• Tidak ada hasil yang ditemukan

PDF ACMM0267 Fu-Sheng Guo CV Abst - 九州大学(KYUSHU UNIVERSITY)

N/A
N/A
Protected

Academic year: 2024

Membagikan "PDF ACMM0267 Fu-Sheng Guo CV Abst - 九州大学(KYUSHU UNIVERSITY)"

Copied!
2
0
0

Teks penuh

(1)

ACMM 2020

The 1st Asian Conference on Molecular Magnetism 8-11 March, 2020, Fukuoka, JAPAN

Fu-Sheng Guo

Department of Chemistry, The University of Sussex Falmer, Brighton, BN1 9QJ, United Kingdom E-mail: [email protected]

Diplomas

2009: B. Sc., Sun Yat-Sen University, Guangzhou, P. R. China 2014: Ph.D. Sc., Sun Yat-Sen University, Guangzhou, P. R. China

Career summary

2014-2015: Lecturer, Northwest University, P. R. China

2015-2018: Research Fellow, The University of Manchester, United Kingdom 2018-present: Research Fellow, The University of Sussex, United Kingdom

Selected publications:

1. "Isolation of a Perfectly Linear Uranium(II) Metallocene", F.-S. Guo et al., Angew.

Chem. Int. Ed., 2020, DOI: 10.1002/anie.201912663.

2. "Uranocenium: Synthesis, Structure and Chemical Bonding", F.-S. Guo et al., Angew.

Chem. Int. Ed., 2019, 58, 10163.

3. "Main Group Chemistry at the Interface with Molecular Magnetism", F.-S. Guo et al., Chem. Rev., 2019, 119, 8479

4. "Magnetic hysteresis up to 80 kelvin in a dysprosium metallocene single-molecule magnet", F.-S. Guo et al., Science, 2018, 362, 1400.

5. "A dysprosium metallocene single-molecule magnet functioning at the axial limit", F.- S. Guo et al., Angew. Chem. Int. Ed., 2017, 56, 11445.

6. "Strong direct exchange coupling and single-molecule magnetism in indigo-bridged lanthanide dimers", F.-S. Guo et al., Chem. Comm., 2017, 53, 3130.

7. "Anion-Templated Assembly and Magnetocaloric Properties of a Nanoscale {Gd38} Cage versus a {Gd48} Barrel", R. Ohtani, M. Ohba, S. Kitagawa et al., Chem. Eur. J., 2013, 19, 14876.

8. "A large cryogenic magnetocaloric effect exhibited at low field by a 3D ferromagnetically coupled Mn(II)–Gd(III) framework material", F.-S. Guo et al., Chem.

Comm., 2012, 48, 12219.

9. "Polynuclear and Polymeric Gadolinium Acetate Derivates with Large Magnetocaloric Effect", F.-S. Guo et al., Inorg. Chem., 2012, 51, 405.

(2)

ACMM 2020

The 1st Asian Conference on Molecular Magnetism 8-11 March, 2020, Fukuoka, JAPAN

Magnetic Hysteresis above 77 K in a Dysprosium Metallocene Single-Molecule Magnet

Fu-Sheng Guoa

a Department of Chemistry, University of Sussex, Falmer, Brighton, BN1 9QJ (U.K.) E-mail: [email protected]

Single-molecule magnets (SMMs) containing only one metal center are a type of nanomagnet that may represent the lower size limit for molecule-based magnetic information storage materials.[1-2] The current drawback is that all SMMs require liquid-helium cooling to show magnetic memory effects. We now show that a strategy in which two key structural parameters within the metallocene framework – i.e. the Dy-Cpcent distances and the Cp-Dy-Cp bending angle – are rendered short and wide, respectively, through a careful choice of ligand substituent produces an axial crystal field of sufficient strength to furnish the first SMM with a blocking temperature above 77 K.

Figure 1. (a-c) Structures of the dysprosium metallocene complexes. (d) Magnetic hysteresis of the

“5*” cation at 80 K with a sweep rate of 25 Oe/s.

A dysprosium metallocene cation, [(CpiPr5)Dy(Cp*)]+ (“5*” cation, see Figure 1c), was targeted with cyclopentadienyl substituents of sufficient bulk to produce a wide Cp-Dy-Cp angle, but not too bulky such that close approach of the ligands became hindered. A new record energy barrier of Ueff = 1,541 cm–1 is described. The blocking temperature of TB = 80 K for the 5* cation ushers in an era of high-temperature SMMs, thus overcoming an essential barrier towards the development of nanomagnet devices that function at practical temperatures.[3]

Acknowledgments: The author thanks the MSCA Fellowship (grant 653784) and ERC (CoG 646740) for financial support; and Prof. Richard A. Layfield, Prof. Ming-Liang Tong and Dr. Akseli Mansikkamäki for the kind coorperation.

References

[1] D. Gatteschi, R. Sessoli and J. Villain, Molecular Nanomagnets, Oxford University Press, Oxford, 2006.

[2] N. Ishikawa, M. Sugita, T. Ishikawa, S. Koshihara, Y. Kaizu, J. Am. Chem. Soc., 2003, 125, 8694-8695.

[3] F.-S. Guo, B. M. Day, Y.-C. Chen, M.-L. Tong, A. Mansikkamäki, R. A. Layfield, Science, 2018, 362, 1400- 1403.

Referensi

Dokumen terkait

分子電子構造論 資料2 エネルギー微分法の解説 2-1.序 近年、Gassian等の汎用量子化学プログラム用いて、誰でも手軽に全エネルギー計算だけでなく、 構造最適化、振動解析の計算まで可能になった。このことはエネルギー期待値の一次微分や二次 微分が簡単に求められるようになったおかげである。特に遷移状態の探索には二次微分は威力を

3 研 究 現行のナノ材料よりもさらに小さな物質を扱う次世代のナノ物質科学を切り拓くこと を目標に、原子の数(サイズ)が数~数十個の範囲で正確に定まった原子分子クラスタ ーを対象として、これら極微小な物質に特有の基礎物性を、物理化学の視点と手段で探 究する。クラスターの特質は、原子1個の増減で物性や反応性が不規則かつ劇的に変化