• Tidak ada hasil yang ditemukan

線型符号 (linear codes) - pweb

N/A
N/A
Protected

Academic year: 2024

Membagikan "線型符号 (linear codes) - pweb"

Copied!
20
0
0

Teks penuh

(1)

線型符号 (linear codes)

To construct a code with many code-words systematically, the code-words of C should be distributed

as “equally” as possible.

Use mathematical structures (symmetry) of V =Tn

· · · linear codes (線型符号)

—応用数学I・情報数学特論 1—

(2)

線型符号 (linear codes)

T =Fq : a finite field (有限体) V =Fqn : a linear space over Fq

· · · 和・スカラ倍がある (equipped with sum and scalar multiplication) C : 線型符号(linear code)

⇐⇒ C is a subspace of V

(3)

線型符号の不変量 (invariants of linear codes) the code-word length (符号語長) n=dimFqV the dimension (次元) k:=dimFqC over Fq

→ [n, k]-code (符号語数 M=#C =qk)

w(x) :=#{i xi6=0} : the weight (重み) of xV d(x,y) =w(yx)

最小距離 d=d(C) =min{w(x) x∈ C,x6=0}

→ [n, k, d]-code

—応用数学I・情報数学特論 3—

(4)

Hamming 距離 (Hamming distance) Hamming distance on V =Tn

d:V×V R0

is defined as follows:

for x= (x1, . . . , xn),y= (y1, . . . , yn)V, d(x,y) := #{i xi6=yi}.

(5)

線型符号の不変量 (invariants of linear codes)

the code-word length (符号長) n=dimFqV (temporarily fix)

the dimension (次元)k=dimFqC

(larger, better)

the minimum distance(最小距離) d

(larger, better) R:= k

n : transmission rate (伝送レート) δ:= d

n : relative minimum distance

(相対最小距離)

→ R, δ : both larger (conflicting request)

—応用数学I・情報数学特論 5—

(6)

線型符号の例 (examples of linear codes)

多数決符号(反復符号) (repetition codes)

パリティ検査符号 (parity-check codes) (誤り検出のみ, only error-detection)

Hamming codes

(7)

多数決符号(反復符号, repetition codes) n=2t+1, V =Fqn

Send each symbol n times repeatedly.

C ={(x, x, . . . , x) xFq}V C =Fqv with v= (1, 1, . . . , 1)

符号長 n=dimFqV

次元 k=dimFqC =1

最小距離 d=n (t-error correction)

—応用数学I・情報数学特論 7—

(8)

パリティ検査符号 (parity-check codes) V =Fqn

C =

±

x= (x1, x2, . . . , xn) Xn

i=1

xi=0

²

V

符号長 n=dimFqV

次元 k=dimFqC =n−1

最小距離 d=2

(only1 error-detection, no error-correction)

(9)

拡大符号 (extended codes) V =Fqn

C : [n, k, d]-code V

C :=



(x1, . . . , xn, xn+1)

(x1, . . . , xn)∈ C

n+1

X

i=1

xi=0



 : C の拡大符号(extended code) Fqn+1 C : [n+1, k, d+ε]-code (ε=0, 1)

—応用数学I・情報数学特論 9—

(10)

線型符号の生成行列 (generator matrix) C ⊂ V =Fqn={x= (x1, . . . , xn) xiFq} dimFqC =k

(v1, . . . ,vk) : a basis of C vi= (ai1, . . . , ain)

G:=

v1

... vn

=

a11 · · · a1n ... ... ... ak1 · · · akn

M(k, n;Fq)

: C の生成行列(generator matrix)

(11)

符号語の生成 (generation of code-words)

G:=

v1

... vn

=

a11 · · · a1n ... ... ... ak1 · · · akn

M(k, n;Fq)

: a generator matrix of C C ={sG sFqk}

ϕG:FqkC ⊂V =Fqn

s= (s1, . . . , sk)7−sG=s1v1+· · ·+skvk

—応用数学I・情報数学特論 11—

(12)

符号語の検査 (Checking code-words) How to check

whether a recieved word yV

is a correct code-word (y∈ C) or not πC :V →V/C 'Fqn−k : projection

Take a basis of V/C

(or, choose an isomorphism V/C 'Fqn−k), for matrix representation of πC.

(13)

符号語の検査 (Checking code-words)

ϕA:V =FqnFqn−k y7−yA y∈ C ⇐⇒ϕA(y) =yA=0

通常、転置行列 H=AT M(n−k, n;Fq) で表示 H : C のパリティ検査行列 (parity-check matrix)

y∈ C ⇐⇒yHT =0

—応用数学I・情報数学特論 13—

(14)

誤り訂正 (error correction)

y6∈ C ⇐⇒yHT 6=0

yHT : the syndrome (シンドローム) of y

How to find the correct code-word x∈ C

⇐⇒ How to obtain the error vector e:=yx

(15)

誤り訂正 (error correction)

yy0 (mod C)⇐⇒yHT =y0HT

ye (mod C)

w(e)t (assumption)

Enumerate all eV with w(e)t

make the table of eHT in advance

For a recieved word yV,

seek for e with yHT =eHT from the table

How to do this efficiently

—応用数学I・情報数学特論 15—

(16)

等距離線型自己同型 (linear isometry) V = (V, d) : a metric linear space

(距離付き線型空間) f:V →V : a linear isometry

(等距離線型自己同型, isometric linear autom.)

⇐⇒f: a linear autom. preserving distances (d(f(x), f(y)) = f(x,y)) For d : Hamming distance,

⇐⇒ f : a linear autom. preserving weights (w(f(x)) = w(x))

(17)

等距離線型自己同型 (linear isometry) Aut(V, d) : the group consisting of

all the linear isometries of V = (V, d) Aut(V, d) is generated by

the following two kinds of autom’s:

permutations of components

(成分(文字の場所)の置換)

non-zero const. multipl’ns of a component (或る成分の非零定数倍) Aut(V, d) = SnoFq× = Snn(Fq×)n

—応用数学I・情報数学特論 17—

(18)

符号の同値 (equivalence of codes)

Two codes C,C0 V are equivalent (同値)

⇐⇒ fAut(V, d) :C0 =f(C)

同値な符号は、誤り訂正に関して同様の性質を持つ Equivalent codes have the same properties

w.r.t. error-correction.

(the dimension, the minimum distance) Good representatives of equivalent classes

= standard forms of linear codes

= systematic codes

(19)

組織符号 (systematic codes) C : a systematic code (組織符号)

⇐⇒ C has a generator matrix G of the form G= (Ik P), where P M(k, n−k;Fq).

G= (Ik P) : gen.matrix (P M(k, n−k;Fq)) H=¡

−PT In−k¢

: check matrix GHT =O

—応用数学I・情報数学特論 19—

(20)

組織符号 (systematic codes) G= (Ik P), H=¡

−PT In−k¢

ϕG:FqkC ⊂ V =Fqn s= (s1, . . . , sk)7−sG= (s|sP)

s : information symbols(情報桁) sP : check symbols(検査桁) Thm

Any linear code is equivalent

to a systematic code.

Referensi

Dokumen terkait

Choose the correct answer by crossing a,b,c,or d (pilihlah jawaban a,b,c,atau d dengan benar)1. seventy seven c.thirty seven d.thirty nine

Choose the correct answer by crossing a,b,c,or d (pilihlah jawaban a,b,c,atau d dengan benar)1. seventy seven c.thirty seven d.thirty nine

Read the following passage and circle the letter A, B, C or D on your answer sheet to indicate the correct word for each of the blanksA. When you read something in a foreign

[Untuk soal nomor 1 – 15, pilihlah kata atau frasa pada pilihan A, B, C, atau D yang secara tepat melengkapi bagian kosong dalam bacaan]B. Choose the word or phrase in A, B, C, or

Choose the correct answer by crossing a, b, or c (Pilihlah jawaban yang benar dengan member tanda x pada a, b, atau c)1. many flowers in

298 V Ch Venkaiah Step 3 computes the orthogonal projection of C onto the null space of A and the initial direction vector, step 5 computes the step length, step 6 a new feasible

BAHASA INGGRIS KELAS 1 LATIHAN SOAL PERSIAPAN PAS MY BATHROOM I.. Choose the correct answer by crossing A, B or

UPT SDN 3 SIDODADI Nama : PENILAIAN ULANGAN HARIAN TAHUN PELAJARAN 2023/2024 No.. Choose the correct answer by crossing x a, b, c, or