32 16
Ames
!"#$%&'()* + ,-./,012#3 DNA 456 789: ;<=>?@*
AB, CDEF;G-%HI!J KLE=@M#3 N@"#O(PQ$/412
#%R&STUV$WX SCFpof3 Y'5 Z() +*4* ;@AB,56[I!
PQ+,/412#3
%R& SCFpof3 () -\7#/ῌ SCFpof3 J ]J./@,23
῍SCFpof3 5Z01J2^* _
`a DNA (A 3@45 7#3
῎b67 c8dD DNA Ve9&f:H(g9+hi* (, 2:;j/b6J<klm#3 N6J=>Jnk o/pi12#q=< DNA ?rR@( SCFpof3
`9&8sHtpi,^,t* uABC4v wx* _`a DNA ?ryz%(D,{vwx/4 1|v}@M#/~!#3 ="#@JEF
412v SCFpof3 5Z DNA DGB
[ * HZ/I* J4* 5 6[v*Z/41? K#N/ +/
4v3
! "
=PQ@*2vLM /#/* HU
Us 8 DNA 0N 2.5 mM / 5 m M.
Phleomycin DNA O P Q DSB 15
mg / ml.
TsA H$% V A: %H48VhN
50 mg/ml / 25 200 J/m
2UV R VOSTU V3 [JWX2 30 10v3
#$%&%
SCFpof3 5ZL7#BJ ¡/
v3 Y 1 J HU / TsA 7#B * Y 2 J UV / DSB B/ ¢/v3
NN@* SCFpof3 5ZJ DNA Z[\£* DNA O
PQ* UV R* 2 L]^41* H
¤t9A2B ¥4v3 SCFpof3 J DNA DG
_`¦7# Rad Y'@J,23 }<<{§*
2 4B ¥4vN/t* abL
%&$¨©}+*@n#?(A2N/ ªc7
#3 /t{«* HU [/n*2v* ¬ H@
%f9H89:@}ª,(d@nvN/t* e
fL g®89:4v2¯%(e^hWi
#E®%&$¨©DJi@M#3
v* SCFpof3 ( DNA OPQ41Jj9A 2B ¥7N/}{<0v3 NN/<* abL
[7#/n* B°±t* DNA ²
",DG* _`(|v<³ /20v* L´x(
<fk@n#?(Mt* µcl23 iJ DNA DG¶,§* TsA /20v%H_m
·7#N/@_`a¸=¹nº» !#L
41}B ¥7 Y 1 ¡o N/t* 2L
%&$¨©}i*?@M#3
'()=[wx* %R& SCFpof3 5Z *2* 5 6;,89:(@n#N/({<0v3 ¼a
*1 HU/TsAB
*2 UV/DSBB
rad
!"#$ #$%&'()*+!
,-$./0!1
2 345!-&$ 346$
7%&89:34; %!<751
ῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌ="#:#:>$%?:34? &' (
20 )@AB!*+?:,-C DE.F D/F G-H&I0J!1 E. ( K DNA) -C
#$ L0/%12%J345#/67,
$ 'MN89O$2P5!345Q::;
%&1 21 )@AJ D/F /#R*S T<=?:&5UV1 >W 345?@GX
"!9:AY/9:ZBGC/,DEGR0W F GHI[345JKZ,!1 34 G LMS\]G,N^,J_OZB
(MOPAC) PJ QRS`a!'MN89Ob
C%GHAYcMdecfJ gZBDE Ohi345TUJKZH&1 "#%
V7%&jWjWk 5 l 7 X!Y% 9:AY DEOhijWJKZm,,G-!"
Z%&1 / ZBDET[n\5!&o jWk9pqrs (
DHῌ) ZBGto0&
DHῌ
]^u%&1
vwexycz{jW (TrxR) NADPH _`%
O 5vwexyc ( J/ 10 kDa) z{5!
FAD |ajWG-! }b 1 ~1 cd TrxR ry rOef 2 gh)eNc*9O (SeCys)
I[)ejWG-!
1)1 jWAYAJz{
i/ NADPH FAD kjkrxl/0
m ( T C e f n o (
῎Gln
῎Gly
῎Cys
῎SeCys
SeCys
῎Gly) Cys
῎SeCys S
῎Se z { % ) e NrOO5vwexycz{5!1 #pG-m / !&o SeCys Cys qP%& Cys jWk r<jW 0.1 !1 "0 Cys vw rO (pKa K 8.5) SeCys )eNrO (pKa K 5.5) #
$st%J&o/0J!1 g"G Cys498
,u-! Gln494 O'MN8 (His, Arg, Lys . . .) qP% Cys498 vwrOsvw5 0W Cys jWGjWkGR!&1
1. !"#$%&'()*+' ,-
vwexycz{jW C efnox%
rvx
N-Acetyl
῎Ser
῎Ile
῎Leu
῎Gln
῎Ala
῎Gly
῎Cys
῎Cys
Cys
῎Gly (end) Chem3D !Gy%&1 z@ Cys Cys 9 O SeCys Cys {|i5!1 "r
vx MM2 ZBGAA7}~9H
WinMOPAC }~ $¡¢G/9:ZBH
&1 C efgh Cys 9O ,u-!
Gln 9O£'MN8qP%&rvxV
$ J?GX"! Cys Cys 9OsAY¤MrT' AM1, PM3, PM5 PJZB%&1 g¥¦ Q494R
§ Q494H ¨'r©9O§ªv9O 4
kcal/mol [Jk9p«r© (
DHῌ) G Cys 9 Os/ !"DE/0& }b 2 ~1
His 9O*M¬r® Cys498 |¯VP,
W°[-!!*M¬r®±T
#!s s²³/0!G"0 ,%n\%& . "#n\wo!j G /0& His 9O 3 9O!-! Ser 9O His 9O´Rµ 0 g8O N
IIIn¶#
$*M¬r®Oo0!,Z·/0
&1 g"G Ser 9O Ala 9OqP%& S491A/Q494 H * [JAYDEH&¥¦ 8O
¸ His ¹¦/ºo!DE/0&1 ZBPJ&¤MrT' AM1, PM3, PM5 jG AM1 H»%§5i O
G¼[UB! AY (IRC)
.1 vwexycz{jW
῍ 6 ῍
PM3
Arg, His
! "#$% &' ( )"* +,-./0 123% 4& ! 5 &'.6
2). 7 839:$;
<=>?)7 @AB-.&C D07EFGH ID&@
JKLK ABM@N,OP!
Q .
2. TrxR
RST"U-.V#$W) TrxR %XY&- Z'$W[\
8]3 22 ^_4.
E. coliBL 21 (DE 3)
CodonPlus ()-.V*-RS [\8]3+
E)7%X, 1.6 -`.- TrxR 1 Z'
pET32a %Xab;$/0-. Trx ;c1*23
4-.56- 47Td89ef:
;g (18 h ) &,<=i (22 h) %X>?@j Y&- %X-234 Trx
῍His
῍Tag A.
Ni k[$lm2n B6-o p3qrk s$t ;cCD-. TrxR1 )7 2005 ml EFu& 2 v 3 mg G23456 6 Gln494 wHx?0 TOYOBO KODplus yz{
2$t-.I)7 7.4 kb %X|2%}]
3 ~4 J"56 6 .
3.Q494H Q494R KHxT (L9
Hx?0MTN 5 - N 7 -.O-.
P 7 Cys498 $9A
-QP 4 S491A-Q494H N 6.8 -
9R S RSM Ser491 ) H 494 wT UV-)79A- W-. 4 pH b3|rlL
-7 HxTMXY pH Z9W- . 7 "U<(M6"HA"
3)4. !"
9 f[-HxT Q494R, Q494H, S491A/Q 494H ,.\[K%|rl&T"U9A p3;9$ (
DHῌ) 5 T"U9Ap3;
9$\ ] ^-
DHῌ\_`L
6 abBcdDe" Q494R HxT,. Hx?0M X498C )7M9 Ap3;9$ (
DHῌ) ;-. 7 ]) ab\\ ^f g rg ?
0,. &"7Bch234P di
jkRS"'
4).
5. His#$%&'(His Tab Arg T)7Ml "m no. ¡}¢£$¤~-.pdi 9¥ q,7
b-CH
2rs¥
N
ICys498 t¦>I Ser491 His T
&u av
b-CH
2&§¨s N
III~"t¦>I N
Iw|rl3A) '.~9 6HP 8u ¡}¢£$
w|rl3Aw© ]
)9Ap3;9$ab\ 2.09 & 34.19 kJ/
mol xªr" @\ 18.45 kJ/mol (xªr y 6M Arg T«abBc
"&' )" His ¬z{+ab JKLK/L}l\3|},.
XMV*~. .
56- Q494H T9®X9 ;
T56¯L9/
DHῌ60, «&HxT)"rl° "
Q494H HxTX
-) His t¦>I x"l 83±² {$³´3 µ-. @¶¡]
®X9mn·¸-. .ab\
LV*~
6. )*!"+,-./+0/
7¹º ,AB234P- .. 234r »6AB"U ,AB ab-.234P ¼¨
12 Arg-Cysi|rl3Z"Uab
! "# $ %&'(' )*+$ " ,-
! .*/0 "1' 2345! 6789)' :); !<8= >?"<@A
#$ $BC %&'DE FGH(>?.
)I*JK+ ,)LA9-M , )$"$ .$ N/
0123O?PQ4$1R56S )$>T "
.$BCU7& UV890-I W:X;YBC
<=Z>'[?$I-S
1) T. Tamura & T. C. Stadtman:Proc. Natl. Acad. Sci. USA, 93, 1006῎1011 (1996).
2) @A BCD\:E@F]G^_`HaI bc'defghijkN/J $;Y Z2004KLMZ WlD 2004. 3X
3) Nmn:@A B@F]G^_`Hdefghi
jkN/Gln 494oOpPQ@A $;YZ
2004KLMZ WlD 2004. 3X
4) Nmn:@A BFRqS^_`H
bc'defghijkN/CTUVWJ rXY16KL$;YZFZs[\MZW] D 2004. 9X
ῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌ C60
tuvwxyFMz{|3|}~ R^
_`"`*=S v}3fa[b c uFxc)u 3
YdI
C60
)v}3fe
1.S fI
sp2g/"M) th*
(1)a[b
(2)ij)k/b
(3)lmPb)mmPb
(4)nopb)h7qb,S 9r8,
$ $<=stux34
C60a[b bc'hbvw ,-
DNAxyb
b z)r0I
C60* {|bh I }; }
C60&S I~b
poly(vinylpyr-rolidone)
bh
bd;$I -I bty(
)b(/ 33ehzgg5h ix} txY
EPR$I;I
¡} )
C60qb
C609 uFx
b) b.¢$ $BC£$
I uFxI ¤F
C60¥,S u 3YS wS
1. !"#$¦
o§yxb $
df\,S
C60PY u 3
Y¨) ©H 3S I ©H 3
YS ¨ oHªFG,S b
C60Pvf5«5u YI e
2h3.S*
C60£¬/S Fx®g FGH( ¯55°± $²x³F´µ
I -M,Ivf5«5u e
2.S v¶yx
2d·-I9 &b9' k/¨!$'$I dx
2ak /¨$ I
2. %&'#$(
dxvf5«5u
$ ©H 3YI ¸LAo§yx b,S ©H 3
3E(¯5}g We
3Xdf,S ©H 3
4E¹ dd We
4X$ I LAe
3£¬e
4.S©H 3- YºI
3. )'#$(
©H 3
3£¬
6$u 3YdI } txO F»§
¼d5y²ux
(AIBN)$ ²x³ $
*1 C60¤
*2 vf5«5u Y
῍ 8 ῍
3
!
AIBN"#
0.01$
#%&
1.0$#'()*+,- "./0
"12345167".8
AIBN1.0$#9 :;<
7
=>.0"?@+A&B CD" : E
AIBN"#EFG#&BH= I : E JKL"K2MNOPQ"RS TU
AIBN"
V0=WX&BHX 345Y#"
AIBNZ[+
+\]&BH
6^_"
! `"ab ^_ ;<
8=>.0?@+
A&B c deL+"f;<"g !
3deL:Th
AIBN 1 : 100 : 20"i
j 2
60`"ab kNl m.nf;<
9A
῏ῐῌ῎῍ῒΐ
opq rsNtuHEdeLvwxyHJK
L+
AIBNTHK2MN
C60
;<"g ! `"abz"
%&>.0?@+;<=A&B ;<"
./0{|HX deL+"f;<"g}
~ `"ab kNl$"x.G m.nf
;<=A&B 5 E,"f;<Kd
e Kd$"" f<
N+H,+H E ,"f;<
dgQ 0"
!H+,-uH f;<"g :H
"deL%& %" ¡]H, + ¢"./0";<"g}mQuH+\]
&BH 5 E ,"£¤ ¥.0;<
"g <NuHE"¦§¨©ª
¤«n¬+"=\]&BH
ῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌ ῑ3 3"g.ῑ4 6"g
ῑ5 ;<7"g
ῑ6 ;<8"g
ῑ7 f;<9"g
!" #$%& '(
$)*+,-./0 Al
312345 67 34278 +9:;
<=>?&
?@A :4BC$ &
D:4BC E!F"G#$$HI JKLMN0& HIJKLMN0%&
'$ O()*:4BC#$$FP
$QR +,STU?V*:4BC 5-$WXY?& ?.Z%[
/\M]^;:;0*$Q_ *:4BC /\`Za1$`Z_ S23$b4 _c5`?& O
*:4BC6\D:4BC/
\*dC:;e/ &
?f$78 +9:;<-g hi K;j4D78 +9:;<k 7l
LASAP289& Real Time PCR $Q/\2 :mn
LASAP28^]I
LASAP1oQp
LASAP 3;qr/\s<`?
LASAP234t=#u>v?w$xg/\<
?&
LASAP2M]^;:;*:
4BC/\@yz@$A{BC`?
& \| M]^;:;"G Deletion Series } DEF%GH&
^~K ()~;:d; IH
/JK34oQp34t=#,L&
5:4BCMNW$ LOb4
PQD:4BC& ?:4BC 2 R S$& 5:4BCTU D:4BCUV3 !s<`?&
!N\B:;4[W:4
BCz*?s<`?& 5:4 BC/\XmnQ_ 34t=#vF/
$o 2YZH7^.h;w!
[`?& \| D:4BC
!$F MALDI-TOF-MS $QLMN0h
j4IH ~;:d; I\&
/;] cDNA ^T89`? O~;:d;
6H?& ~;:d; 0* D:
4BC_MN`x& :4BC|aGM ]I, PSORT, Target P *?w$s6 0.5
#b$|aG`?:4BC 23 c d| 1 & ?:4BCaGHIJKLM N0 19 33 & ?@A 14 Met R$ Ala (e`?& aGHIJKLMN0
Ala +,S Val, Leu N\f3ST ? 3
c¡¢.7£U 25 75 ¤ g& ?:4 BCh$ Alternative Splicing k7lW¥
f?& :4BCbi|$ Alter-
native Splicing )j[WW?
&
aH$Q_ %[/\M]^;:;2:
$)*HIJKLMN0klmWH
£& ?mnW$ D:4BC¦n§
*dC:;IFF{& ?f$ $oU
*:4BCo/\$¨T ©pª«q¬ e/$
U`xTF`? prs®
¯4°4± t?²T \u/v
³²*´t& `?
?w$ w:4BCoWxy 5-{& zw «q{oµ%*5-¶|
&
·¸$ aH$¹}~º»6
®$ ¼f&
ῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌ
1 aG/D:4BC
:4BC T aGHIJKLMN0]
Aacid phosphatase 2 1924
Peroxidase 2 1923
Invertase 5 2228
Ribonuclease 10 2033
Others 4 1929
῍10῍
Nonribosomal peptide synthetase !"#$%
1. Echinomycin&'()*+,-./
Echinomycin
Streptomyces lasalien- sisDNA !"#$%&'%()"
*(+,-./012345 6 789:2 2 ;<=>?)@A!"#$BCD5E F
*%"G(HI 40 kb D5:./0JKD2 6 LMNOPQRE primer unit ST. qunioxaline- 2-carboxylic acid (QC, 2)
ecm2, -3, -4, -8, -11, -12, -13,-14 123./0JE U 1 VWXYZ
[$\]
ecm1, -6, -7^_
fabC123`E a b1
ecm17^_
-18123cde: thioacetal fg h0ij.0kl 6 /mDF*%"G(1 nNo)pqE r 17 ;stklut: open reading frame (ORF) 0 1 ;stvw ORF ^_ 1 ; vxNG+y*z)!(${ )@|S}
(Table 1) 6
2. QC01 QC'()234*5,$%
QC
2~LMN}st1
E Scheme 1 1{ 1k{ 6 U
zST.
A-tryptophan J adenylation E amino- acyl thioester WJ` bE hydroxyla- tion, pB1 3 h0ij. (Ecm2, -8, -12, -13) 6 }3&+$(E #$pB 1
b-hydroxykynurenine (
4) )q. (Ecm11, -14) 6
Table 1. Deduced function for the open reading frames of the echinomycin biosynthetic gene cluster.
ORF Amino Acids Sequence Homolog Putative Function
ecm1 527 Peptide arylation enzymeentE QC activation
ecm2 248 Type II thioesterasegrsT QC biosynthesis
ecm3 362 Isopropylmalate dehydrogenaseleuB QC biosynthesis
ecm4 472 FAD-dependent oxidoreductaseubiH QC biosynthesis
ecm5 n.a. Transposase (inactive) Unknown
ecm6 2608 Nonribosomal peptide synthetaseteiC Peptide synthesis modules 1῍2 ecm7 3135 Nonribosomal peptide synthetaseacmC Peptide synthesis modules 3῍4
ecm8 70 MbtH-like proteinmbtH Unknown
ecm9 181 DNA-binding response regulatorompR Regulation
ecm10 252 TetR family transcriptional regulatorpip Regulation
ecm11 220 Tryptophan 2,3-dioxygenasetdo2 QC biosynthesis
ecm12 395 Cytochrome P450 oxidasecypX QC biosynthesis
ecm13 598 Mannopeptimycin peptide synthetasemppB QC biosynthesis
ecm14 402 Erythromycin A esteraseereB QC biosynthesis
ecm15 285 Helix-turn-helix transcription regulatormarR Regulation
ecm16 806 Excinuclease ATPaseuvrA Self resistance
ecm17 313 Thioredoxin reductasetrxB Disulfide formation
ecm18 224 SAM-dependent methyltransferasesmtA Thioacetal formation fabC 82 Fatty acid synthase acyl carrier proteinacpP QC carrier protein n.a.: not applicable.
Scheme 1. Predicted pathway for quinoxaline-2-carboxylic acid biosynthesis.
5
6
!"
#$ %& QC '()* (Ecm3, -4) + ,-.
/0123456'( 71891:;<=4
>?*+
@> QC '(ABC
ecm2, -3, -4, -8, -11, -12, -13,-14 1D,<=+ EFGH 7 '(AB CI J KL>MNOPQRSR 8 T)U1 '(ABC1D,VW+ @XYZ QC [\*H ]^ 8 T1 QC '(ABCI J T7 promoter, ribosome binding site _%` T7 termina- tor a T 7 promoter %*bcd>D,)*
multiple gene polycistronic D,MNOP A ef+
7 E>g.1 PKS _%` NRPS 1hij3 k I1g.GlZ1 GC m 1nh i>?*7op *+ I7>7 '(AB CXYZ>nD,\*HXYZ_qr stuvw9)*
tRNAtPux]^
D,yz{|} 7 ~\*7o>'(A BCnD,\*D,MNOP B +
3. Echinomycinoctadepsipeptide
echinomycin
Echinomycin '(1:;G Scheme 2
%+ NRPS 1 A u von
) Ecm1 % QC adenylation
ArCP o aryl thioester 456()
*+ @> 2 T1 NRPS P M1, M2 >e(
* Ecm6 %
A-Ser _%`
A-Ala ' *+ 7 1 M1 G
A-Ser
14 )*E u vmE *+ 2 T1 NRPS P
(M3, M4) >e( * Ecm7 %
A-Cys _%`
A
-Val @' *+ 71' M3, M4 G
N-¡
¢£)* M u vI J 1 TF/¤- + ¥e(()U¦§¨¡u©G Scheme 3 )ªe%& thioesterase (TE) u v1¢£«
>¬ 6_%`%&
8 *+
Ecm17 %&z®ua'( triostin A (7) ¡o * Ecm18 1
«>
S-¡ sulfonium ylide thioa- cetal ( *o (Scheme 4) +
NRPS ¯ / H G PCP u v phosphopantetheinyl %&% holo *¥
?* XYZG71°±)*H
²1Z1ABC (sfp) °±)*7o+ E echinomycin '(ABCN³zOPG
Strepto- myces peucetiusdaunorubicin '(ABC1´
oNµP¶v· ¸ABC
drrCon
)
ecm16VW+ XYZZ6¹>'(
echinomycin 1 DNA a'%*º»XYZ1¼
Scheme 2. Predicted pathway for echinomycin biosynthesis and the modular organization of the echinomycin NRPS.
ῌ12ῌ
ecm16
!"#$%
ecm 1, -
16, -
17, -
18,
fabC,
sfpecm6, -
7&'(&)*+
,- QC !"#$% A .῍ multiple gene polycistronic /01( 2 2&345 C 678 D /9 :;<= 4 2&
>(&?@ABCDE#$%F!"
GH:5I <J< 4 K&345DELMN678 OPQR#$%1(75STUV /9
4. QC
:;<῎WXYZ[\]^_῏`5 QC !"ab&cE \]^ BL21
(DE3) XYZ[ :;<^d῎W 8 2&e
fY Ni-NTA ghVijk)hlm7n o
,cE
5. echinomycin echinomycin
triostin A
p q echinomycin ! " # $ % & 7 5
echinomycin (
1) 678 triostin A (
7) &!G r stuI !"#$%
ecm1, -
6, -
7, -
16, -
17, -
18,
fabCv<J<wx&yz &{| 7 2
`} &!"#$%&~F< Ni- NTA ghVijk)hlm῎W 7 2`} &
efYcE F; 4 2&
BL21 (DE3) le῎W_῏
2 L &_῏ ;!"GH 0.3 mg ,ῑcE
Ht ESI-MS 7,%ΐ 1139 [M K]
1123 [M Na]
1101 [M H]
678 1053 [M-SCH3]
ῌ
1
H-NMR 7 1 F< F<= 16 2&!
"abt`5efY.u1 \ ]^7n 1 !G5~F< F;
thioacetal &X"F<
ecm18r
4W triostin A !"#$%&En
< .῍F le῎W _῏ 2 L &_῏ ;!"GH 0.5 mg ,ῑcE Ht ESI-MS 678
1H-NMR 7
7
F< n
ecm18t34
S-*678Z ¡¢7
7;
1£¤[`5ab#$%5~
F< &{|\]^῎WSTUV~1(
ῐN7n ¥¦
“Rational Design” `5
~ῒF<
§¨©ª«t echinomycin !"&¬®,%¯
*75¤[¡¢ °?±²`5
>(&D³4/0´`5!HµRH&¬!"
#$%`5 ´"¶75¬"t
¬·345¸¹῎WHº»&R¼
Scheme 3. Proposed mechanism of dimerization and cyclorelease of the quinoxaline-tetrapeptide intermediates by the TEdomain.
Scheme 4. Proposed mechanism for the conversion of the disulfide bond to thioacetal bridge in echinomycin biosynthesis.