新学術研究領域「原子層科学」合成班 グラフェンミニ講演会・見学会 @ 名古屋, 2014/2/19
CVD
法による均質グラフェンの合成と評価
丸山茂夫
Shigeo Maruyama東京大学 大学院工学系研究科 機械工学専攻 Department of Mechanical Engineering,
The University of Tokyo (UTokyo)
D-band
G-band 2D-band
Raman Shift (cm-1)
2 mm
1 cm
1 cm
Carbon Nanotube and Nano-Therm. Lab.
March, 2013
Shigeo Maruyama
丸山 茂夫 Junichiro Shiomi Shohei Chiashi James Cannon Takuma Shiga
CVD growth of SWNTs and Graphene by ACCVD (Alcohol Catalytic CVD)
Octopus Growth
Maiko
(7,5)
Ar H2/Ar
Furnace Mass
flow controller
Ethanol
Pump
ACCVD Apparatus for Graphene
ACCVD Apparatus
S. Maruyama et al., Chem. Phys. Lett. 403 (2005) 320.
Progress towards large ‘single crystals’
over the past year
5 µm 10 µm
40 µm
100 µm
500 µm 2 mm
Time Size of
single crystals
2013.3 2013.6
2013.7
2013.8
2013.12 2014.1
Nippon Denkai Cu foil YB-10, enclosed, 1000 ºC, 300 sccm H2 /
Ar + 10 sccm Ethanol, 300 Pa, 3 min. P. Zhao, et al., J. Phys.
Chem. C, (2013), 117, (20), 10755
Nippon Denkai Cu foil YB-10, enclosed, heating without H2,
1050~1070 ºC , 300Pa.
Nilaco Cu foil 50 µm, pre- oxidized, enclosed, heating
without H2, 1050~1070 ºC, 300Pa.
Ethanol flow rate: 5 sccm
Ethanol flow rate: 0.1 sccm
1070 ºC 1060 ºC
1065 ºC
1000 ºC
1065 ºC
1000 ºC
1 cm
Growth Acceleration after Reduction
1 mm
2 hours 8 hours 11 hours
1 mm 1 mm
0.1 mm
Condition: Nilaco Cu foil 50 µμm, enclosed, pre-treatment
CVD @ 1065 ˚ C, 300sccm Ar/H2 and 0.031sccm EtOH, 300Pa
Characterization by Raman
100 µμm
Condition: Nilaco Cu foil 50 µμm, enclosed, Pre-‐treatment,
CVD @ 1065˚ C, 300sccm Ar/H2 and 0.031sccm EtOH, 300Pa, 8 hours.
D-band
G-band 2D-band
Raman Shift (cm-1)
Transparent Conductive Film
Kaili Jiang
Rong Xiang
Shoushan Fan
Yan Li Fei Wei
Transparent Conductive Film
(Esko Kauppinen, Canatu@Finland)
Full Length Breakdown of Metallic Nanotubes
K. Otsuka, T. Inoue, S. Chiashi, S. Maruyama (2014)
c/f: S. H. Jin....
and J. A.
Rogers, Nat.
Nanotechnol. 8 (2013) 347.
Vertically Aligned SWNTs on Quartz Substrate
Y. Murakami, S. Chiashi, Y. Miyauchi, M. Hu, M. Ogura, T. Okubo, S. Maruyama, Chem. Phys. Lett. 385 (2004) 298
0 500 1000 1500
100 200 300 400
2 1 0.9 0.8 0.7
Raman Shift (cm–1)
Intensity (arb. units)
Diameter (nm)
Dr. Yoichi Murakami
10 µm
25 nm
Self-organized Honeycomb Structure
20 µm
H2O Hot Plate
5 mm
Water Vapor Treatment
(a)
(b) (c)
20 µm
(d)
20 µm
~
2 µm
Self-Assembled Micro-Honeycomb
5 µm
(a) (b)
1 µm
5 s, 80 ˚C 15 s, 80 ˚C 5 s, 70 ˚C
Heterojuction Solar Cell
n-type Si (7.5-12.5 Ωcm, ~1015 cm-3) With 100 nm SiO2
5 M NaOH at 90 ˚C for 30min RCA 2 Cleaning
200 nm SiO2, 100 nm Pt
Ti 10 nm, Pt 50 nm 3 mm x 3 mm
Opening
Solar Cell
20 µm (a)
5 µm (b)
PCE % FF % Jsc Voc
Pristine 21 days 6.04 72 15.90 0.53
Acid dope 1 hour 10.02 73 25.01 0.55
1 µm
K. Cui, T. Chiba, S. Omiya, T. Thurakitseree, P. Zhao, S. Fujii, H. Kataura, E. Einarsson, S. Chiashi, S. Maruyama, J. Phys. Chem. Lett., 4 (2013) 2571.
Transparent Conductive Film by Esko Kauppinen
State of the art : 84 Ω/sq. @ 90%
Kauppinen Group at Aalto Univ.
Nasibulin et al.
ACS Nano 5, 3214 (2011)
Nasibulin et al.
ACS Nano 5, 3214 (2011)
Transparent Conductive Film by Aerogel CVD
Collaboration with Olivier Reynaud, Albert Nasibullin, Esko I. Kauppinen (Aalto Univ.)
500 1000 1500 2000 2500 3000 40
60 80 100
0 0.3 0.6 0.9 1.2 1.5 1.8
TCF90 TCF80 TCF70
Wavelength (nm)
Transmittance (%)
AM1.5G
Spectral Irridiance (W·m−2 ·nm−1 )
1 µm
1300 1400 1500 1600
100 200 300
Raman shift (cm−1)
Intensity (a. u.) as−synthesized
785 nm
633 nm
532 nm
488 nm
Radial Breathing Mode G band
D band SWNT
(b)
(c) (d)
(a)
SWNT film
E11 E22
M
5 µm
(a) (b)
(c) (d)
0 0.2 0.4 0.6
−30
−20
−10 0 10
Current Density (mA/cm2 )
Bias (V) TCF80−A TCF80−B TCF80−C TCF80−D
10.57% 0.68
PCE FF
10.63%
10.70%
10.65%
0.67 0.68
0.67 −1 −0.5 0 0.5 1
0 50 100 150 200
−1 −0.5 0 0.5 1
10−4 10−3 10−2 10−1 100 101 102 103
TCF70 TCF80 TCF90
Bias (V)
Current Density (mA/cm−2 ) Ln (mA/cm−2 )J
Bias (V)
0 0.2 0.4 0.6
−30
−20
−10 0 10
Current Density (mA/cm2 )
Bias (V) TCF90 immediately TCF90 after 6 months in air
0 0.2 0.4 0.6
−40
−30
−20
−10 0
Current Density (mA/cm2 )
Bias (V) TCF80 TCF70
TCF90
0 0.2 0.4 0.6
−40
−30
−20
−10 0
Current Density (mA/cm2 )
Bias (V) TCF80 TCF70
TCF90
Reproducibility
Transparent Conductive Film by Aerogel CVD
thickness
dark condition
stability
FNTG Research Society
Fullerene
Single-Walled Carbon Nanotubes
(SWNTs)
Peapod
Multi-Walled
Carbon Nanotubes Graphene
Nano-Diamond Bundle of SWNTs Double-Walled
Carbon Nanotubes
Metallofullerene
http://fullerene-jp.org/
Meetings
2014/3/3-5: FNTG 46 Symp. @ Tokyo 2014/6/2-6: NT14 @ Los Angeles
2014/9/3-5: FNTG 47 Symp. @ Nagoya 2015/3/??: FNTG 48 Symp. @ Tokyo
2015/6/28-7/4: NT15 @ Nagoya
2015/9/??: FNTG 49 Symp. @ Fukuoka 2015/12/15-20: Pacifichem @ Honolulu
2016/3/??: FNTG 50 Symp. @ Tokyo 2016/9/??: FNTG 51 Symp. @ ???