ELSI 1
stSymposium Tokyo Tech, Tokyo March 27-29, 2013
Asymmetric Autocatalysis and the Origin of Homochirality of
Biomolecules
Kenso Soai
Department of Applied Chemistry Tokyo University of Science
Molecular Asymmetry
C
a
b
c
d
a
b c
d C
L-Amino Acid D-Amino Acid
R
H2N H COOH
R
NH2 HOOC
H
Natural Unnatural
Origins of Chiral Homogeneity of Biomolecules
Origins of chirality (proposed) Circularly polarized light Chiral inorganic crystal: Quartz
H2N CO2H
R H
L-amino acid Homochirality
Base
HO OH (H) HO O
D-sugar
Why and when did biomolecules become highly enantiomerically enriched ?
Chiral organic compound with low enantiomeric excess
Asymmetric induction
?
Asymmetric autocatalysis with amplification of ee
Text books tell:
Without any chiral catalyst or ligand, the probability of the formation of S and R enantiomers is 1 : 1, the product is racemate containing the equal amounts of S and R enantiomers.
To synthesize enantioenriched compounds, one needs to use asymmetric (chiral) catalyst or ligand.
Asymmetric catalysis
A + B
C*
asymmetric cat. D*
% enantiomeric excess (ee)
R - S
R + S X100
99 99.5 0.5
90 95 5
50 75 25
2 51 49
0 (racemate) 50 50
Ratio of enantiomers
N N
CHO
+ N
N
OH N
N
OH
Asymmetric
autocatalysis N
N
CHO
The same structure &
configuration
R1
R1
R1
R1 N
N
R1
OZn
Pyrimidyl alkanol
R1= H: 93% ee
R1= H: 63%, 90% ee
R1= Me: 95% ee
R1= Me: 48%, 96% ee
Asymmetric autocatalyst
+
"Initial Catalyst"
"Final Product"
N N
OH R1
i-Pr2Zn H+
Highly Enantioselective Asymmetric Autocatalysis
i-Pr2Zn
i-Pr2Zn
N N
OH R1
N N
OH
N N
CHO
i-Pr2Zn N
N
OH
Asymm. autocat.
(% ee)
Product Yield(%) ee(%)
>99.5 >99 >99.5 1
aldehyde : i-Pr2Zn : catalyst = 1.0 : 1.7 : 0.2
+
The same structure &
configuration
>99%, >99.5% ee
2-Alkynyl-5-pyrimidyl alkanol
Molar ratio:
Practically Perfect Asymmetric Autocatalysis
Asymmetric autocatalyst
Product
Consecutive Asymmetric Autocatalysis
Factor of multiplication
ca. 6x107 times
>99.5 >99 >99.5
>99.5 >99 >99.5
>99.5 >99 >99.5
>99.5 >99 >99.5
>99.5 >99 >99.5
>99.5 >99 >99.5
>99.5 >99 >99.5
>99.5 >99 >99.5
>99.5 >99 >99.5 2
3 4 5 6 7 8 9 10
N N
CHO
R1
i-Pr2Zn
N N
OH R1
N N
OZn R1
N N
OH R1
H+
i-Pr2Zn
Run
(R1= H) Asym. autocat.
(% ee)
Asym. autocat. & Product Yield (%) (% ee)
1 2 46 10
+
low ee
R1= H, Me
Asymmetric Autocatalysis with Amplification of Enantiomeric Excess
Amplification of ee without the need for any other chiral auxiliary
Asymmetric autocatalysis
Asymmetric automultiplication High ee
Consecutive asymmetric autocatalysis with amplification of ee
2 3 4 5
10 57 81 88
75 80 75 79
57 81
88
88
88% ee 2% ee
Soai, K.; Shibata, T.; Morioka, H.; Choji, K. Nature, 1995, 378, 767.
Origins of Chiral Homogeneity of Biomolecules
Origins of chirality (proposed) Circularly polarized light Chiral inorganic crystal: Quartz
H2N CO2H
R H
L-amino acid Homochirality
Base
HO OH (H) HO O
D-sugar
Why and when did biomolecules become highly enantiomerically enriched ?
Chiral organic compound with low enantiomeric excess
Asymmetric induction
?
Asymmetric autocatalysis with amplification of ee
Origins of Homochirality of Organic Compounds
Circularly polarized light
Chiral organic crystals formed from achiral compounds
Chiral inorganic crystals: Quartz, Sodium chlorate Spontaneous absolute asymmetric synthesis
Examination in Conjunction with Asymmetric Autocatalysis
Achiral organic crystal formed from achiral compound
N N R
OZn
i-Pr2Zn N
N R
CHO
S
Asymmetric Autocatalysis of Pyrimidyl Alkanol
without Adding Chiral Substance
N N R
OZn
N N R
OH N
N R
OH
Asymmetric
autocatalysis with amplification of ee
Not adding
chiral substance +
S
Low ee
Low ee
K. Soai, T. Shibata, Y. Kowata, Japanese Patent, (1997) 9268179.
R R
Spontaneous Absolute Asymmetric Synthesis
N N
OH
t-Bu
N N t-Bu
OH S i-Pr2Zn/toluene i-Pr2Zn/toluene
HCl
0 ℃
R +
Et2O Et2O
+ +
Asymmetric synthesis of Pyrimidyl Alkanol without Adding Chiral Substance in Conjuction with Asymmetric Autocatalysis in a Mixed Solvent of Diethyl Ether and Toluene
N N
CHO
t-Bu
N N
CHO
t-Bu
0.1 mmol
0.2 mmol
0.4 mmol
0.8 mmol
0.7 ml 3.0 ml
stirred for 1h stirred for 1h
0 2 4 6 8 10 12 14 16 18
100 80 60 40 20 5 0.5 0.5 5 20 40 60 80 100 Ee of the produced pyrimidyl alkanol
Distribution of ( S )-and ( R )-pyrimidyl alkanol is almost stochastic
Frequency
S:R = 51:49
S R
Direct Irradiation of
Circularly Polarized Light
to Asymmeric Autocatalysis
N N t-Bu
OH
N N t-Bu
OH
N N t-Bu
OH
N N t-Bu
OH
N N t-Bu
OH
i-Pr2Zn + N
t-Bu N
CHO
i-Pr2Zn
+ N
t-Bu N
CHO 500 W Hg lamp
313 nm EtOH 40 ºC, 96 h
cumene, 0 ºC
cumene, 0 ºC
S
R R
S
racemate
low ee
low ee
high ee
high ee
Asymmetric Autocatalysis of Pyrimidyl Alkanol Irradiated with l- or r-CPL (313 nm)
*
*
Asymmetric autocatalysis photoreaction
decomposition <10%
l-CPL
r-CPL
Entry 5-pyrimidyl alkanol Yield/ % ee/ %
1 2 3 4
l r l r
95 97 97 98
85 82 60 65
CPL config.
S R S R
Entry 5-pyrimidyl alkanol Yield/ % ee/ %
5 6 7 8
l r l r
92 90 95 94
65 56 62 70
CPL config.
S R S R
N N t-Bu
OH
N N t-Bu
OH
N N t-Bu
OH
i-Pr2Zn + N
t-Bu N
CHO
i-Pr2Zn + N
t-Bu N
CHO
500 W Hg lamp 313 nm (290-390 nm)
cumene, 0 ºC
cumene, 0 ºC
S
racemate
>99.5% ee
Direct Relationship Between CPL and Organic Compound with High ee
Asymmetric Autocatalysis
>99.5% ee
l-CPL
r-CPL R
Asymmetric Photoreaction
Enantioselective Synthesis of Pyrimidyl Alkanol in the Presence of d- or l-Quartz
Pyrimidyl alkanol
Run Quartz
Yield (%) ee(%)(config.) Series A
A1 d (4.4 m) 90 89 (S)
A2 l (7.6 m) 97 85 (R)
A3 d 88 86 (S)
A4 l 96 84 (R)
Series B
B1 l 97 95 (R)
B2 l 97 93 (R)
B3 d 96 95 (S)
B4 d 97 95 (S)
Series C
C1 d 93 97 (S)
C2 l 97 97 (R)
C3 l 95 97 (R)
Series D
D1 l (3.4 m) 95 93 (R)
D2 d (2.9 m) 95 94 (S)
For Series B-D, quartz (SiO2) : aldehyde :i-Pr2Zn = 1.9 : 1.0 : 2.0. Added in three portions.
For Series A, quartz (SiO2) : aldehyde :i-Pr2Zn = 8.0 : 1.0 : 2.5. Added in two portions.
The Deuterium Enrichment of Amino acids in Carbonaceous Meteorites
Amino acid Murchison Murray
Pizzarello S.; Huang Y. Geochim. Cosmochim. Acta 2005, 69, 599.
δ D of terrestrial compound is about 50 Glycine
D -Alanine
-Methylalanine
DL -Isovaline
399 ± 17 614 ± 61 3097 ± 86 3181 ± 108 3419 ± 118
429 ± 127 3058 ± 186
δ D ‰ δ D ‰
Glycine--d 0.05 mmol
HO O
NH2 D
+ i-Pr2Zn in
m.c.h.
0.15 mmol
over 12 h, r.t. toluene, 0 °C
0.05 mmol in m.c.h.(2.0 ml)
N N t-Bu
CHO
i-Pr2Zn in m.c.h.
0.05 mmol
slowly portionwise
addition 2 times N
N t-Bu
OH
0 °C
Entry Glycine-α-d Pyrimidyl alkanol
Yield(%) ee(%) Config.
1 2 3 4 5 6
R
R
R S
S
S
90 94 94 95 94 94
91 96 93 93 91 94
R
R
R S
S
S
Asymmetric Autocatalysis using Chiral Deuterated Glycine as
Chiral Initiator
3 R 89 89 85 S
4 S 93 97 94 R
5 R 89 94 92 S
6 S 93 95 96 R
Asymmetric Autocatalysis Triggered by Carbon Isotopically Chiral Alcohol
N N
CHO
N N t-Bu
OH +
t-Bu i-Pr2Zn
S N
N t-Bu
OH R
Asymmetric autocatalysis with amplification of ee
13CH3 H3C
Ph OH H313C CH3
OH Ph
R S
12C/13C-Chiral Alcohol Pyrimidyl alkanol Entry
Config. ee (%) Yield (%) ee (%) Config.
1 R 89 96 88 S
2 S 93 92 93 R
(R) (S)
Ph
HO 18OH Ph
(R) (S)
Ph
H18O OH Ph meso-
Hydrobenzoin (1)
18O-Labelling
(S)-1-18O (R)-1-18O
(R) (S)
Ph
HO OH
Ph
Chiral oxygen isotopomer
Generation of chirality by the oxygen isotope substitution
N N
R CHO
N N R
OH N
N R
OH
+ i-Pr2Zn
(S)-3
(R) (S)
Ph
HO 18OH Ph
(R) (S)
Ph
H18O OH Ph
(S)-1-18O
(R)-1-18O Asymmetric
Autocatalysis with
Amplification of ee
(R)-3
2
R = t-Bu-CC-
Chiral trigger 5-Pyrimidyl alka nol 2 Entry
Sam ple# Yield ee config.
1 (S)-1-1 8O #1 97 97 R
2 (R)-1-1 8O #2 96 89 S
3 (S)-1-1 8O #1 85 93 R
4 (R)-1-1 8O #2 93 91 S
5 (S)-1-1 8O #3 82 93 R
6 (R)-1-1 8O #4 94 96 S
Asymmetric autocatalysis triggered by
chiral oxygen isotopomer
Correlation Between Crystal Face and CD
Kawasaki, T.; Hakoda, Y, Mineki, H.; Suzuku, K.; Soai, K. J. Am. Chem. Soc. 2010, 132, 2874-2875.
0.075 mmol in toluene Aldehyde
0.025 mmol
N N
CHO
t-Bu
+ i-Pr2Zn
Cytosine dehydrated Crystal [CD(+)310(KBr)]
Cytosine dehydrated Crystal [CD(-)310(KBr)]
N N t-Bu
OH S
N N t-Bu
OH R
Portionwise Addition 3 Times
Portionwise Addition 3 Times
Portionwise Addition
1st: Aldehyde 0.1 mmol, i-Pr2Zn in Toluene 0.3 mmol 2nd: Aldehyde 0.4 mmol, i-Pr2Zn in Toluene 0.8 mmol 3rd: Aldehyde 0.8 mmol, i-Pr2Zn in Toluene 1.6 mmol
Additional 4 rounds of asymmetric autocatalysis.Additional 3 rounds of asymmetric autocatalysis.
a) b)
Asymmetric Autocatalysis Initiated by Chiral Dehydrated Crystal of Cytosine
1 2 3 4 5 6 7 8 9 10
CD(+)310(KBr) CD(-)310(KBr) CD(+)310(KBr)
CD(-)310(KBr) CD(+)310(KBr)
CD(-)310(KBr) CD(+)310(KBr)
CD(-)310(KBr) CD(+)310(KBr)
CD(-)310(KBr)
S R S R S R S R S R
Entry Chiral Initiator
Crystal of Dehydrated Cytosine
Pyrimidyl Alkanol
Yield (%) Ee(%) Config.
88 88 85 88 87 87 95 99 88 90
92 94 89 96 96 91 90 96
>99.5
>99.5
a) b)
Summary
Asymmetric autocatalysis
N
OH N N
* *OH
R
N N
*OH
>99%, >99.5% ee
N
*OH
Asymmetric autocatalysis with amplification of ee
ca. 0.00005% ee >99.5% ee N
N
*OH R
( I )
( II )
N N
*OH R High ee
aldehyde + i-Pr2Zn
( III )
R Practically perfect
asymmetric autocatalysis
Asymmetric autocatalysis
Origin of homochirality of organic compound
Circularly polarized light Chiral compound with high ee
Inorganic chiral crystals
d- and l-Quartz
d- and l-Sodium chlorate
Spontaneous asymmetric synthesis Chiral silica