1 dx ( )
∫
xx + 1
( )2 ( )2 x
∫
x - 1 dx3 sin x cos x dx
( )
∫
2 ( )4 2x(x + 1 dx∫
2 )45 dx
( )
∫
2x - 1x - x + 52 ( )6
∫
log xx dx1 t = x + 1 とおくと dt = dx ( )
∫
x dx x + 1 ( )2=
∫
t - 1 dt t2=
∫
1t - dt1 t2= log|t| - + C = log|x + 1| -1 + C t
1 x + 1
2 t = とおくと
( ) x - 1 t = x - 12 2t ⋅ dt = dx x
∫
x - 1 dx=
∫
(t + 1 t ⋅ 2t ⋅ dt2 )= 2 t + t dt
∫
4 2= t + t + C2 5 5
2 3 3
= 2 x - 1 + x - 1 + C
5( )2 x - 1 2
3( ) x - 1 3 cos x = t とおくと、 - sin x dx = dt
( )
sin x cos x dx
∫
2=
∫
- t dt2= - t + C = - cos x + C1 3 3
1 3 3
4 x + 1 = t とおくと、2x dx = dt ( ) 2
2x(x + 1 dx
∫
2 )4=
∫
t dt4= t + C = (x + 1 + C1 5 5
1
5 2 ) 5 x - x + 5 = t とおくと、
( ) 2
2x - 1 dx = dt( )
∫
2x - 1 dxx - x + 52
=
∫
1t dt= log|t| + C = log|x - x + 5| + C 2
6 log x = t とおくと、
( )
dx = dt1 x
∫
log xx dx=
∫
t dt= t + C =1 log x + C 2 2
1
2( )2
© ちゃんと理解したい⼈のための⾼校数学 @YouTube
1 x + 1 (x + 2x - 1 dx
( )
∫
( ) 2 )3 ( )2∫
2 x - 2( ) dxx - 4x2 3 tan x dx
( )
∫
( )4 (e + 1 (e + x dx∫
x ) x )5 sin x dx
( )
∫
3 ( )6∫
x log x1 dx1 x + 2x - 1 = t とおくと ( ) 2
2x + 2 dx = dt( ) x + 1 dx = dt( ) 1
2
∫
(x + 1 (x + 2x - 1 dx) 2 )3=
∫
12t dt3= t + C = (x + 2x - 1 + C1 8 4
1
8 2 )4
2 = t とおくと
( ) x - 4x2 x - 4x = t2 2 2x - 4 dx = 2t dt( )
∫
2 x - 2( ) dxx - 4x2
=
∫
2 dt= 2t + C = 2 x - 4x2 + C 3 cos x = t とおくと、 - sin x dx = dt
( )
tan x dx
∫
=
∫
sin xcos x dx=
∫
1t dt= -log|t| + C = -log|cos x| + C
4 e + x = t とおくと、(e + 1 dx = dt
( ) x x )
(e + 1 (e + x dx
∫
x ) x )=
∫
t dt= t + C = (e + x + C1 2 2
1
2 x )
5 cos x = t とおくと、 - sin x dx = dt ( )
sin x dx
∫
3=
∫
sin x ⋅ sin x dx2=
∫
sin x ⋅ (1 - cos x dx2 )=
∫
t - 1 dt2= t - t + C = cos x - cos x + C1 3 3
1 3 3
6 log x = t とおくと、
( )
dx = dt1 x
∫
x log x1 dx=
∫
1t dt= log|t| + C = log|log x| + C
© ちゃんと理解したい⼈のための⾼校数学 @YouTube
1 3 x + 1 x - 1 (x - 3x dx
( )
∫
( )( ) 3 )3 ( )2 sin x∫
cos x dx 3 dx( )
∫
tan x1 ( )4∫
e dxe + 1
x x
5 dx
( )
∫
log(log xx ) ( )6 2 (2 + 1 dx∫
x x )21 x - 3x = t とおくと、(3x - 3 dx = dt
( ) 3 2 )
3 x + 1 x - 1 (x - 3x dx
∫
( )( ) 3 )3=
∫
t dt3= t + C = (x - 3x + C1 4 4
1
4 3 )4
2 = t とおくと、
( ) cos x cos x = t2 - sin x = 2t ⋅ dt sin x
∫
cos x dx=
∫
- 2t dt2= - t + C = - cos x2 + C 3 3
2
3 cos x
3 sin x = t とおくと、cos x dx = dt ( )
∫
tan x1 dx=
∫
cos xsin x dx=
∫
1t dx= log|t| + C = log|sin x| + C
4 e + 1 = t とおくと、e dx = dt
( ) x x
∫
e dx e + 1x x
=
∫
1t dt= log|t| + C = log(e + 1 + Cx )
5 log x = t とおくと、 dx = dt
( ) 1
x
∫
log(log xx ) dx=
∫
log t dt= t log t - t + C
= log x log log x - log x + C( )
6 2 + 1 = t とおくと、 dx = dt
( ) x 2
log 2
x
2 (2 + 1 dx
∫
x x )2=
∫
log 2t2 dt= t + C = + C
3 log 2
3 (2 + 1
3 log 2
x )3
© ちゃんと理解したい⼈のための⾼校数学 @YouTube