• Tidak ada hasil yang ditemukan

講演要旨集 - 日本農芸化学会中部支部

N/A
N/A
Protected

Academic year: 2023

Membagikan "講演要旨集 - 日本農芸化学会中部支部"

Copied!
58
0
0

Teks penuh

(1)

.

l m

r

( -

r

(2)
(3)

186

43

4 : 03/9 5275

43 5

- 5

43

43

5

F 43

(4)
(5)

l m

w

A A (

A j t k

A ( j v k

(6)
(7)

t

h

yl l l l t l

t yl l º x l

↓ u t s yw l

u m

º m DNA RNA

l º s ATP º y

t m l y º N2y t s l

u º m m l

95%ºCO2 m lN2º 2.7%l3.5% tm

o p º u ux 93%ºH2 s ls

× y 7%l y 0.3% l º t t tm° l º

y º t m y tx °

t ºl y t m

y l t CO2y

m l x

y m

78% º y mN2 y

º m

º × s l1905

t m x º tl y

t y m ε ºl1909 7 2

× t 175 l550g x

m y1913 ε l ls tº

t m º ⇄

yl ⇄ y t

m

(8)

y t°

x °t º yx ys m ⇄ º y tu

m ºlo y º p s

m x t yl

º predisposition y tu y t (Soltis et

al. 1995; Werner et al. 2014)m m º 6000

t l 4000 mt t u yt u

x º l u º ux x

y 4000 xx yl α y ux

u º u ux

t l

º t

° yl t l l

t m l

Polygala paniculata y s

y m l

tu x t m

β x

m1987 3 l1992 3 l m1992 4

l1993 10 l2001 l2003

m2009 4 m

(9)

v

l º ⇄

l x m x l x

y s l ⇄y m ºl l

s m ºl 1% s 4000 y

t yl º u x s m

º ys l ℃

º u t ys m l

t l m ×

ºl y y w l º

s m l × ºl

t ys m ºl × l

l t m

× ºl °

m

× º l s o p

℃ m l

2.6-dimethoxy-p-benzoquinone(DMBQ)y t m l

y l y m × º

l ºl m ºl

l l ° tu º

m º ℃ x ⇄ s

yl ºs x t tm ° l l

º y l y s y m

ºl × x l

t ℃ m º y l l

s l t m l

℃ l y m ºl t

x °t tm

(10)

ºl x l

s YUCCA y mYUCCA º

w lYUCCA RNAi ×

y y y x m l YUCCA

l y m y y

y x l y

t y m

l y

m l y

m l

s y x m ℃ ºl

º ⇄ys m º l

l t º txl

m l ºl y y x w l

y ⇄ y m

x l º x l

tu t t m

y u xl u y

s xl x t tm

l m1996 3 l2001 3

l m2001 6 l2004 9

m l2006 8 l

l2016 m

(11)

n -+

(12)
(13)

d 2LU 4 1

f h h

q r

× B D y a ºlLD50y1 ng/mouse l

t l 100% m

lC- y pore-forming toxin s m

37gl l t x l ºa

etx x w m

q r

a etx mRNA l ELISA northern blot l

37g uy 25g 10 t m

lprimer extension l

-15/-14 TG y l overlap u 3° phased A-tracts

2° phased A-tractsy y x m

PAGE x l phased A-tracts DNA º y

Bent DNA t y m

l Bent DNAyetx °t m NanH

t l Bent DNA DNA

l× 13 m t

s l 2° Phased A-tracts l

y y x metx Bent DNAº

t y l 5° A-tract lBending º

l l t m

P02

t f

q r

C. perfringensºl t x t l H2 : CO2 = 1 :

1x m l º t

x l ºl Fdx y ⇄ s

m ºl t ° lC. perfringens 13

x lNADH l y

m

q r

t 5’- 3’- in-frame gene pXM

m

C. perfringens 13 l Cmr y

m ºlC. perfringens 13 º

tsuicide vector l Cmr ºl 5’- º3’-

l y m l0.5%

GAM × u l ×

m colony PCR m s 13

l lL- ldhL

ldhL ºC. perfringens 13 y mldhL

(14)

clostridial cellulosome f

q r

Clostridium ºl s

s m x l s y l

y AT-rich s l s m lClostridium ×

ºl s y ⇄ y t l º ⇄

tm l º t x t u 1

s lClostridium AT-rich l

y m l×

l y t m

º× l m

q r

C. acetobutylicum eglA l -×

s pCC13 T7 l pCC13-eglA m

T7 RNA y × mT7II

m lSDS-PAGE EglA l CMC

l t y x m l pXM

t b eglA lb

y m lC. cellulolyticum °t l

t m

P04

2, GNNA

f q r

Escherichia coli YggSº 5’ (PLP)

s l x l l ↓ n t m

x lYggSy wt x ⇄ t y m

lE. coliyggS y2-aminobutyrate (2-AB)l2-ketobutyrate (2-KB)l l

( -Glu-2-AB-Gly) y t m lPLP s 5’

(PNP) l (PN) s y t m l

yggS s PROSC yPN m

ºl (glyA) yggS y s

y m u lyggS °t º ys yl

lYggS º t tm ºglyA yggS

⇄ m

q r

glyAyggS l º s l y t

y x m wt GlyA º Ser tetrahydrofolate (THF) x Gly 5,10-metylene-tetrahydrofolate (5,10-mTHF) mglyAyggS

ºl 5,10-mTHF ⇄ ( l lMetl )

mglyA ºl5,10-mTHF º (GCV)

t lYggS GCV y m l3-

(serA) º 5,10-mTHF y GCV lGCV

YggS mserAyggS ºGly y l l

lMetl m x lYggSyGCV

t y m

(15)

c ) f

q r

( 38 1 ( 8MG O 8( i ( 8MG O ( L 64 )%+%(%0.

º 8 CA A D 9 8 1AE C AA8 CA A D D D x s l

( m nº

9 8 38 H38 t (

m º 38 y l m

q r

H38 , u l1 7 8 D A H

3A4 (, 0 1 7 8 D 8 A E 8 D 3A4 (, ,

l+ y 38 m

38 º H38 t m↓ º y c, Z4 l

↓ Q9 ºt /% s H38 º Z4 Q9 ,% m1 A H 38 º”

s yl ( 8( ” y m

l1 8 A E 8 D 38 º 8( s m l

38 t 8( l H38 (

y m

P06

f β

q r

Ruminiclostridium josui Clostridium josui

consolidated bioprocessing, CBP l x

º ℃ ⇄ys m ºlR. josui RjoI

x l ℃ m

q r

R. josui x HiTrap Heparin HP HiTrap Q HP

RjoI l m lRjoI ºAy GmetATC

s l ºA T GmetAhTC s l RjoIºDpnI

s y x m Clostridium perfringens pJIR751

pKKM801 m dam- x pKKM801 DNA t

l lR. josui m

, t R. josui cel48A

pKKM801 lR. josui lRjCel48AΔdocº

t y x m lR. josui / t l

℃ lR. josui ℃ m

(16)

A

M F a

Ruminiclostridium josui Fae1A CE1

CBM6 ( )

CBM6 )

CBM6 ITC CBM6

=1.4× =3.2× pNP- =2.4×

)

2

=1.9× 3

) )

CBM6 Native affinity PAGE

ITC

P08

B , 1 C 6 e

F F a

Clostridium beijerinckii

C. beijerinckii )

C. beijerinckii C. beijerinckii

C. beijerinckii Cbei_0664 DNA)

C. cellulovorans

engO E. coli-Clostridium pMTL500E engO

( C. beijerinckii

1 %CMC

) C.

beijerinckii C. beijerinckii

(17)

f q r

EngE º Clostridium cellulovoransy

s m º l l l 3° Surface

layer homology x w l

1 ° s m ºlEngE l

m

q r

EngE l n l TLC m l

CMC PASC º 2 3 ylAvicel º y

x m lEngEº t s x m

lglucomannan lichenanlβ-glucan lxylan

º x mlichenanlglucomannanlβ-glucan º

y lEngEº β-1,4 m t lCMC

m l y3 mg/mL

x l y y m l t °

x l l y2° ESS x

m lEngE º lESS x

y m

P10

Clostridium cellulovoranst GH44A

f q r

Clostridium cellulovorans x engGH44A y °

x m x N GH44 C

⇄ t m l

x t y x

m ºEngGH44A l x

m

q r

w m x y l

º yl

t m CMClAvicellPASClxylan t tl

m lAvicel PASC º

º x yl s CMC l3 4 m

xylan l4 m lEngGH44Aº

s y x m CMC

t ↓ º50 s l↓ pHy5 s y x m

(18)

, 3 C , 1 - l r Ra c BAn

1, e 1, mi a2, d N 3, p 1

1y r o, 2JBIC, 3s

streptothricin ST SF-2111B Ser methyl malonate

Ala O-acylpeptide

SF-2111B BAC

O-acylpeptide NRPS

orf 1197 orf 1198 NRPS

orf 1195 orf 1196 O-acylpeptide

BLAST Orf 1195 Orf 1196 S-adenosyl-L-methionine hydroxide

adenosyltransferase asparagine synthase O-acylpeptide

BAC

BAC LCMS orf 1195

SF-2111B O-acylpeptide

Orf 1195 O-acylpeptide orf

1196

P12

, 3 r Ra 2 3 , 1 JI C

nl

t h e mi a d N p

y r o s

streptothricin (ST) BD-12

glycine FemAB family

Orf11 Gly-tRNAGly C.

Maruyama et al., Appl. Environ. Microbiol., 82, 3640-3648, 2016

Orf11 BD-12

sba Sba18 Sba18

aminoacyl-tRNA aa-tRNA Gly-tRNAGly

aa-tRNA Gly-tRNAGly

Ala-tRNAAla Ser-tRNASer Sba18 aa-tRNAaa

tRNA Sba18 tRNAaa

E. coli 3 tRNAGly 2 tRNAAla S. lividans tRNAGly

4 9 aa-tRNA Sba18

Sba18 tRNA in vitro

tRNA Sba18

SF-2111B

BD-12

(19)

GH134 ( β-1,4- 2 , ) ,

β- (Glycoside Hydrolase family 5 (GH5) GH26

) β- (Man134A) GH134 family

(Shimizu et al. J. Biol. Chem. 2015) Man134A

GH134

Man134A Man134A

β- Man134A (Man134A-E61A)

GH134 β- Man134A GH5 β-

Man5C Pichia pastoris pH

Man134A Man5C β-

β- Man134A

9 Man134A-E61A β-

E61 61 1

Man134A-E61A β- β-

Man134A-E61A

Man134A β-

P14

, 31 (

Fusarium graminearum

AreAp

AreAp AreAp

AreAp

F. graminearum JCM 9873 HP1 hep1 Tri6 TEF

Tef6 Ext

pH 3.5 2-3 pH

36 36

pH - 36 72

HPLC AreAp L-Thr L-Phe

AreAp L-Gln L-Gln L-Phe

L-Thr Tef6

Ext hep1 L-Thr

(20)

F. graminearum rw 3 *

i hε h h h h h h

)h h h hβ

h h

q r

Fusarium graminearum º l NIV C-7 y

x x m x NIV ºC-8

tF. sporotrichioides lC-4

Tri13 C-8 Tri1 y

y t m ºF. graminearum FgTRI13 x lNIV

y u x x m

q r

Tri5 w C-7, C-8 FgTri1

F. graminearum t feeding lC-4 FgTRI13

mC-7 y C-8 y C-4 º

ylC-7 ºC-8 x y C-4 º

l º s m lF. sporotrichioides FsTri13 FgTri13

C-8 Tri16 t feeding ylC-7

C-8 y C-4 º x x m

lFgTRI13 ºFsTRI13 lC-7 y x° C-8

y t x y t y mC-4 y

ºFgTRI1 º t x lNIV ºC-7 lC-8 y

C-4 y t u m

P16

s rw

f ( ) β

( )

q r

Fusarium graminearum º x m nº F.

graminearum (Thr)

y t m l Thr

y yl t º s m º

x l m

q r

w Thr wt y RT-PCR

l

y mF. graminearumº 3

ylThr º1 s

m lThr y

t m Thr l

y x Thr y

t y m lThr y

l t m

(21)

Aspergillus nidulans poly (ADP-ribose) glycohydrolase u f

q r

(ADP- ) (PAR) º s

º PAR poly (ADP-ribose) polymerase (PARP) poly (ADP-ribose)

glycohydrolase (PARG) y y t PARPº

DNA t t

Aspergillus nidulans parp ortholog y 1 ° y w A.

nidulans º parg ortholog º t º

parg x

q r

A. nidulans x parg 7

PARG 1 Mg2+ PAR PAR

LC-MS/MS ADP- y x

fungal PARG (fPARG)

Δfparg DNA DNA

fPARG º t

x º fPARG y PARG t y

P18

t

f ( )

( )

q r

º x

w s º t

x y °t º t t Coprinopsis

cinerea º y t y x

t t º C. cinerea

(HP) y °t

q r

t HP ×

t y C. cinerea º y t

y t x HP º “

t y

HP

HP º t º GlcNAc

s GlcNAc x x HP º

x t y

(22)

8PY 1YW

f β

q r

ºlATP l ⇄

s m l º

m l y wt l l y

⇄ yl y °t t tm l

ºl l

tl lHis-Asp HysA y

⇄ s m º HysA l

y ⇄ s x m

q r

lMito Tracker Red t ATP

x lHysA º y t m

ROS °t l ROS

Mito Sox Red t l l ROS

m º t yl

º mHysA ºl I Alternative factors s AifA, NdeA

y PCR x m l

yROS mHysA s lHis-Asp

⇄ °t m

P20

FSU

f h h (h )h

h( )

q r

º l DNA l mGenomic

SELEX-Seq(gSELEX-Seq)ºl x

in vitro s m ºl gSELEX-Seq

t XlnR lXlnR

m

q r

l XlnR t gSELEX 3

× m DNA l

lXlnR s GGCT(A/G)Ay m

lXlnR y m

DEGs 75 l51

y m lx°

ºXlnR s m lXlnR y

BLI t tl XlnR

m

(23)

f β q r

ºl x Membrane vesicles (MVs)

t m MVs l

y m l x MV wt

º ys l yMVs º y tm

ºlMV y t Buttiauxella agerstis CUETM77-167 l

MV m

q r

B. agrestis CUETM77-167 MVs FM4-64 t l 30

˚C 30 m MVs t l

MV m CUETM77-167

l MV l m l

TolB l MV

y 1.7 m tolB MV t wt ºltolB

MV 3.7 m

ºMVs TolBy t y mTolBº

t x ltolB º y y

l yMVs t m

l MVs y m

P22

rw

f ( ) * * + (

( + ( ) * + 2 3 :3

q r

t º °t

y w t

w °t º y t t

º º ys º

t y x ux

q r

º Pseudomonas putida KT2440 s SMDBS º

P. stutzeri t º pBP136::gfp pCAR1::gfp t º

t t

º 101~104

y P. putida SMDBS(pBP136::gfp)

t t

°t 16S rRNA

y ty

y

(24)

t MP ULYY z

( (

q r

º t t º

º fitness y

n IncP-1 pBP136::gfp IncP-7 pCAR1::gfp °t

Pseudomonas putida KT2440 s PpY101 º

fitness y t 2° °t PpY101

º prophage1 kguKE y t y

º KT2440 ° fitnessy

u x

q r

KT2440 PpY101 pBP136::gfp pCAR1::gfp °t

u LB

competitive index

(CI) fitness KT2440 fitnessº t

PpY101 º KT2440 P1 prophage1

KT2440 kguKE KT2440 P1 kguKE

°t pBP136::gfp pCAR1::gfp ° fitness

pBP136::gfp 3° fitnessy x pCAR1::gfp

KT2440 KT2440 P1 KT2440 kguKE fitnessy y KT2440 P1

kguKE ºfitness º prophage1 kguKE º pCAR1::gfp

fitness y y

P24

rw f

q r

º u

s º x t

w º t y

w º y w y t y s

º

q r

(CAR) pCAR1::rfp Km

Pseudomonas putida SM1443 P.putida KT2440 t

1.0 g 1.0 mL 250 mg/L u CAR

106 CFU/mL u (10 rpm) 48 h

30 C 48 h CAR GC-FID MPN

ºCAR y 40 s 10-12

y ºCARº s 10-12

y º x

x º x y CAR y

(25)

o rw

f ( ( ( (

q r

º w

° y t

ys º s t

y t tu x y t tu ys nº Rhodococcus

erythropolis 2 t 15g A

º A

q r

300 g 200 g W 332 ml 15g

1 Rhodococcus erythropolis 2 1.0

108cells/g-soil u A 2500mg/kg 15g 6

t A w A º

GC-FID t º 1/3 LB

A º6 96% y

º12 xx y t s y

º x y t y

tu y

P26

f ( ( ) )

( )

q r

y

t x º y w w

° t x º s

º

y u x

q r

º (UASB) t

UASB º n

ºCH4

60~70% CO2 9~17% º 100% º x

t º

t

t ty

º y t y

ty

º y t y

(26)

rw

f ( ( ( (

β

(

q r

° γ ys γ º 1

1

° s w º x t

t n w y

y γ º t

º γ w

q r

γ w x 0 2 5

γ º MRS wt 0

º5.8 107 cfu/g s 5 º2.6 108 cfu/g 16S

rRNA t 0 wt ºStaphylococcus y

40 % s y y ° Lactococcus y

5 º 90%y 5 ºLactobacillus y

x º 5 º y

y y ° Lactococcus x Lactobacillus y

P28

j zk j k

f ² ² ( ( β ( ) )

* *

( ) *

q r

o pº ° n º

y º y

° uxt º °

y

º ℃ o

p o p x

t º o p º °t

t o p o p

q r

600 x 22 Saccharomyces cerevisiae x

w 4 1 4

THI7 ZAP1 PXL1 GLG1 YRR1

GY-115 y uxt s GY-115 º

s 4- 4-VG x GY-115

10 kg GY-115 º °

10.2ºC x 14.9 2.27

y

(27)

w p

f ( Bayanjargal Sandagdorj(

(

q r

º γ s yIFN- w IL-10

IFN- y x º

y t x w

y y º w

u

q r

3 7 14 21 28

°t pH t pH

pH y x y

y

16S rRNA MiSeq L. curvatus

L. plantarumy y ×

IFN- w IL-10 IFN- w IL-10

y y y

t qPCR t

º L. curvatus º L.

plantarum L. brevis s y

P30

Isolation and Identification of Indigenous Yeast Fermenting Ethanol from Vegetable and Fruit Wastes

Fannisa Putri

1, 2

, Makiko Sakka

1

, Naoto Isono

1

, Emi Kunitake

1

, Tetsuya Kimura

1

, Kazuo Sakka

1

, Sunardi

2

and Yuli Astuti Hidayat

2

(

1

Grad Sch Bioresources, Mie Univ,

2

Dept Environ Sci, Postgrad Sch Univ Padjadjaran, Indonesia)

The acceptance of vegetables and fruits each day in Bandung City, Indonesia, from various regions reaches hundreds of tons and produces a lot of organic wastes. In addition to the approach of waste product, recycling of vegetable and fruit wastes can be pursued through the concept of waste to energy. Vegetable and fruit wastes have the biological and chemical potential to produce bioethanol.

Biological potency owned by indigenous microorganisms was examined for fermentation of the

vegetable and fruit wastes. Among 8 yeast strains isolated from the wastes, 2 indigenous yeast strains

S1.2 and S2.2 showed an excellent ability of ethanol fermentation while 6 other yeasts did not show a

good result on this experiment. Strains S1.2 and S2.2 could ferment glucose in the medium consisting

of 20% glucose, 1% peptone and 0.5% yeast extract to accumulate ethanol about 9.5 to 10% in the

medium, indicating high ethanol recovery close to theoretical value. They grow best on 25-30 °C in

pH 3-6 and are capable of fermenting various monosaccharides such as glucose, xylose, mannose,

galactose, fructose, and arabinose to produce ethanol. Physiological properties and PCR-based 18S

rRNA gene sequences showed that strain S1.2 was closely related to

Hanseniaspora opuntiae and

strain S2.2, Pichia fermentans.

(28)

u yz 76 o i

q r

º l l m l

l y y t m º

lGFP l w

m

q r

ºSaccharomyces cerevisiae BY4741 lw GFP Yeast

GFP Clone Collection ThermoFisherScience m º YPD l

l l t mGFP

ºl ºROX3 YBL093C l ºNIC96 YFR002W l ºPHO86

YJL117W l ºSEC7 YDR170C m

l 50 MPal100 MPal150 MPal200 MPa 30 l

m l

m

50 MPa º º º x m100 MPa ºl

l y m150MPa y m200 MPa º

y m l l

s y100MPa y m ºl

l t m

P32

o

f β

q r

wt º ºs y ( 50g 10-20 ) ”

( 40-41g ) ” º

y y ” º y

⇄ s y t y y t ”

q r

” y y º

t y ESCRT º x

º y t ys

y x ” º y y

u º t y

(29)

.

f ( (

(

º 8 y 8-Hydroxydaidzein (1) 1)l

8-Hydroxyglycitein (2) 2)l8-Hydroxygenistein (3) 1) ys m l yl

Genistein Daidzein l l l

t m ºl x 1,2,3 HPLC

lTLC lHPLC l1H-NMR 99 l

y l

m

1) Hideo Esaki et al., Biosci. Biotechnol. Biochem., 62(4), 740-746 (1998).

Akira Hirota et al., Biosci. Biotechnol. Biochem., 68(6), 1372-1374 (2004).

P34

f h h h h

º l y

t m º l l w l

l l n t m

l º ⇄ t w l

t l ⇄ s l

n u ys m

º t y ⇄ s l y

t m

º y t yl º

t l m

ºTLClHPLC NMR mHPLC wt º tUV

y t l * t m l

C10:0x C30:0 99.5

m l kg y m

* , , FOOD Style 21, 17(3), 87-89(2013).

, , , , LONMSTP 7 R P(H26.10.30).

O

O

OH OH

HO O

O

OH OH

HO O

O

OH OH

HO

H3CO

OH

8-Hydroxydaidzein (1) 8-Hydroxyglycitein (2) 8-Hydroxygenistein (3)

1 2 4 3 6 5

7 8

(30)

P35

f ( ) * ( (

h( h) h*

q r

nº t m2017

( ) wt l x l t

A(1) m y

t y x m l B(2)

m

q r

(Vigna angularis, × ) l m

Toyopearl HW-40Cw ODS l24 kg

x 4.6 mg 1 l2.4 mg 2 mNMR w CD x 2º1

l1 s y x m l1 n pH 50% -

lUV/Vis m lpH 5

5 80% t m l l

t m

P36

Study on the color and stability of 3-O-substition of cyanidin

fAsmaa B. El-Meligy, 1,2 Takehiro Ishihara,1 Kin-ichi Oyama,3 Ahmed M. El-Nahas,2 Ahmed H. Mangood,2 and Kumi Yoshida1

(1 Graduate School of Informatics, Nagoya University, 2Faculty of Science, El-Menoufia University, Egypt,

2Research Institute for Materials Science, Nagoya University)

The purpose:

Anthocyanin natural dyes are important pigment that can be used as a food colorant, as well as a dye for dye sensitized solar cell. The main drawback is their instability; they are highly reactive by degrading under normal condition of storage. 3-O-glycosilation of anthocyanidin is considered to increase stability. To clarify this, we compared the stability of cyanidin (1) with 3-O-glucosylcyanidin (2) and 3-O-methylcyanidin (3). We also analyzed the effect of presence of co-pigments on the color and stability of pigment.

Method and Result:

2 was isolated from black soy bean (Glycine max). 1 was obtained by acidic hydrolysis of 2. 3 was synthesized from rutin (4). After tetra-benzylation of 4, sugar moiety was hydrolyzed, then 3-OH was methylated with CH3I.

After removal of Bn-protection group, our transformation method using Zn-reduction followed with air oxidation to be obtained 3. 1-3 were dissolved in aq. buffer solution of pH 1 and the stability of the solutions were investigated by recording UV-Vis Spectra. The results reveal that the 3-O-glycoside substitution of anthocyanin is the most stable followed by 3-methylation while the 3-hydroxyl is the least stable. Thus, 3-O-substition plays a role in retarding decomposition of anthocyanin. Addition of co-pigment, flavocommelin (5, 1-10 eq. to each pigment) gave increase in stability with bathochromic effect even in strong acidic condition.

(31)

f q r

(TTX)ºl Na+ s l l

y t m lTTX º t l

º s m l ºl (Cynops

ensicauda popei)x Cep-212w Cep-210 m x l °

ºlTTX y t m x l Cep º x

s l ℃ y s m ºl w ℃

l m

q r

l ℃ lCep-212

m l t ℃ w

t m l x Cep-210 s m

P38

T JVUPU

f (

(

q r

(+)-Muconin (1)º Rullinia mucosax s , α,β-

-γ- THF-THP , ° t . º,

℃ t, 1 u ,

.

q r

Acrolein (2) , Sharpless Sharpless

14 3 . t , 2 Pd t ℃

4 . (S)-(-)-glycidol (6) 3

7 . THF-THP 5 , γ-

9 , (+)-muconin (1) u s .

H O

2

C12H25 O OMOM

O

OH O

3

Cl2Pd(CH3CN)2 (10 mol%)

O O

C12H25 OMOM

4

8 OTBS

I OH

Pd, CO, base

THF OTBS O

O

9

O O

C12H25 OMOM

5 OH

HO O

6

O O

C12H25 O

14 steps

OPMB

7 O

3 steps

C H

O

(32)

( ) , h

1 ng a c l

proanthocyanidin

epigallocatechin oligomer

3

epigallocatechin tetramer (1)

2 4 3 3

3 7 8 9 6

epigallocatechin tetramer (1) 7 8 9

(1)

P40

Quinocidin 2 t E e p

io

Quinocidin Actinomyces sp. TP-A0019

3,4-dihydroquinolizinium Quinocidin

2-mercaptoethanol N-acetyl-L-cysteine Michael

Quinocidin cysteine

Quinocidin 1

1 3,5-lutidine 5 1 PBS (pH 7.4)

10 2-mercaptoethanol HPLC 2 1

2

1 Quinocidin Michael cysteine

1

(33)

P41

1 3 2 ,

A (PRM-A) (HIV)

HIV PRM-A HIV

PRM-A PRM-A

PRM-A PRM-A

(1-3) PRM-A

PRM-A 1 2, 3

4

P42

1 3 2 ,

(PRMs)

PRMs Man

PRMs

PRMs .

Candida albicans

PRMs Man

PRMs Man

PRMs Man

HO O

O HOHO

O HOHOHO OH

O O HOHOHO O HO O HOHO OH

HO O HOHO OH

O

O HOOO OH

O OH HOHO

HO

(34)

2PY UP XVWOLU S OVYWOVXH P H L ⁺ s TTLXLX

f q r

Pummerer º α

s m n t y yl Pummerer

º 2 x tm1)

l - º -

m lp-NO2DPPA º s l

t Pummerer y l x° -

y m lp-NO2DPPA x° Pummerer

- m

q r

n lp-NO2DPPA l DABCO t Pummerer y

l y y x m n

l t y m

l l º

l y y x m l α-

t Click tl m

References 1) (a) Shimada, K. et al. Tetrahedron Lett. 2000, 41, 4637. (b) Jiao, N. et al. Org. Lett. 2015, 17, 6186.

P44

○ q r

RBP CHOL °t º tm

ºlin vivo in vitro RBP CHOL m

q r

< 1> Wistar RBP CHOL l l

m lRBP in vitro CHOL m

< 2> RBP l tl

m< 3> RBP HiLoad 26/60 Superdex 200 pg

tlRBPF1 RBPF6 CHOL m lRBPF3 SOURCE 5RPC

ST 4.6/150 tl ° lCHOL

m l< 1> RBPº CHOL l

lCHOL l ° x

m< 2> RBP y lHypothetical protein OsJ_13801 (NCBI

accession no. EAZ29742l54.5KDa) m< 3> RBPF3º CHOL

mRBPF3A ºlRBPF3B RBPF3CºCHOL

lNon-specific lipid-transfer protein 1 (LTP1) (NCBI accession No.A2ZHF1l11.3KDa)

Lectin (NCBI accession No.Q01MB6l22.7KDa) x m

lRBPºin vivo ºl CHOLy

lin vitro ºl CHOL x l

Hypothetical protein OsJ_13801l CHOL

LTP1 Lectin m lRBP CHOL

m R S

Me

p-NO2DPPA (2.5 eq.) DABCO (2.5 eq.)

toluene, reflux, 2 h R S N3 O

20 examples up to 88% yield

alkyne

Cu+ (cat.) Bioactive Compounds

(35)

4 1

f ( ) (

( )

q r

º u y t m

ºl n y ⇄ s m ºl

y t m nºl DNA ODN

l ODN m

q r

× x t m º l

Lactobacillus rhamnosus GG ODN m96

ODN l48 s MHC

m lMHC ODN lmyoDN

myogenic ODN m

myoDNº” x l º℃ y m

lmyoDNºG ℃ y m

l ylmyoDN

m º º t x l º myoDN

l myoDN m l

º myoDN tl l

m

myoDN- ºl t l

l l y m

P46

4 1

f ( ( ( ( ) * ( )

( ) *

q r

º m nº l º

y t l s y t

m u l °

y y m nº l - 8EA7 8 D C AD D 88

5 2 N P5 yl × m ºlN P5

y x m

q r

( x l t m

N P5 l lN P5 +/ º

m l N P5 l+/

mN P5 ºl y t mN P5

R 4A lN P5 ºl .5

y % l .5 y )%/ l .5 y )%. l

. . (y %) t m x lN P5 º

y m nº lN P5

(36)

x

f ( ( ( ( (

(

[ ]

nº Achl10-8 mol/kg y SHR

w l t x m º

Ach lAch w ° y

w Ach m

[ ]

1lAch 11 SHR Ach Ach ºM3

1,1-Dimethl-4-diphenylacetoxypiperidinium 4-DAMP w Ach+4-DAMP l

10-8 mol/kg u l m

2l 15 SHR l º

m º m 1

l10-8 mol/kg Ach l m

3l SHR lAch10-8 mol/kg 30

l m

[ ]

ºl Ach l y

m l4-DAMP Ach y m

ºl t yl

m x Achº M3 l

l y l l y m

P48

f ( ( ( ( (

q r nº t (AcCh)y

(SHR) wt x AcChº

AcCh

AcChº w y 1,000 t

º AcCh SHR t w

q r γ º

t AcCh º u

LC-MS/MS MRM

t : 14 SHR

: 14 SHR º (n=6)

: 10 SHR 4

º (n=6) 1

q r t º γ y2.25 mg/g

y1.78 mg/g s º ºAcCh

s

º y

s º y

(37)

2( B

f (

q r

s B2 PCB2 º ―

― n ― y

t PCB2º ° x s y

y T °t º t t º PCB2

T x

q r

PCB2 PCB2 3-OG PCB2 3"-OG PCB2 3,3"-di-OG 25 µM × CD3 IFN- IL-17 º PCB2 3,3"-di-OG CD3

y IL-10 º x CD4

T wt PCB2 3,3"-di-OG IFN- IL-17 º y IL-10

º x IFN- s T-bet w IL-17

s ROR t T-bet ROR t ºPCB2 3,3"-di-OG

x PCB2 3,3"-di-OGºT T-betw ROR

t ― s IFN- IL-17 T

° y

P50

4 1 p 4 1

f ( (

(

q r

y

t nº ° s DNA y DNA

y t DNA º

t DNA DNA y

DNAy UHRF1y DNA methyltransferase 1

(DNMT1)y

DNMT1 DNA UHRF1y

DNA DNA y tu s º DNA

y DNA y tES (TKO) UHRF1 TKO

t DNA

q r

TKO DNA dCTP DNA

γ-H2AX (DNA

) × DNA º DNA

t UHRF1 y DNA

y DNA y

UHRF1 yDNA s

s CRISPR/Cas9 Uhrf1 TKO

(38)

u o f

( ( ) )

q r

y º x , .

º y t ys , º

t y . , w A. nidulans º

, y x t . º y

s wt t .

º, × , y x,

s º x, ,

º u x x .

q r

ε , y x , º pH1 3

, 50 % t . x , º t y x .

( ), º 5.0 102,103, 104

30 × , . GC-MS

x , º Ala, Val, w y t . ,

, º Bacteroides y

t . x , y y .

P52

4 1YW t t 4 1YW

f q r

D- y t y x

D-Ser º N- -D- NMDA

t D-Aspº t

D- y D- - DAO

y º D-Asp

y u x D-Asp y s x

D-Asp y x

q r

C57BL/6 × D-Asp ºL-Asp 4 D-Asp w

L-Asp DNA D-Asp

ºControl Asp L-Asp D-Asp º 2 D-Asp

º x L-Asp Prevotella

y º C57BL/6 ×

D-Asp Control D-Asp

º x y º D-Asp ⇄ º t y

(39)

P53

2 1 -

P

C pL

2 2 q A n o xM C

n aL n d L n C o mx

o o x m dM o p n

Lby o iRdM pL o o L

q o n Zx o n Rio iRxM

P

u d o n iL Nm

t ad L p

y nu ym dM o L p C o nmxns

p m R T y d M o L o

A DH A E I H A E9 G (3) o + L

o Qx L 9 o C nu i x L

o nu i x Qx L

A ( o m L n

x Lml m dM o L

Qx hZ ydMrdL o L L L L

n Zx o d L n Rip iR

d Lbo o p ym dM

P54

-2 D P

6 p n

x Q L L mlo m

n iRxM p 6 6 n L o t n

iRx Lbo n Rip e m xM p

x Rd m 6 o xM

P

o p ad L S n

xM o p -+ nux

dM o 6 L6 o d L n d 6 o

nm dMrd n Zx 6 L6 o n iL y n Sx Ri d Lbycyo yd p m iRdMrdL 1(

Ri RL6 q 6 o o dM-+ q

nux d L6 o p mx sd

nm dM

(40)

h hβ (h h (hi

h( h)

q r

º l

y l m º /

y l C8) °t ºl l l

s m t l

C D E D C8) y l nº

x m º

l m

q r

d l ls

m l C8) º t yl

º º m C2;6 w 4A BA 4ET0

m ºt º x yl y

m , l

y y t m º

s l m

P56

f q r

l º ⇄ t m l

(ER)x wt l × y x

m × ALG-2ºl ×

yl º x t tm

nºlALG-2 MISSLlMAP1B mMISSLº s ylMISSL lERx ERES ERGICl

y y x m l MAP1B yl ×

ALG-2 MISSL m ºlALG-2y

x lALG-2lMISSLlMAP1B w m

q r

ALG-2lMISSL l IMR-90 t

mALG-2lMISSL l y m

l s SEAP

HeLa t l mMISSLlALG-2 l

SEAP y 7 8 m

s lMISSLºALG-2 t

m lMAP1B SEAP lMISSLl

ALG-2 ylMAP1B m

x lALG-2lMISSLlMAP1B × l

y m

(41)

å 1 1 A t i

q r A11 (AnxA11)ºl

s l ×

s m l (ALS) l6° AnxA11

(G38R, D40G, G175R, G189E, R235Q, R346C)y w l ºl

Ca2+ °t l t m

q rHeLa SGFP2 AnxA11 (AnxA11-SGFP2) Ca2+

R-GECO1 l × s ionomycin

lAnxA11-SGFP2 Ca2+ m

q rAnxA11-SGFP2 t t ºlionomycin Ca2+ y x t m lAnxA11-SGFP2 ºl Ca2+ y t l lAnxA11-SGFP2 yl wt x l l

x mCa2+ AnxA11-SGFP2 º ys

x l x y t t y m

AnxA11 wt ºl l Ca2+ y t (G38R,

D40G, G189E) l [Ca2+]y n x t (G175R, R235Q, R346C)y m l °t ºlR235Q wt lCa2+

m x lAnxA11 t °x wt l ×

y m × yALS

t x tm

P58

1 2 3Hae f

q r

MAP1B º wt l

n y x t m nº ×

ALG-2 MAP1By mALG-2º ×

× n x lALG-2 MAP1B º

× t s m ALG-2

ABM-1 ABM-2 2°y t ylMAP1B º y

tm ºlMAP1B ALG-2 u lMAP1B

ALG-2 m

q r

MAP1B w ALG-2 lMAP1B n MAP1B

ALG-2 m lALG-2 MAP1B

1813-1848 36 m wt

MAP1B ALG-2 m lALG-2 ⇄

m Far-Western blotting MAP1B ALG-2 y

y x m x MAP1B ALG-2

m

ALG-2 MAP1B m ALG-2 º

MAP1B y y ºPocket 2y GF y m

(42)

. 33 - *(

s f

q r

acyl-ACP (Aas) thioesterase(‘TesA)

(FFA) . x Synechococcuselongatus PCC

7942x u FFA dAS1Tº 12L/12D 8L/16D º

y FFA x º

u º t s º dAS1T

s

q r

FFAy II PSII y

FFAy dAS1T º y º

(IM) FFA IM FFA

1) º IM dAS1T

t 8L/16D dAS1T y

x x °t FFA y

s y x PSII x

dAS1T ºWT Fv/Fmy IM y

° dAS1T º FFA PSIIy

y

1) Kato et al. Biotechnol. Biofuels. 10: 141. 2017.

P60

. 33- *( rw

f

q r º y t y,

º y w , y

y t . x , w º w ,

º s . , wt

CLD1 y . º, Synechococcus elongatus

PCC7942 w CLD1 s Synpcc7942_1028 ,

x s .

q r His-tag Synpcc7942_1028 (His6-1028) in vitro

, His6-1028 º t

y . x His6-1028 y ° y x

. His6-1028 S. elongatus PCC7942 (1028OX ) ,

. º (VC ) 1028OX º x y,

ºVC 1028OX y , yVC 60% t

. , , t s .

(43)

rw

f ( ( ) *

( ) *

q r

º u s l y m

º s x l

t ℃ tue x

t m x w º

t tm ºl Leptolyngbya boryana w

t ℃ l y

m

q r

mini-Tn5 pKUT-Tn5-Sm/Sp Escherichia colix L.

boryana l m l

SmR l u 13 °t SmR

m lt n SmR

y t y m y

s l 2,000 x

tl º m °t

m

P62

å

f ε h ( ( E 9 9BI

q r

Pentatricopeptide repeat PPR ºPPR °

RNA l wt RNA n

t m lin silico PPR yRNA

t y yl ºt s m ºl

RNA PPR t RNA x

t m

q r

RNA PpPPR_56º nad3 nad4 RNA ylnad3 RNA

u PPR PpPPR_56 m

PpPPR_56 t in vitro RNA l

nad3lnad4 RNA yl º nad3 RNA

t m x l nad3 nad4 RNA y

PpPPR_56 l PpPPR_56ºRNA

yl PpPPR_56º nad3lnad4 RNA RNA y x m

l PPR u lC PPR

yRNA y x m

(44)

1 å

f h (hε h( E 9 9BI

q r

s º º °yl

DNA º s m ºl RNA RNA

RNase o εRNA p

l RNA × ℃ m

q r

εRNA t RNA lRNA l

y x Pentatricopeptide repeat PPR m lRNase m t in vitro RNA

lNYN y1 RNA s m

l RNA u PPR NYN t l

εRNA m l εRNA

y x l εRNA l

RNA y x t m

P64

å

f ( ) * + ε ) ( β +

( ) * 9BI +

q r

ºl s m w

t l º HK x

m º HK °yl ºs

x t tm ºPAS Period-Arnt-Sim °2° HK PpHK3a PpHK3b

m

q r

PpHK3a PpHK3b t l mPAS ° HK

ºl x º °x x m l PAS ºl

º PAS s y mPpHK3a PpHK3b l

t l m

l y m l ×

l × y t m PCR l º

APB y t m y lPpHK3a

PpHK3bºlAPB º l t y x

m

(45)

rw - f

q r º )+ l

m wt l AA TI HP AITQPOTI AI ME PS º

⇄ y t mAA °

A;5 º AA AITQPOTI AI ME PS A5

º tyl y tm lA;5 º A5

t ylA;5 AA º t y

t m x lA;5 º AA ⇄ t y yl

°t º x t tm l º AA A;5

m

q r 1 G5 2 92 E 8E 1 l

A;5 1 - 1

CC CC CC m7MP ISLO

CLNI l l l E 8E 1 º CC CC

1 y yl1 - º1

y l s CC CC CC m x A;5 º1

⇄ s y x m 1 w A;5

l 9 t AA

4 l E 8E 1 º º

t yl1 - º y t s m x lA;5 º

l ⇄ s y m

P66

f h h h

q r

ºl wt ( )

( )y m ºl l

y l y m ° s

ºl l y

t yl º x t tm º

in vivo l

m s ºl u B ARR

l u m

q r

trans - zeatin 3 w t

m u

x LBD3 °t l s LBD4 m

lLBD3lLBD4 º

lLBD3lLBD4 º y x m

º y l t l

s y m ºlCYCD3;1lWOX4l

AINTEGUMENTA (ANT) t l y t l

(46)

25 p p AJ ,

1 y y S

. ,

. SA

. .

phy SA

phy phyAphyB SA NPR1

SA NPR1

SA NPR1

SA phyAphyB Pseudomonas syringae

SA BiFC phyB

NPR1 . phy NPR1 NPR1

SA

P68

3 5 h 4 3 25

, T

S

.

. .

,

, ,

.

, ,

Col-0 , , RT-qPCR

. ,

. .

, ,

, Col-0

Col(gl1) , , RNA-seq

. , Col-0

, Col(gl1) . . ,

, Col-0 Col gl1 Psm ES4326

, , Col-0 .

. .

(47)

I . A A C A C C C A

C A D D CAA C C D

AC C C . D A D C . C D ACC A 2 A

AD D C D C x 1 G CD A -A D C 1 - C

H y

Polar nuclear movement at the subcellular level is crucial during multiple events in eukaryotic development. In most cases, components and regulators of the cytoskeleton as well as nuclear envelope proteins are major components involved, as demonstrated by severe developmental disorders in respective mutants. In the Arabidopsis root epidermis, the nucleus initially assumes a position at the inner lateral membrane during cell elongation and moves towards the root hair after hair bulging. Except for its actin-dependence demonstrated by pharmacological studies, little is known about dynamic hallmarks and regulatory mechanisms underlying this polar nuclear migration.

Here, we report that nuclear auxin signaling and Rho-of-Plant (ROP) signaling direct actin-dependent polar nuclear migration towards the root hair bulge. Time-lapse imaging reveals that the nucleus located at the inner lateral membrane starts its actin-associated movement towards the outgrowing root hair in an ACTIN7 (ACT7)-dependent manner. Loss of ACT7 function as well as reduced or enhanced activation of ROP signaling alter polar nuclear migration. High auxin concentration or reduced CTR1 kinase function induce nuclear mis-positioning that is suppressed by ARF7 ARF19 loss of function, revealing that nuclear auxin signaling regulates nuclear migration. Our findings establish a mechanistic framework of auxin- and ROP-signaling-directed, ACT7-dependent polar nuclear migration in the Arabidopsis root epidermis.

P70

bdMh P Oik RTS r .-- NgoMpa

wtn fU vf mlV c

x Y ue s C A - D 1 G CD A ,I AC y

NR23

SRPP srpp

SRPP SRPP

5 SRPP

SRPP

2 SRPP

srpp SRPP

WT SRPP

srpp

(48)

t u y

f 1SP 6LX HUP( (

q r

H+-pyrophosphatase (H+-PPase) º (PPi) H+

2° °. PPiº s

. y

º s . H+-PPase (fugu5)

º w l w x

y t y(Plant Cell 2011, Frontiers Plant Sci. 2016)l l

MGRL fugu5ºlPPi t .

ºPPi .

q r

MGRL fugu5 º

y y y x .

y w t .

º × (NH4+) º .

PPi .

°x NH4+ ys . MGRL

w fugu5 º NH4+ PPi l º x

PPi H+-PPase º s t .

P72

f h h L YJOLX A LMHU (h h h h

) h( h)

q r

º ⇄ s . ,

s × w º , t ×

y . × º s ,

y . ,

s (Prunus persica)y × t y .

w × , ×

(BORs, NIPs) , .

q r

× , PpeBOR4y w ,

× y . , PpeBOR4 ,

PpeBOR4 , , × y

x . , × × l º ×

y x . , PME y ,

y t y PCR,

x x . , ×

℃ × y , PpeBOR4

t y .

(49)

1

90%

pap1-D Amethyst

19

6 (110 212 301 304 310 311) pap1-D

6 (212 225 301

304 305 310)

GFP 212

P74

Analysis of flavonoid content in Oenothera’s flower during senescence TEPPABUT Yada1, OYAMA Kin-ichi2, KONDO Tadao1, YOSHIDA Kumi1

(1Graduated School of Informatics, 2Research Institute for Materials Science, Nagoya University

Purpose

Flower of tsukimisou (Oenothera tetraptera) begins to bloom around 20:00 and fades in the morning.

The full-blooming flower is white, and then the color is changed to red during senescence. Other Oenothera flowers, such as komasuyoigusa (O. laciniata) and matsuyoigusa (O. stricta) also change the color from yellow to orange during senescence. Our research group is interested in this phenomenon of coloration, so the analysis of pigments in O. tetraptera’s petals was done.

Methods and Results

Petals of were collected at 0, 4, 7 and 12 hours after blooming and extracted with acidic condition (3% TFA in 50% acetonitrile). The extract was analyzed using 3D-detected HPLC with Develosil RPAQUEOUS-AR-3 reverse phase column. In the white petal extract, flavonol derivative was detected.

In the red petal extract, a peak of anthocyanin was observed with the flavonol. Using LC-MS analysis with authentic samples clarified that the flavonol was quercitrin with m/z = 449 [M+H]+, and anthocyanin was cyanidin 3-glucoside (Cy3G) with m/z = 449 [M]+. During senescence, the content of Cy3G increased, whereas the content of quercitrin was not changed. The same experiments were carried out using O. laciniata and O. stricta. In both flowers Cy3G was detected. The color change was clarified to be the de novo biosynthesis of Cy3G.

(50)

Y VTHNLU f

q r

º l t s m ºl

l t y x

t m nºl 45 stomagen

m l lstomagen 6

yl ⇄ s x m ºlstomagen ℃

lstomagen m

q r

ºlstomagen lstomagen y

t EPF2 m lEPF2

y mstomagen wt l

stomagen-CC ºlstomagen m ºl

stomagen ℃ ylEPF2 u ℃

t s t m lstomagen-CC l m

l l

w l l y

m ºlstomagen ℃ lstomagen

t m

(51)
(52)

http://www.amano-enzyme.co.jp/jp/

http://www.ichibiki.co.jp/

http://www.itoen.co.jp/

http://www.kantenpp.co.jp/

http://www.katokagaku.co.jp/

http://www.gifushellac.co.jp/

http://www.kirin.co.jp/

http://www.skk-net.com/

http://www.pasconet.co.jp/

http://www.shinsei-ip.ne.jp/

http://www.taiyokagaku.com/

http://www.tsuji-seiyu.co.jp/

http://www.tokaibsn.co.jp/

http://www.nakahyo.co.jp/

http://www.nippongene.com/

http://www.fnsugar.co.jp/

http://www.bfsci.co.jp/

http://www.pokkasapporo-fb.jp/

http://www.mizkan.co.jp/company/

http://www.yamamori.co.jp/

http://www.yomeishu.co.jp/

(53)

å

(54)

( r

)0 0 (- º

 

℃ ε

Mizkan Holdings

γ ε

β ℃ ε

+

℃ ε

ε

γ ε

β

β ℃ ( )

ε st

ε

℃ ε

ε

ε ε

℃ γ

γ

(55)

ε

ε

β Δ β

,

γ ε

γ ε

β

θ ℃ ε

– ℃

γ ε

γ ε

ε ε

β ℃ ε

ε

(56)
(57)
(58)

Referensi

Dokumen terkait

植物アルカロイド発酵生産のための微生物プラットフォームの構築 南 博道(石川県大・資源研) 【目的】高等植物は、アルカロイド、テルペノイド、フラボノイド等の様々な有用 二次代謝産物を産生する。多様な二次代謝産物のなかでも、アルカロイドは少量で 顕著な生理活性を示すため、市販されている医薬品原料として非常に高い需要があ る。植物の産生する約 12,000

Next Generation Science Institute, 2Group for Food Functionality Assessment, Kanagawa Institute of Industrial Science and Technology, 3RIKEN-IMS Laboratory for Developmental Genetics,

講演番号:3A04a09 講演日時:3月19日 11:30~ A校舎04会場 日本生まれのフレーバーホップ「ソラチエース」の特徴香について Identification and characterization of unique flavor compounds contributing to the specific flavor of Japanese

ホップHumulus lupulus中に含まれるポリフェノールの成分組成と機能性評価 ○奥村小春1,乾隆子1,2,細谷孝博1,熊澤茂則1(1静岡県大院・食品栄養,2サントリービール株)) 【目的】 ホップ Humulus lupulus は、アサ科の宿根性多年生植物であり、ビールの主原料のひとつである。

copriのPcXyn10Aの性質と類似していた。今後、両菌種のキシラナーゼについてさらな る解析が必要である。 略歴 林 秀謙(はやし ひでのり) 1999年 三重大学大学院 生物資源学研究科 生物機能応用科学専攻 博士後期課程修了 1999年 博士(学術)(三重大学、大宮邦雄教授) 1999年 農林水産省 食品総合研究所 開放的融合研究 研究員 1999年

キノコ由来の生物活性2次代謝産物に関する化学的研究 呉静(静岡大学グリーン科学技術研究所) はじめに キノコは他の生物種には無いユニークな化合物を数多く産生している。日常的に 摂取することで疾病の治療や予防が期待されている。筆者は,キノコの生物活性2次代謝産 物の天然物化学的研究を行っている。各種キノコ抽出物を破骨細胞形成阻害活性,小胞体ス

7 名前:青木 裕一(Yuichi Aoki) 連絡先:〒980-8573 宮城県仙台市青葉区星陵町2-1 東北メディカル・メガバンク棟456号室 東北メディカル・メガバンク機構 ゲノム解析部門 E-mail address: aoki@sb.ecei.tohoku.ac.jp 略歴:2014年3月 東北大学 大学院工学研究科 博士課程修了,博士工学

On the basis of morphology, antimicrobial activity and molecular analysis of 16S rRNA genes, all isolates belong to genus Streptomyces, and nine different isolates could be divided into