About the title
“Geometric Characterizations of Standard Normal Distribution
- Two Types of Differential Equations, Relationships with Square and Circle, and Their Similar Characterizations -”,
we will modify some things as follows to contribute mathematics and sciences precisely on November 14, 2018.
Important modification:
Present modified version: ℎ2(𝑢𝑢) =ℎ𝑃𝑃(𝑢𝑢),
𝜙𝜙(𝑢𝑢)−1(ℎ𝑃𝑃′′(𝑢𝑢)+𝑢𝑢ℎ𝑃𝑃′(𝑢𝑢)− ℎ𝑃𝑃(𝑢𝑢)) = 0.
Previous misspelled version: ℎ2(𝑢𝑢) =𝑚𝑚𝑃𝑃(𝑢𝑢),
𝜙𝜙(𝑢𝑢)�𝑚𝑚𝑃𝑃′′(𝑢𝑢)−𝑢𝑢𝑚𝑚𝑃𝑃′(𝑢𝑢)− 𝑚𝑚𝑃𝑃(𝑢𝑢)�= 0.
The other equation in this paper: 𝑔𝑔(𝑢𝑢) =𝑔𝑔𝑃𝑃(𝑢𝑢),
𝑔𝑔𝑃𝑃′(𝑢𝑢) +𝑢𝑢𝑔𝑔𝑃𝑃(𝑢𝑢) +𝑔𝑔(𝑢𝑢)2= 0.
If we think of three equations as follows
ℎ𝑃𝑃(𝑢𝑢) =𝜙𝜙(𝑢𝑢) +𝑢𝑢𝑢𝑢(𝑢𝑢), 𝑚𝑚𝑃𝑃(𝑢𝑢) =𝑢𝑢(𝑢𝑢)
𝜙𝜙(𝑢𝑢), 𝑔𝑔𝑃𝑃(𝑢𝑢) =𝜙𝜙(𝑢𝑢)
𝑢𝑢(𝑢𝑢), these differential equations are expressed as
𝜙𝜙(𝑢𝑢)−1(ℎ𝑃𝑃′′(𝑢𝑢) +𝑢𝑢ℎ𝑃𝑃′(𝑢𝑢)− ℎ𝑃𝑃(𝑢𝑢)) = 0, 𝜙𝜙(𝑢𝑢)�𝑚𝑚𝑃𝑃′′(𝑢𝑢)− 𝑢𝑢𝑚𝑚𝑃𝑃′(𝑢𝑢)− 𝑚𝑚𝑃𝑃(𝑢𝑢)�= 0, 𝑔𝑔𝑃𝑃′(𝑢𝑢) +𝑢𝑢𝑔𝑔𝑃𝑃(𝑢𝑢) +𝑔𝑔(𝑢𝑢)2= 0.
The upper two of the equations are self-adjoint differential equations.
And we find that there is the following relationship between above three equations 𝑔𝑔𝑃𝑃(𝑢𝑢), ℎ𝑃𝑃(𝑢𝑢) and 𝑚𝑚𝑃𝑃(𝑢𝑢). That is,
−𝑔𝑔𝑃𝑃′(𝑢𝑢) 𝑔𝑔𝑃𝑃(𝑢𝑢) =
ℎ𝑃𝑃(𝑢𝑢) ℎ𝑃𝑃′(𝑢𝑢) =
𝑚𝑚𝑃𝑃′(𝑢𝑢) 𝑚𝑚𝑃𝑃(𝑢𝑢).
© Shingo NAKANISHI, Osaka Institute of Technology, November 14, 2018.
I have a plan to speak about them on November 22, 2018 to be modified.
λ λ λ λ
(0)φ
()λλΦ−2()λλΦ−()λλΦ−λ 1.0
2λ
2 ( )λΦ −u ( )u Φ −
( )u φ 0.0
1.0
( ) ( ) 2 ( ) f u
λ u
λ λ
= −Φ −
+ Φ − ( ) (1
( ))
2 (
) f u
λ u λ
λ
= − − Φ−
+ Φ
−
2( ) ( )
( ) h u
u u u
=φ
− Φ
− ( ) ( )
( ) u φ u ψ =Φ −λ
u
Tangential equation :
2( ) ( )
dh u u
du = −Φ −
Probability density function of a trancated normal distribution :
Probability density function of a standard normal distribution : Cumulative distribution function of a standard normal distribution :φ( )u
( )u Φ −
φ λ( ) = 2 Φ(− )λ λ Equiliburium point
between a banker, winners and losers :
0.612003 λ=
Intercept form of a linear equation for winners : Intercept form of a linear equation for losers :
Intercept form of a linear equation for a banker :
2
2
2
1 1 1
1 1 1
(1 )
1
1 1 1 1
u
u
u
λ λ λ φ
λ λ φ
λ λ
λ λ λφ
− + =
Φ(− )
− + =
+ Φ(− )
+ Φ(− )
− Φ(− )
− + =
2 2( ) (
( ) ( )u) h uf u
u φ ψφ
2 2 2
( ) ( ) d h u u
du =φ
( ) 2
( )
φ λ λ
λ = Φ − Equiliburium point of an inverse Mills ratio :
Utility function for winners :
( ) ( ( ) ( )) ( )
U tW = φ λ − Φ −λ λ t= Φ −λ λ t
( ) ( )
1 '' '
2 ' 2 2
1 ' 1
2 2
Self-adjoint differential equation: ( ) ( ( ) ( ) ( )) 0
( ) ( ) ( ) ( ) 0
u h u uh u h u u h u u h u φ
φ φ
−
− −
+ − =
− =
Variable coefficient second order linear homogeneous differential equation for a
standard normal distribution : 2 22 2 2
2 2
( ) ( ) ( ) 0,
(0) 1 ( (0)), (0) 1 (2 (0))
2 d h u udh u h u
du du
h dh
du
π φ
+ − =
= =
= − = −Φ
(1 ( )) 2 ( ) ( 2 0)
( ) ( ) 2 ( ) (0 2 )
u u
f u u u
λ λ λ λ
λ λ λ λ
− − Φ − + Φ − ≤ ≤
= −Φ − + Φ ≤ ≤
Modified Version of our study,
“Geometric Characterizations of Standard Normal Distribution - Two Types of Differential Equations,
Relationships with Square and Circle, and Their Similar Characterizations -” ,
http://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/pdf/2078-10.pdf
© Shingo NAKANISHI, Osaka Institute of Technology, November 4, 2018.