z[+

+\]&BH

6

^_"

! `"ab ^_ ;<

8

=>.0?@+

A&B c deL+"f;<"g !

3

deL:Th

AIBN

1 : 100 : 20

"i

j 2

60

`"ab kNl m.nf;<

9

A

῏ῐῌ῎῍ῒΐ

opq rsNtuHEdeLvwxyHJK

L+

AIBN

THK2MN

C60

;<"g ! `"abz"

%&>.0?@+;<=A&B ;<"

./0{|HX deL+"f;<"g}

~ `"ab kNl$"x€.G m.nf

;<=A&B ‚5 E,"f;<ƒKd

e„…†Kd$"‡ˆ"‰Š f‹ŒŽ<

N+H,+‘H ’“E ,"f;<

d”•–—˜™gQ…Œ0"š›

!H+,-uH f;<"œg :H

"žŸdeL%& %" ¡]H, + ž¢"./0";<"g}mQuH+\]

&BH ‚5 E ,"£¤ ¥.0;<

"g ŒŽ<NuHE†"¦§¨©ª

¤«n¬+"=\]&BH

ῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌ ῑ3 3"g.

ῑ4 6"g

ῑ5 ;<7"g

ῑ6 ;<8"g

ῑ7 f;<9"g

(6)

!" #$%& '(

$)*+,-./0 Al

31

2345 67 34278 +9:;

<=>?&

?@A :4BC$ &

D:4BC E!F"G#$$HI JKLMN0& HIJKLMN0%&

'$ O()*:4BC#$$FP

$QR +,STU?V*:4BC 5-$WXY?& ?.Z%[

/\M]^;:;0*$Q_ *:4BC /\`Za1$`Z_ S23$b4 _c5`?& O

*:4BC6\D:4BC/

\*dC:;e/ &

?f$78 +9:;<-g hi K;j4D78 +9:;<k 7l

LASAP2

89& Real Time PCR $Q/\2 :mn

LASAP2

8^]I

LASAP1

oQp

LASAP 3

;qr/\s<`?

LASAP2

34t=#u>v?w$xg/\<

?&

LASAP2

M]^;:;*:

4BC/\@yz@$A{BC`?

& \| M]^;:;"G Deletion Series } DEF%GH&

^~K ()~;:d; IH

/€JK34oQp34t=#,‚L&

5:4BCMNW$ LOƒb4„

PQD:4BC& ?:4BC 2 R…S†‡$ˆ& 5:4BCTU D:4BCUV3 ‰Š!s<`?& ‰

Š!N\B:;4[W‹:4

BCz*?s<`?& 5:4 BC/\XmnQ_ 34t=#vF/€

$o 2YŒZHŽ7^.h;w!

[‘`?& \| D:4BC’

‰Š!$F MALDI-TOF-MS $QLMN0hŠ

j4IH ~;:d; I“\&

/€”;] cDNA ^T89`? O~;:d;

6H?& ~;:d; 0* D:

4BC•_MN`x& :4BC–|aGM ]I,— PSORT, Target P *?w$s6 0.5 ˜

#™bš$–|aG`?:4BC 23 c d| › 1 œ& ?:4BCaGHIJKLM N0 19  33 žŸ& ?@A 14   Met R$ Ala (e`?& aGHIJKLMN0

Ala +,S Val, Leu N\f3ST ? 3

c¡¢.7£U 25  75 ¤ g& ?:4 BCh$ Alternative Splicing k7lW¥

f?& :4BC™bi–|$ Alter-

native Splicing )j[‘WW?

&

aH$Q_ %[/\M]^;:;2:

$)*HIJKLMN0klmWH

£& ?mnW$ D:4BC¦n§

*dC:;IFF{& ?f$ $oU

*:4BCo/\$Ÿ¨T ©pª«q¬ e/$

­U`xTF`? prs®

¯4°4± t?²T \u/v

³²*´t& `?

?w$…w:4BCoWxy 5-{& zw «q{oµ%*5-¶|

&

·¸$ aH$¹}~º€‚»6

ƒ„®$…¼f&

ῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌ

1 aG/€D:4BC

:4BC  T aGHIJKLMN0]

Aacid phosphatase 2 1924

Peroxidase 2 1923

Invertase 5 2228

Ribonuclease 10 2033

Others 4 1929

῍10῍

(7)

Nonribosomal peptide synthetase !"#$%

1. Echinomycin&'()*+,-./

Echinomycin

Streptomyces lasalien- sis

DNA !"#$%&'%()"

*(+,-./012345 6 789:2 2 ;<=>?)@A!"#$BCD5E F

*%"G(HI 40 kb D5:./0JKD2 6 LMNOPQRE primer unit ST. qunioxaline- 2-carboxylic acid (QC, 2)

ecm2, -3, -4, -8, -11, -12, -13,

-14 123./0JE U 1 VWXYZ

[$\]

ecm1, -6, -7

^_

fabC

123`E a b1

ecm17

^_

-18

123cde: thioacetal fg h0ij.0kl 6 /mDF*%"G(1 nNo)pqE r 17 ;stklut: open reading frame (ORF) 0 1 ;stvw ORF ^_ 1 ; vxNG+y*z)!(${ )@|S}

(Table 1) 6

2. QC01 QC'()234*5,$%

QC

2

~LMN€}‚st1

ƒ„…E Scheme 1 1†{ ‡1kˆ{ 6 U‰Š‹ƒ

zST.

A

-tryptophan JŒ adenylation E amino- acyl thioester ‚ŽWJ` bE hydroxyla- tion, p‘B1 3 h0ij. (Ecm2, -8, -12, -13) 6 ’}3&+$(“”•–—E #$p‘B 1

b

-hydroxykynurenine (

4

) )˜q. (Ecm11, -14) 6

Table 1. Deduced function for the open reading frames of the echinomycin biosynthetic gene cluster.

ORF Amino Acids Sequence Homolog Putative Function

ecm1 527 Peptide arylation enzymeentE QC activation

ecm2 248 Type II thioesterasegrsT QC biosynthesis

ecm3 362 Isopropylmalate dehydrogenaseleuB QC biosynthesis

ecm4 472 FAD-dependent oxidoreductaseubiH QC biosynthesis

ecm5 n.a. Transposase (inactive) Unknown

ecm6 2608 Nonribosomal peptide synthetaseteiC Peptide synthesis modules 1῍2 ecm7 3135 Nonribosomal peptide synthetaseacmC Peptide synthesis modules 3῍4

ecm8 70 MbtH-like proteinmbtH Unknown

ecm9 181 DNA-binding response regulatorompR Regulation

ecm10 252 TetR family transcriptional regulatorpip Regulation

ecm11 220 Tryptophan 2,3-dioxygenasetdo2 QC biosynthesis

ecm12 395 Cytochrome P450 oxidasecypX QC biosynthesis

ecm13 598 Mannopeptimycin peptide synthetasemppB QC biosynthesis

ecm14 402 Erythromycin A esteraseereB QC biosynthesis

ecm15 285 Helix-turn-helix transcription regulatormarR Regulation

ecm16 806 Excinuclease ATPaseuvrA Self resistance

ecm17 313 Thioredoxin reductasetrxB Disulfide formation

ecm18 224 SAM-dependent methyltransferasesmtA Thioacetal formation fabC 82 Fatty acid synthase acyl carrier proteinacpP QC carrier protein n.a.: not applicable.

Scheme 1. Predicted pathway for quinoxaline-2-carboxylic acid biosynthesis.

(8)

5

6

!"

#$ %& QC '()* (Ecm3, -4) + ,-.

/0123456'( 71891:;<=4

>?*+

@> QC '(ABC

ecm2, -3, -4, -8, -11, -12, -13,

-14 1D,<=+ EFGH 7 '(AB CI J KL>MNOPQRSR 8 T)U1 '(ABC1D,VW+ @XYZ QC [\*H ]^ 8 T1 QC '(ABCI J T7 promoter, ribosome binding site _%` T7 termina- tor a T 7 promoter %*bcd>D,)*

multiple gene polycistronic D,MNOP A ef+

7 E>g.1 PKS _%` NRPS 1hij3 k I1g.GlZ1 GC m 1nh i>?*7op *+ I7>7 '(AB CXYZ>nD,\*HXYZ_qr stuvw9)*

tRNA

tPux]^

D,yz{|} 7 ~\*7o>'(A BCnD,\*D,MNOP B +

3. Echinomycinoctadepsipeptide

echinomycin

Echinomycin €'(1:;G Scheme 2

‚%ƒ„+ NRPS 1 A u…†von‡

ˆ‰‚) Ecm1 %Š QC adenylation ‹‰

ArCP o aryl thioester Œ456Ž()

*+ @> 2 T1 NRPS ‘P’ “ M1, M2 ” >e(

* Ecm6 %Š

A

-Ser _%`

A

-Ala •' *+ 7 1– M1 G

A

-Ser

1—˜4™š›…œ)*

E u…†vmE *+  2 T1 NRPS ‘P

’ (M3, M4) >e( * Ecm7 %Š

A

-Cys _%`

A

-Val ž@•' *+ 71Ÿ'  M3, M4 G

N-

…¡

’¢£)* M u…†vI J 1 TF/¤- + ¥e(()U¦Š§¨¡u©G Scheme 3 ‚)ªe%& thioesterase (TE) u…†v1¢£«

>¬ 6_%`%&

8 *+ Œ

Ecm17 %&z’­®ua'Ž( triostin A (7) …¡’Œo„ * Ecm18 1

«>

S-

…¡’ sulfonium ylide thioa- cetal ( *o„ (Scheme 4) +

NRPS Œ  ‹ ‰ ¯ / H G PCP u … † v phosphopantetheinyl %&%Š holo *¥

?* XYZG71°±)*ŒH

²1Z1ŒABC (sfp) °±)*7o+ E echinomycin '(ABCN³zOPG

Strepto- myces peucetius

daunorubicin '(ABC1´

oNµP¶v· ¸‰ABC

drrC

on‡ˆ‰

‚)

ecm16

VW+ XYZZ6¹>'(

echinomycin 1 DNA a'‹‰%*º»XYZ1¼

Scheme 2. Predicted pathway for echinomycin biosynthesis and the modular organization of the echinomycin NRPS.

ῌ12ῌ

(9)

ecm16

!"#$%

ecm 1

, -

16

, -

17

, -

18

,

fabC

,

sfp

ecm6

, -

7

&'(&)*+

,- QC !"#$% A .῍ multiple gene polycistronic /01( 2 2&345 C 678 D /9 :;<= 4 2&

>(&?@ABCDE#$%F!"

GH:5I <J< 4 K&345DELMN678 OPQR#$%1(75STUV /9

4. QC

:;<῎WXYZ[\]^_῏`5 QC !"ab&cE \]^ BL21

(DE3) XYZ[ :;<^d῎W 8 2&e

fY Ni-NTA ghVijk)hlm7n o

,cE

5. echinomycin echinomycin

triostin A

p q echinomycin ! " # $ % & 7 5

echinomycin (

1

) 678 triostin A (

7

) &!G r stuI !"#$%

ecm1

, -

6

, -

7

, -

16

, -

17

, -

18

,

fabC

v<J<wx&yz &{| 7 2

`} &!"#$%&~€F< Ni- NTA ghVijk)hlm῎W 7 2`} &

efYcE F; 4 2&

BL21 (DE3)  l‚ƒe῎W_῏

2 L &_῏„…;!"GH 0.3 mg ,ῑcE †

‡Ht ESI-MS 7ˆ,%ΐ 1139 [M ‰ K]

‰

1123 [M ‰ Na]

‰

1101 [M ‰ H]

‰

678 1053 [M-SCH3]

‰

ῌŠ

1

H-NMR 7ˆ 1 €F< F<= 16 2&!

"abt‹ŒŽ`5efY.u1‘ \ ]^7n 1 !G’“5~”•F< F;

thioacetal &X"–—˜™F<

ecm18

šr

4W triostin A !"#$%&›Eœn

< .῍F l‚ƒe῎W _῏ 2 L &_῏„…;!"GH 0.5 mg ,ῑcE †‡Ht ESI-MS 678

1

H-NMR 7ˆ

7

F< n

ecm18

tž34

S-ƒŸ*‡678Z ¡

¢7ˆ

7

…;

1

£¤[`5ab#$%“5~

”•F< &{|\]^῎WSTUV~1(

ῐN7n ¥¦

“Rational Design” ’`5

~ῒ”F<

§¨©ª«t echinomycin !"&¬­®,%¯

*75¤[¡¢ °?±²`5’

>(&D³4/0´`5!HµR‹ŒH&¬!"

#$%`5 ´"‡¶75¬"t

¬·345¸¹῔῎W‹ŒHº»&’R¼

Scheme 3. Proposed mechanism of dimerization and cyclorelease of the quinoxaline-tetrapeptide intermediates by the TE

domain.

Scheme 4. Proposed mechanism for the conversion of the disulfide bond to thioacetal bridge in echinomycin biosynthesis.

Referensi

Dokumen terkait

Pengujian terhadap hasil regresi dilakukan dengan uji statistik t yang bertujuan mengetahui ada atau tidaknya pengaruh dari kepemilikan manajerial, ukuran dewan komisaris serta

Pengaruh Pengungkapan Corporate Social Responsibility (CSR), Ukuran Perusahaan, Profitabilitas, Leverage dan Likuiditas Terhadap Agresivitas Pajak (Studi Empiris