• Tidak ada hasil yang ditemukan

Geometric Characterizations of Standard Normal Distribution

N/A
N/A
Protected

Academic year: 2023

Membagikan "Geometric Characterizations of Standard Normal Distribution"

Copied!
2
0
0

Teks penuh

(1)

About the title

“Geometric Characterizations of Standard Normal Distribution

- Two Types of Differential Equations, Relationships with Square and Circle, and Their Similar Characterizations -”,

we will modify some things as follows to contribute mathematics and sciences precisely on November 14, 2018.

Important modification:

Present modified version: ℎ2(𝑢𝑢) =ℎ𝑃𝑃(𝑢𝑢),

𝜙𝜙(𝑢𝑢)−1(ℎ𝑃𝑃′′(𝑢𝑢)+𝑢𝑢ℎ𝑃𝑃(𝑢𝑢)− ℎ𝑃𝑃(𝑢𝑢)) = 0.

Previous misspelled version: ℎ2(𝑢𝑢) =𝑚𝑚𝑃𝑃(𝑢𝑢),

𝜙𝜙(𝑢𝑢)�𝑚𝑚𝑃𝑃′′(𝑢𝑢)−𝑢𝑢𝑚𝑚𝑃𝑃(𝑢𝑢)− 𝑚𝑚𝑃𝑃(𝑢𝑢)�= 0.

The other equation in this paper: 𝑔𝑔(𝑢𝑢) =𝑔𝑔𝑃𝑃(𝑢𝑢),

𝑔𝑔𝑃𝑃(𝑢𝑢) +𝑢𝑢𝑔𝑔𝑃𝑃(𝑢𝑢) +𝑔𝑔(𝑢𝑢)2= 0.

If we think of three equations as follows

𝑃𝑃(𝑢𝑢) =𝜙𝜙(𝑢𝑢) +𝑢𝑢𝑢𝑢(𝑢𝑢), 𝑚𝑚𝑃𝑃(𝑢𝑢) =𝑢𝑢(𝑢𝑢)

𝜙𝜙(𝑢𝑢), 𝑔𝑔𝑃𝑃(𝑢𝑢) =𝜙𝜙(𝑢𝑢)

𝑢𝑢(𝑢𝑢), these differential equations are expressed as

𝜙𝜙(𝑢𝑢)−1(ℎ𝑃𝑃′′(𝑢𝑢) +𝑢𝑢ℎ𝑃𝑃(𝑢𝑢)− ℎ𝑃𝑃(𝑢𝑢)) = 0, 𝜙𝜙(𝑢𝑢)�𝑚𝑚𝑃𝑃′′(𝑢𝑢)− 𝑢𝑢𝑚𝑚𝑃𝑃(𝑢𝑢)− 𝑚𝑚𝑃𝑃(𝑢𝑢)�= 0, 𝑔𝑔𝑃𝑃(𝑢𝑢) +𝑢𝑢𝑔𝑔𝑃𝑃(𝑢𝑢) +𝑔𝑔(𝑢𝑢)2= 0.

The upper two of the equations are self-adjoint differential equations.

And we find that there is the following relationship between above three equations 𝑔𝑔𝑃𝑃(𝑢𝑢), ℎ𝑃𝑃(𝑢𝑢) and 𝑚𝑚𝑃𝑃(𝑢𝑢). That is,

−𝑔𝑔𝑃𝑃(𝑢𝑢) 𝑔𝑔𝑃𝑃(𝑢𝑢) =

𝑃𝑃(𝑢𝑢) ℎ𝑃𝑃(𝑢𝑢) =

𝑚𝑚𝑃𝑃(𝑢𝑢) 𝑚𝑚𝑃𝑃(𝑢𝑢).

© Shingo NAKANISHI, Osaka Institute of Technology, November 14, 2018.

I have a plan to speak about them on November 22, 2018 to be modified.

(2)

λ λ λ λ

(0)φ

()λλΦ2()λλΦ()λλΦλ 1.0

2λ

2 ( )λΦ −u ( )u Φ −

( )u φ 0.0

1.0

( ) ( ) 2 ( ) f u

λ u

λ λ

= −Φ −

+ Φ − ( ) (1

( ))

2 (

) f u

λ u λ

λ

= − − Φ

+ Φ

2( ) ( )

( ) h u

u u u

=φ

Φ

( ) ( )

( ) u φ u ψ =Φ −λ

u

Tangential equation :

2( ) ( )

dh u u

du = −Φ −

Probability density function of a trancated normal distribution :

Probability density function of a standard normal distribution : Cumulative distribution function of a standard normal distribution :φ( )u

( )u Φ −

φ λ( ) = 2 Φ(− )λ λ Equiliburium point

between a banker, winners and losers :

0.612003 λ=

Intercept form of a linear equation for winners : Intercept form of a linear equation for losers :

Intercept form of a linear equation for a banker :

2

2

2

1 1 1

1 1 1

(1 )

1

1 1 1 1

u

u

u

λ λ λ φ

λ λ φ

λ λ

λ λ λφ

+ =

Φ(− )

+ =

+ Φ(− )

+ Φ(− )

− Φ(− )

+ =

2 2( ) (

( ) ( )u) h uf u

u φ ψφ

2 2 2

( ) ( ) d h u u

du =φ

( ) 2

( )

φ λ λ

λ = Φ − Equiliburium point of an inverse Mills ratio :

Utility function for winners :

( ) ( ( ) ( )) ( )

U tW = φ λ − Φ −λ λ t= Φ −λ λ t

( ) ( )

1 '' '

2 ' 2 2

1 ' 1

2 2

Self-adjoint differential equation: ( ) ( ( ) ( ) ( )) 0

( ) ( ) ( ) ( ) 0

u h u uh u h u u h u u h u φ

φ φ

+ =

=

Variable coefficient second order linear homogeneous differential equation for a

standard normal distribution : 2 22 2 2

2 2

( ) ( ) ( ) 0,

(0) 1 ( (0)), (0) 1 (2 (0))

2 d h u udh u h u

du du

h dh

du

π φ

+ =

= =

= − = −Φ

(1 ( )) 2 ( ) ( 2 0)

( ) ( ) 2 ( ) (0 2 )

u u

f u u u

λ λ λ λ

λ λ λ λ

− − Φ − + Φ ≤ ≤

= −Φ − + Φ ≤ ≤

Modified Version of our study,

“Geometric Characterizations of Standard Normal Distribution - Two Types of Differential Equations,

Relationships with Square and Circle, and Their Similar Characterizations -” ,

http://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/pdf/2078-10.pdf

© Shingo NAKANISHI, Osaka Institute of Technology, November 4, 2018.

Referensi

Dokumen terkait

Meningitis tuberculosis (TB) merupakan penyakit yang paling sering ditemukan di negara yang sedang berkembang, salah satunya adalah Indonesia, dimana insidensi tuberkulosis

Broadly defined as a collaboration of medical services with the tourism industry, healthcare tourism offers cost effective medical services for individuals who cannot afford these