• Tidak ada hasil yang ditemukan

F ate of the T rav ersible W ormholes

N/A
N/A
Protected

Academic year: 2023

Membagikan "F ate of the T rav ersible W ormholes"

Copied!
20
0
0

Teks penuh

(1)

F ate of the T r a v ersible W ormholes

—– Blac k-Hole Collapse or Inflationary Expansion —–

真貝寿明

Hisa-aki Shink ai

 理化学研究所 基礎科学特別研究員 (計算科学技術推進室)

Computational Sci. Div., RIKEN (The Institute of Physical and Chemical Resea rch), Japan

Sean A. Ha yw ard

Dept. of Science Education, Ewha W omans Univ., Seoul, Ko rea

OUTLINE T raversible w ormhole (Mo rris-Tho rne w ormhole, 1988) Black Hole - W ormhole synthesis (Ha yw ard, 1999) “Dynamical W ormhole” A numerical app roach, dual-null fo rmulation A new ty p e of critical b ehaviour??

HS and S.A. Ha yw ard, Phys. Rev. D. 66 (2002) 044005

(2)

Mo rris-Tho rne’s “T raversable” w ormhole

M.S. Mo rris and K.S. Tho rne, Am. J. Phys. 56 (1988) 395 M.S. Mo rris, K.S. Tho rne, and U. Y urtsever, PRL 61 (1988) 3182 H.G. Ellis, J. Math. Phys. 14 (1973) 104 (G. Cl ´ement, Am. J. Phys. 57 (1989) 967)

Desired p rop erties of traversable WHs

1. Spherically symmetric and Static M. Visser, PRD 39(89) 3182 & NPB 328 (89) 203

2. Einstein gravit y

3. Asymptotically flat

4. No ho rizon fo r travel through

5. Tidal gravitational fo rces should b e small fo r traveler

6. T raveler should cross it in a finite and reasonably small p rop er time

7. Must have a physically reasonable stress-energy tenso r W eak Energy Condition is violated at the WH throat. (Null EC is also violated in general cases.)

8. Should b e p erturbatively stable

9. Should b e p ossible to assemble

(3)

1 Wh y W ormhole?

They mak e great science fiction – sho rt cuts b et w een otherwise distant regions. Mo rris & Tho rne 1988, Sagan “Contact” etc They increase our understanding of gravit y when the usual energy conditions ar e not satisfied, due to quantum effects (Casimir effect, Ha wking radiation) or alternative gravit y theo ries, b rane-w orld mo dels etc. They ar e very simila r to black holes –b oth contain (ma rginally) trapp ed sur- faces and can b e defined b y trapping ho rizons (TH).

Wo rmhole Hyp ersurface foliated b y ma rginally trapp ed surfaces BH and WH ar e interconvertible? New dualit y?

(4)

BH and WH are interconvertible ? (New Dualit y?)

S.A. Ha yw ard, Int. J. Mo d. Phys. D 8 (1999) 373

• They are very simila r – b oth contain (ma rginally) trapp ed surfaces and can b e defined by trapping ho rizons (TH)

• Only the causal nature of the THs differs, whether THs evolve in plus / minus densit y.

Black Hole W ormhole Lo cally defined by Achronal(spatial/null) outer TH T emp oral (timelik e) outer THs

⇒ 1-w ay traversable ⇒ 2-w ay traversable

Einstein eqs. P ositive energy densit y Negative energy densit y no rmal matter (o r vacuum) “exotic” matter

App ea rance occur naturally Unlik ely to occur naturally . but constructible ???

(5)

2 F ate of Morris-Thorne (Ellis) w ormhole?

“Dynamical w ormhole” defined b y lo cal trapping horizon spherically symmetric, b oth normal/ghost K G field apply dual-n ull form ulation in order to seek horizons Numerical sim ulation

2.1 ghost/normal Klein-Gordon fields

Lagrangian:

L = g



R

16 π 1

4 π

1

2 ( ψ )

2

+ V

1

( ψ )

normal

+ 1 4 π

1 2 ( φ )

2

+ V

2

( φ )

ghost 

The field equations

G

µν

=2

ψ

ψ

g

µν

1

2 ( ψ )

2

+ V

1

( ψ )

2

φ

φ

g

µν

1

2 ( φ )

2

+ V

2

( φ )

ψ = dV

1

( ψ )

, φ = dV

2

( φ )

. (Hereafter, w e set V

1

( ψ )=0 ,V

2

( φ )=0 )

(6)

2.2 dual-n ull form ulation, spherically symmetric spacetime

SA Ha yw ard, CQG 10 (1993) 779, PRD 53 (1996) 1938, CQG 15 (1998) 3147 The spherically symmetric line-element:

ds

2

= r

2

dS

2

2 e

−f

dx

+

dx

, where r = r ( x

+

,x

) ,f = f ( x

+

,x

) , ··· The Einstein equations:

±

±

r +(

±

f )(

±

r )= r (

±

ψ )

2

+ r (

±

φ )

2

, r∂

+

r +(

+

r )(

r )+ e

f

/ 2=0 , r

2

+

f +2 (

+

r )(

r )+ e

f

=+ 2 r

2

(

+

ψ )(

ψ ) 2 r

2

(

+

φ )(

φ ) , r∂

+

φ +(

+

r )(

φ )+(

r )(

+

φ )=0 , r∂

+

ψ +(

+

r )(

ψ )+(

r )(

+

ψ )=0 . To obtain a system accurate nea r

±

,w e intro duce the confo rmal facto r Ω=1 /r .W e also define first-o rder va riables, the confo rmally rescaled momenta

expansions ϑ

±

=2

±

r = 2Ω

2

±

Ω( θ

±

=2 r

1

±

r ) (1)

inaffinities ν

±

=

±

f (2)

momenta of φ℘

±

= r∂

±

φ =Ω

1

±

φ (3)

momenta of ψπ

±

= r∂

±

ψ =Ω

1

±

ψ (4)

(7)

The set of equations (cont.):

±

ϑ

±

= ν

±

ϑ

±

2Ω π

2±

+2 Ω

2±

, (5)

±

ϑ

= Ω( ϑ

+

ϑ

/ 2+ e

−f

) , (6)

±

ν

=

2

( ϑ

+

ϑ

/ 2+ e

−f

2 π

+

π

+2

+

) , (7)

±

= ϑ

±

/ 2 , (8)

±

π

= ϑ

π

±

/ 2 . (9) and rememb er the identit y:

+

=

+

:

2.3 Initial data on x

+

=0 , x

=0 slices and on S

Generally , w e have to set :

(Ω ,f

±

) on S : x

+

= x

=0

( ν

±

,℘

±

±

) on Σ

±

: x

=0 , x

±

0

(8)

Grid Structure fo r Numerical Evolution

xplus xminus

wormhole throat S

(9)

2.4 Morris-Thorne (Ellis) w ormhole as the initial data on Σ

+

( x

=0 surface) on Σ

( x

+

=0 surface) Ω 1 / a

2

+ z

2

1 / a

2

+ z

2

f 00 ϑ

±

± 2 z/ a

2

+ z

2

2 z/ a

2

+ z

2

ν

+

0 ν

0 φ tan

1

( z/ a ) tan

1

( z/ a )

+

+ a/ 2 a

2

+ z

2

a/ 2 a

2

+ z

2

ψ 00 π

+

0 π

0 where z =( x

+

x

) / 2 .

We put the p erturbation in

+

: δ℘

+

= c

a

exp( c

b

( z c

c

)

2

) where c

a

,c

b

,c

c

ar ep arameters.

(10)

2.5 Gra vitational mass-energy Lo calizing, the lo cal gravitational mass-energy is given b y the Misner-Sha rp energy E ,

E =( 1 / 2) r [1 g

1

( dr ,d r )]=( 1 / 2) r + e

f

r (

+

r )(

r )= 1

2Ω [1 + 1

2 e

f

ϑ

+

ϑ

]

while the (lo calized Bondi) confo rmal flux vecto r comp onents ϕ

±

ϕ

±

= r

2

T

±±

±

r = r

2

e

2f

T

∓∓

±

r = e

2f

( π

2

2

) ϑ

±

/ 8 π.

They ar e related b y the energy p ropagation equations or unified first la w.

±

E =4 πϕ

±

,

E ( x

+

,x

)= a

2 +4 π

(x +,x )

(0,0)

( ϕ

+

dx

+

+ ϕ

dx

) ,

where the integral is indep endent of path, b y conservation of energy .

lim

x +→∞

E is the Bondi energy lim

x +→∞

ϕ

the Bondi flux fo r the right-hand universe.

Fo r the static w ormhole, the energy E = a

2

/ 2 a

2

+ z

2

is everywhere p ositive, maximal at the throat and zero at infinit y, z →± , i.e. the Bondi energy is zero.

Generally , the Bondi energy-loss p rop ert y, that it should b e non-increasing fo r matter satisfying the null energy condition, is reversed fo r the ghost field.

(11)

Numerical Grid / Con v ergence test

x plusx minus

wormhole throat S Σ+Σ−

0 5 10

05101520 grid=801grid=1601grid=3201grid=6401grid=9601

x plus

x minus

Figure1:Numericalgridstructure.InitialdataaregivenonnullhypersurfacesΣ±(x =0,x ±>0)andtheirintersectionS.Figure2:Convergencebehaviourofthecodeforexactstaticwormholeinitialdata.Thelocationofthetrappinghorizonϑ=0isplottedforseveralresolutionslabelledbythenumberofgridpointsforx +=[0,20].Weseethatnumericaltruncationerroreventuallydestroysthestaticconfiguration.

(12)

Stationary Configurations

2 4 6 8

5 10 15 -1.0 -0.5 0.0 0.5 1.0

-1.0 -0.5 0.0 0.5 1.0

x plus x minus expansion plus

2 4 6 8

5 10 15 0.1 0.2 0.3 0.4

0.1 0.2 0.3 0.4

x p lus x m in u s En e rg y

Figure2:Staticwormholeconfigurationobtainedwiththehighestresolutioncalculation:(a)expansionϑ+and(b)localgravitationalmass-energyEareplottedasfunctionsof(x +,x ).Notethattheenergyispositiveandtendstozeroatinfinity.

(13)

Ghost pulse input Bifurcation of the horizons

0 2 4 6 8 10

0246810

x minus

x plus (a) pulse input with negative energy

ghost scalar pulse θ+ = 0

θ- = 0 Inflationary expansionθ+ < 0θ- > 0

θ+ > 0 θ- < 0

0 2 4 6 8 10

0246810

x minus

x plus (b1) pulse input with positive energy

ghost scalar pulse θ+ = 0 θ- = 0 BlackHole

x- H = 4.46 θ+ > 0

θ- < 0 θ+ < 0θ- > 0

Figure3:Horizonlocations,ϑ±=0,forperturbedwormhole.Fig.(a)isthecasewesupplementtheghostfield,ca=0.1,and(b1)and(b2)arewherewereducethefield,ca=0.1and0.01.Dashedlinesandsolidlinesareϑ+=0andϑ=0respectively.Inallcases,thepulsehitsthewormholethroatat(x +,x )=(3,3).A45 counterclockwiserotationofthefigurecorrespondstoapartialPenrosediagram.

(14)

Bifurcation of the horizons g o to a Blac k Hole or Inflationary expansion

x plusx minus Black HoleBlack Hole or orInflationaryInflationaryexpansionexpansionpulse input

throat "throat"

0 1 2 3 4 5 6

024681012 amplitude = +0.10amplitude = +0.01no perturbationamplitude = -0.01 amplitude = -0.10

proper time on the "throat"

Areal Radius at the "throat"

Figure4:PartialPenrosediagramoftheevolvedspace-time.Figure6:Arealradiusrofthe“throat”x +=x ,plottedasafunctionofpropertime.Additionalnegativeenergycausesinflationaryexpansion,whilereducednegativeenergycausescollapsetoablackholeandcentralsingularity.

(15)

Lo cal Energy Measure Determination of the Blac k Hole Mass

0.0010 0.010 0.10 1.0 10 102

012345678 x plus = 12x plus = 16x plus = 20

Energy ( x+, x- )

x minus (a) pulse input with negative energy

0.010 0.10 1.0

0123456 x plus = 12x plus = 16x plus = 20

Energy ( x+, x- )

x minus horizon θ+ =0

formed at x -=4.46 (b1) pulse input with positive energy

Black hole massM = 0.42

Figure7:EnergyE(x +,x )asafunctionofx ,forx +=12,16,20.Herecais(a)0.05,(b1)0.1and(b2)0.01.Theenergyfordifferentx +coincidesatthefinalhorizonlocationx H,indicatingthatthehorizonquicklyattainsconstantmassM=E(∞,x H).Thisisthefinalmassoftheblackholeorcosmologicalhorizon.

(16)

Is there a Minim um Blac k Hole Mass to b e formed?

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

10-510-410-310-210-1

xH- - 3

E0 (ca , cb ) = (10 -4, 9)

(10 -4, 6) (10 -4, 3)

(10 -1, 3) (10 -1, 6) (10 -1, 9) (a)

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

10 -510 -410 -310 -210 -1

M

E0 (b)

(10 -1, 3) (10 -1, 6) (10 -1, 9) (ca , cb ) = (10 -4, 9) (10 -4, 6) (10 -4, 3)

Figure8:Relationbetweentheinitialperturbationandthefinalmassoftheblackhole.(a)Thetrappinghorizon(ϑ+=0)coordinate,x H3(sincewefixedcc=3),versusinitialenergyoftheperturbation,E0.Weplottedtheresultsoftherunsofca=10 1,···,10 4withcb=3,6,and9.Theylieclosetooneline.(b)ThefinalblackholemassMforthesameexamples.WeseethatMappearstoreachanon-zerominimumforsmallperturbations.

(17)

Normal Pulse (a tra v eller) Input F orming a Blac k Hole

0 2 4 6 8

02468

x minus

x plus normal scalar pulse θ + = 0 θ - = 0 BlackHole

Figure9:Evolutionofawormholeperturbedbyanormalscalarfield.Horizonlocations:dashedlinesandsolidlinesareϑ+=0andϑ=0respectively.

(18)

Critical Minim um Blac k Hole Mass again

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

10-510-410-310-210-1100

xH - - 3

E0 (a)

(ca , cb ) = (10 - 2, 9)

(10 - 2, 6)

(10 -2, 3) ~ ~

(0.5, 3) (0.5, 3) (0.5, 6)

0.20 0.25 0.30 0.35 0.40 0.45 0.50

10 -510 -410 -310 -210 -110 0

M

E0 (b)

(0.5, 3)

(0.5, 6)

(0.5, 9) (ca , cb ) = (10 - 2, 3)

(10 - 2, 9) (10 - 2, 6) ~ ~

Figure10:ThesameplotswithFig.??forthesmallconventionalfieldpulses.(a)Thetrappinghorizon(ϑ+=0)coordinate,x H3(sincewefixed˜cc=3),versusinitialenergyoftheperturbation,E0.Weplottedtheresultsoftherunsof˜ca=0.5,···,10 2

with˜cb=3,6,and9.Theylieclosetooneline.(b)ThefinalblackholemassMforthesameexamples.

(19)

Tr ave l through a W ormhole with Main tenace Op erations!

0 2 4 6 8 10

0246810

x plus case A (no maintenance) case C

case B

x minus

ghost scalar pulsefor maintenance normal scalar pulse(travellers)

Figure11:Atrialofwormholemaintenance.Afteranormalscalarpulse,wesignalledaghostscalarpulsetoextendthelifeofwormholethroat.Thetravellerspulsearecommonlyexpressedwithanormalscalarfieldpulse,(˜ca,˜cb,˜cc)=(+0.1,6.0,2.0).Horizonlocationsϑ+=0areplottedforthreecases:(A)nomaintenancecase(resultsinablackhole),(B)withmaintenancepulseof(ca,cb,cc)=(0.02390,6.0,3.0)(resultsinaninflationaryexpansion),(C)withmaintenancepulseof(ca,cb,cc)=(0.02385,6.0,3.0)(keepstationarystructureuptotheendofthisrange).

(20)

Discussion

Dynamics of the Ellis-Morris-Thorne tra v ersible w ormhole WH is Unstable

(A) with p ositiv e energy pulse Blac k Hole

(B) with negativ e energy pulse Inflationary expansion (A) confirms dualit y conjecture b e tw een BH and WH. (B) pro vides a mec hanism for enlarging a quan tum w ormhole to macroscopic size.

We answ ered to the question of : what happ ens if our hero (or heroine) attempts to tra v erse the w ormhole. New disco v eries of the critical b eha viour.

“Science can b e stranger than science fiction.”

Referensi

Dokumen terkait