• Tidak ada hasil yang ditemukan

CVD法による均質グラフェンの合成と評価

N/A
N/A
Protected

Academic year: 2024

Membagikan "CVD法による均質グラフェンの合成と評価"

Copied!
20
0
0

Teks penuh

(1)

新学術研究領域「原子層科学」合成班 グラフェンミニ講演会・見学会 @ 名古屋, 2014/2/19

CVD

法による均質グラフェンの合成と評価

丸山茂夫 

Shigeo Maruyama

東京大学 大学院工学系研究科 機械工学専攻 Department of Mechanical Engineering,

The University of Tokyo (UTokyo)

D-band

G-band 2D-band

Raman Shift (cm-1)

2  mm

1 cm

1 cm

(2)

Carbon Nanotube and Nano-Therm. Lab.

March, 2013

Shigeo Maruyama

丸山 茂夫 Junichiro Shiomi Shohei Chiashi James Cannon Takuma Shiga

(3)

CVD growth of SWNTs and Graphene by ACCVD (Alcohol Catalytic CVD)

Octopus Growth

Maiko

(7,5)

(4)

Ar H2/Ar

Furnace Mass

flow controller

Ethanol

Pump

ACCVD Apparatus for Graphene

(5)

ACCVD Apparatus

S. Maruyama et al., Chem. Phys. Lett. 403 (2005) 320.

(6)

Progress towards large ‘single crystals’

over the past year

5 µm 10 µm

40 µm

100 µm

500 µm 2 mm

Time Size of

single crystals

2013.3 2013.6

2013.7

2013.8

2013.12 2014.1

Nippon Denkai Cu foil YB-10, enclosed, 1000 ºC, 300 sccm H2 /

Ar + 10 sccm Ethanol, 300 Pa, 3 min. P. Zhao, et al., J. Phys.

Chem. C, (2013), 117, (20), 10755

Nippon Denkai Cu foil YB-10, enclosed, heating without H2,

1050~1070 ºC , 300Pa.

Nilaco Cu foil 50 µm, pre- oxidized, enclosed, heating

without H2, 1050~1070 ºC, 300Pa.

Ethanol flow rate: 5 sccm

Ethanol flow rate: 0.1 sccm

1070 ºC 1060 ºC

1065 ºC

1000 ºC

1065 ºC

1000 ºC

1 cm

(7)

Growth Acceleration after Reduction

1  mm

2 hours 8 hours 11 hours

1  mm 1  mm

0.1  mm

Condition: Nilaco Cu foil 50 µμm,   enclosed,  pre-treatment

CVD  @  1065  ˚  C,  300sccm  Ar/H2  and   0.031sccm  EtOH,  300Pa

(8)

Characterization by Raman

100  µμm

Condition: Nilaco Cu foil 50 µμm,   enclosed,  Pre-­‐treatment,  

CVD  @  1065˚  C,  300sccm  Ar/H2  and   0.031sccm  EtOH,  300Pa,  8  hours.

D-band

G-band 2D-band

Raman Shift (cm-1)

(9)

Transparent Conductive Film

Kaili Jiang

Rong Xiang

Shoushan Fan

Yan Li Fei Wei

(10)

Transparent Conductive Film

(Esko Kauppinen, Canatu@Finland)

(11)

Full Length Breakdown of Metallic Nanotubes

K. Otsuka, T. Inoue, S. Chiashi, S. Maruyama (2014)

c/f: S. H. Jin....

and J. A.

Rogers, Nat.

Nanotechnol. 8 (2013) 347.

(12)

Vertically Aligned SWNTs on Quartz Substrate

Y. Murakami, S. Chiashi, Y. Miyauchi, M. Hu, M. Ogura, T. Okubo, S. Maruyama, Chem. Phys. Lett. 385 (2004) 298

0 500 1000 1500

100 200 300 400

2 1 0.9 0.8 0.7

Raman Shift (cm–1)

Intensity (arb. units)

Diameter (nm)

Dr. Yoichi Murakami

10 µm

25 nm

(13)

Self-organized Honeycomb Structure

20 µm

H2O Hot  Plate

5  mm

Water  Vapor  Treatment  

(a)

(b) (c)

20 µm

(d)

20 µm

~

2 µm

(14)

Self-Assembled Micro-Honeycomb

5 µm

(a) (b)

1 µm

5 s, 80 ˚C 15 s, 80 ˚C 5 s, 70 ˚C

(15)

Heterojuction Solar Cell

n-type Si (7.5-12.5 Ωcm, ~1015 cm-3) With 100 nm SiO2

5 M NaOH at 90 ˚C for 30min RCA 2 Cleaning

200 nm SiO2, 100 nm Pt

Ti 10 nm, Pt 50 nm 3 mm x 3 mm

Opening

(16)

Solar Cell

20 µm (a)

5 µm (b)

PCE % FF % Jsc Voc

Pristine 21 days 6.04 72 15.90 0.53

Acid dope 1 hour 10.02 73 25.01 0.55

1 µm

K. Cui, T. Chiba, S. Omiya, T. Thurakitseree, P. Zhao, S. Fujii, H. Kataura, E. Einarsson, S. Chiashi, S. Maruyama, J. Phys. Chem. Lett., 4 (2013) 2571.

(17)

Transparent Conductive Film by Esko Kauppinen

State of the art 84 Ω/sq. @ 90%

Kauppinen Group at Aalto Univ.

 

Nasibulin et al.

ACS Nano 5, 3214 (2011)

(18)

Nasibulin et al.

ACS Nano 5, 3214 (2011)

Transparent Conductive Film by Aerogel CVD

Collaboration with Olivier Reynaud, Albert Nasibullin, Esko I. Kauppinen (Aalto Univ.)

500 1000 1500 2000 2500 3000 40

60 80 100

0 0.3 0.6 0.9 1.2 1.5 1.8

TCF90 TCF80 TCF70

Wavelength (nm)

Transmittance (%)

AM1.5G

Spectral Irridiance (W·m2 ·nm1 )

1 µm

1300 1400 1500 1600

100 200 300

Raman shift (cm−1)

Intensity (a. u.) as−synthesized

785 nm

633 nm

532 nm

488 nm

Radial Breathing Mode G band

D band SWNT

(b)

(c) (d)

(a)

SWNT film

E11 E22

M

5 µm

(19)

(a) (b)

(c) (d)

0 0.2 0.4 0.6

−30

−20

−10 0 10

Current Density (mA/cm2 )

Bias (V) TCF80−A TCF80−B TCF80−C TCF80−D

10.57% 0.68

PCE FF

10.63%

10.70%

10.65%

0.67 0.68

0.67 −1 −0.5 0 0.5 1

0 50 100 150 200

−1 −0.5 0 0.5 1

10−4 10−3 10−2 10−1 100 101 102 103

TCF70 TCF80 TCF90

Bias (V)

Current Density (mA/cm2 ) Ln (mA/cm2 )J

Bias (V)

0 0.2 0.4 0.6

−30

−20

−10 0 10

Current Density (mA/cm2 )

Bias (V) TCF90 immediately TCF90 after 6 months in air

0 0.2 0.4 0.6

−40

−30

−20

−10 0

Current Density (mA/cm2 )

Bias (V) TCF80 TCF70

TCF90

0 0.2 0.4 0.6

−40

−30

−20

−10 0

Current Density (mA/cm2 )

Bias (V) TCF80 TCF70

TCF90

Reproducibility

Transparent Conductive Film by Aerogel CVD

thickness

dark condition

stability

(20)

FNTG Research Society

Fullerene

Single-Walled Carbon Nanotubes

(SWNTs)

Peapod

Multi-Walled

Carbon Nanotubes Graphene

Nano-Diamond Bundle of SWNTs Double-Walled

Carbon Nanotubes

Metallofullerene

http://fullerene-jp.org/

Meetings

2014/3/3-5: FNTG 46 Symp. @ Tokyo 2014/6/2-6: NT14 @ Los Angeles

2014/9/3-5: FNTG 47 Symp. @ Nagoya 2015/3/??: FNTG 48 Symp. @ Tokyo

2015/6/28-7/4: NT15 @ Nagoya

2015/9/??: FNTG 49 Symp. @ Fukuoka 2015/12/15-20: Pacifichem @ Honolulu

2016/3/??: FNTG 50 Symp. @ Tokyo 2016/9/??: FNTG 51 Symp. @ ???

Referensi

Dokumen terkait