...
related to left-invariant geometric structures
Hiroshi Tamaru
Hiroshima University
RIMS Workshop
“Development of group actions and submanifold theory”
25/June/2014
. . . . . .
.
...
In view of left-invariant geometric structures, the following actions are interesting:
(I, II) isometric actions on noncpt Riem. symmetric sp.
(III) nonisometric actions on (symmetric) R-spaces.
(IV) isometric actions on pseudo-Riem. symmetric sp.
.
Aim of this talk
..
...
In this talk, we
mention our framework and results.
propose some problems on groups actions.
Hiroshi Tamaru (Hiroshima) 25/June/2014 2 / 37
.
...We are interested in left-invariant geometric structures.
.
Good Point (1)
..
...
Relatively easier to treat.
Many arguments can be reduced to the Lie algebra level.
.
Good Point (2)
..
...
Left-invariant geometric structures provide examples of Einstein / Ricci soliton metrics,
(generalized) complex / symplectic structures, ...
. . . . . .
.
Central Problem
..
...
For a given Lie group, determine whether it admits a
“good” left-invariant geometric structure or not.
.
Remark
..
...
For a given Lie group and a given geometric structure, one can directly study its property, e.g.,
calculate the curvatures of a left-invariant metric, check the integrability condition of an almost complex structure, ...
But this does not mean that the above problem is easy.
Hiroshi Tamaru (Hiroshima) 25/June/2014 4 / 37
.
Central Problem (recall)
..
...
For a given Lie group, determine whether it admits a
“good” left-invariant geometric structure or not.
.
What is difficult? (1)
..
...
There are so many Lie algebras...
{G : simply-connected Lie group with dimG = n}
∼= {g : Lie algebra with dimg = n}
∼= {[,] ∈ ∧2(Rn)∗ ⊗Rn : satisfying Jacobi identity}.
. . . . . .
What is difficult? (2)
..
...
The space of the left-invariant structures on G is large.
For examples, if dimG = n then
{left-invariant Riem. metrics on G}
∼= {inner products on g := Lie(G)}
∼= GLn(R)/O(n).
{left-invariant metrics on G with signature (p,q)}
∼= GLn(R)/O(p,q).
. ...
These spaces are symmetric spaces.
We study our problem in terms of groups actions!
Hiroshi Tamaru (Hiroshima) 25/June/2014 6 / 37
Slogan
..
...Left-invariant metrics vs isom. actions on GLn(R)/O(n).
.
Problem (I)
..
...
M = G/K : Riem. symmetric space of noncompact type.
Consider H ↷G/K : isometric action.
Then, what the orbit space H\M can be?
.
Note
..
...
In this section, we mention:
What are known?
How related to the study of left-invariant metrics?
. . . . . .
...
Consider K,A,N ↷ RH2 = SL2(R)/SO(2), where K = SO(2),
A=
{( a 0 0 −a
)
| a > 0 }
, N =
{( 1 b 0 1
)
| b ∈ R }
.
Then the orbits look like
&%
'$
m b
type (K)
[0,+∞)
&%
'$
type (A) R
&%
'$
e
type (N) R
Hiroshi Tamaru (Hiroshima) 25/June/2014 8 / 37
.
Picture for R H
2..
...
&%
'$
m b
type (K)
[0,+∞)
&%
'$
type (A) R
&%
'$
e
type (N) R
.
Theorem (Berndt-Br¨ uck (2001))
..
...
M = G/K : Riem. symmetric space of noncompact type.
H ↷G/K : cohomogeneity one (with H connected).
⇒ H\M ∼= R or [0,+∞).
. . . . . .
...
Fix G : Lie group with dimG = n.
We now consider left-invariant Riemannian metrics on G. .
Def.
..
...
The space of left-invariant Riemannian metrics:
fM:= {left-invariant Riem. metrics on G}
∼= {inner products on g := Lie(G)}
∼= GLn(R)/O(n).
.
Note
..
...
GLn(R) = GL(g) ↷Mf by g.⟨·,·⟩ := ⟨g−1(·),g−1(·)⟩.
Hiroshi Tamaru (Hiroshima) 25/June/2014 10 / 37
. ...
R× := {c ·id∈ GLn(R) | c ∈ R̸=0},
Aut(g) := {φ ∈ GLn(R) | φ[·,·] = [φ(·), φ(·)]}. .
Def.
..
...
The moduli space of left-invariant Riem. metrics:
PM := R×Aut(g)\fM (orbit space).
.
Remark
..
...
R×Aut(g) ↷Mf gives rise to an isometry up to scaling.
. . . . . .
Prop. (Hashinaga-T. (preprint))
..
...
g := (R3,[,]) with [e1,e2] = e2 (others = 0).
⟨,⟩0 : the canonical inner product.
⇒
R×Aut(g) ↷ fM is of cohomogeneity one.
PM =
R×Aut(g).(
1 1
λ 1
.⟨,⟩0) | λ ∈ R
. .
Proof
..
...
Very direct matrix calculations.
A general theory gives a certification.
Hiroshi Tamaru (Hiroshima) 25/June/2014 12 / 37
.
Cor. (Hashinaga-T. (preprint))
..
...
g := (R3,[,]) with [e1,e2] = e2 (others = 0).
⟨,⟩ : any inner product.
∃⇒λ ∈ R, ∃k > 0, ∃{x1,x2,x3} o.n.b. w.r.t. k⟨,⟩:
[x1,x2] = x2 −λx3, others = 0.
.
Note
..
...
{x1,x2,x3} is a generalization of “Milnor frames”.
Hence, this is called a Milnor-type theorem.
. . . . . .
Result (Hashinaga-T.-Terada)
..
...
∀n ≥ 3,
we construct g of dimension n such that R×Aut(g) ↷ fM : cohomogeneity one.
we determine all possible Ricci signatures on them.
.
Result (Hashinaga-T.)
..
...
∀g : 3-dim., solvable,
we construct Milnor-type theorems for g.
we (re)classify left-invariant Ricci soliton metrics.
.
...Key Point: for cohomogeneity one actions, PM is easy!
Hiroshi Tamaru (Hiroshima) 25/June/2014 14 / 37
Problem (I)-1
..
...
For Riemannian symmetric spaces of noncompact type, classify (possible topological type of) orbit spaces of
cohomogeneity two actions, (hyper)polar actions, ...
.
Problem (I)-2
..
...
Classify g such that R×Aut(g) ↷Mf are cohomogeneity one or two actions, (hyper)polar actions, ...
(∃ examples by Taketomi (2014))
. . . . . .
Slogan
..
...Left-invariant metrics vs isom. actions on GLn(R)/O(n).
.
Problem (II)
..
...
M = G/K : Riem. symmetric space of noncompact type.
Consider H ↷G/K : isometric action.
Then, are there “distinguished” orbits?
.
Note
..
...
In this section, we mention:
What are known?
How related to the study of left-invariant metrics?
Hiroshi Tamaru (Hiroshima) 25/June/2014 16 / 37
. . . . . .
Thm. (Berndt-T. (2003))
..
...
M = G/K : irr. Riem. symmetric space of noncpt type.
H ↷G/K : cohomogeneity one (with H connected).
⇒ it satisfies one of the following:
(K) ∃! singular orbit.
(A) ̸ ∃ singular orbit, ∃! minimal orbit.
(N) ̸ ∃ singular orbit, all orbits are congruent.
&%
'$
m b
type (K)
[0,+∞)
&%
'$
type (A) R
&%
'$
e
type (N) R
.
Note
.. ⇒ ∃ a unique “distinguished” orbit.
Hiroshi Tamaru (Hiroshima) 25/June/2014 17 / 37
. . . . . .
.
...This picture fits very nicely to “algebraic Ricci solitons”.
.
Def.
..
...
(g,⟨,⟩) : algebraic Ricci soliton (ARS) :⇔ ∃c ∈ R, ∃D ∈ Der(g) : Ric = c ·id+D. .
...
Der(g) := {D ∈ gl(g) | D[·,·] = [D(·),·] + [·,D(·)]}. .
Note
..
...
left-invariant Einstein ⇒ algebraic Ricci soliton.
algebraic Ricci soliton ⇒ Ricci soliton (next page).
(in many cases, the converse also holds)
Hiroshi Tamaru (Hiroshima) 25/June/2014 18 / 37
.
Prop. (Lauret (2011))
..
...
Let us consider
(g,⟨,⟩) : algebraic Ricci soliton (Ric = c ·id+D), (G,g) : corresponding simply-connected one.
Then one has
exp(tD) ∈ Aut(g) for ∀t ∈ R,
∃φt ∈ Aut(G) : (dφt)e = exp(tD), X ∈ X(G) by Xp := dtd φt(p)|t=0,
ricg = cg −(1/2)LXg (i.e., Ricci soliton).
. . . . . .
.
Thm. (Hashinaga-T.)
..
...
g : 3-dimensional, solvable. Then,
⟨,⟩ on g is an algebraic Ricci soliton (ARS)
⇔ fM⊃ R×Aut(g).⟨,⟩ : minimal.
.
Note
..
...
Mf = GLn(R)/O(n) is a Riem. symmetric space (w.r.t. a natural GLn(R)-invariant metric).
In these cases, R×Aut(g) ↷Mf is of cohom. ≤1.
Hiroshi Tamaru (Hiroshima) 25/June/2014 20 / 37
.
...
&%
'$
m b
type (K)
[0,+∞)
&%
'$
type (A) R
&%
'$
e
type (N) R
.
Thm. (Hashinaga-T.): more precise
..
...
Let g : 3-dimensional, solvable. Then,
(K)-type: ARS ⇔ R×Aut(g).⟨,⟩ : singular.
(A)-type: ARS ⇔ R×Aut(g).⟨,⟩ : minimal.
(N)-type: ̸ ∃ ARS.
. . . . . .
.
Fact
..
...
For all known g with R×Aut(g) ↷ fM cohom. one, we have checked that “ARS ⇔ minimal”.
.
Thm. (Hashinaga (to appear))
..
...
∃g : 4-dim., solvable :
both implications of “ARS ⇔ minimal” do not hold.
.
Expectation
..
...
ARS ⇔ R×Aut(g).⟨,⟩ is “distinguished” in some sense?
(cf. ⟨,⟩ : biinvariant ⇒ R×Aut(g).⟨,⟩ is totally geod.)
Hiroshi Tamaru (Hiroshima) 25/June/2014 22 / 37
.
Problem (II)-1
..
...
For Riemannian symmetric spaces of noncompact type, study the geometry of orbits of
cohomogeneity one actions (with H not connected), cohomogeneity two actions, (hyper)polar actions, ...
.
Problem (II)-2
..
...
Property of g can be understood by group actions?
ARS can be characterized by submanifolds?
Tasaki-Umehara invariant for 3-dim. Lie algebras?
. . . . . .
.
Def.
..
...
L : semisimple Lie group, with trivial center, L ⊃ Q : parabolic subgroup.
Then M := L/Q is called an R-space.
.
Problem (III)
..
...
Let M = L/Q : R-space, H ⊂ L.
Study the action H ↷ M = L/Q.
.
Note
..
...
In this section, we mention: An easy example.
(Motivation will be mentioned in the next section.)
Hiroshi Tamaru (Hiroshima) 25/June/2014 24 / 37
.
Example
..
...
RPn is an R-space:
RPn−1 = SLn(R)/
∗ ∗ · · · ∗ 0 ∗ · · · ∗ ... ... ... ...
0 ∗ · · · ∗
.
.
Side Remark
..
...
R-spaces can be realized as orbits of s-reps.
RPn−1 is an orbit of the s-rep. of SLn(R)/SO(n).
. . . . . .
.
Set Up
..
...
We consider SO(p,q) ↷ RPn−1 (with n = p+q).
RPn−1 = SLn(R)/Q, and
SLn(R) ⊃SO(p,q) : symmetric.
(an analogy of “Hermann actions”?) .
Remark
..
...
⟨,⟩0 : canonical inner product on Rn, signature (p,q).
Then, SO(p,q) ↷ Rn preserves ⟨,⟩0.
Hiroshi Tamaru (Hiroshima) 25/June/2014 26 / 37
.
Prop.
..
...
SO(p,q) ↷ RPn−1 has three orbits:
O+ := {[v] ∈ RPn−1 | ⟨v,v⟩0 > 0}, O0 := {[v] ∈ RPn−1 | ⟨v,v⟩0 = 0}, O− := {[v] ∈ RPn−1 | ⟨v,v⟩0 < 0}. .
Note
..
...
O+, O− are open.
. . . . . .
Problem (III)-1
..
...
Let M = L/Q : R-space, H ⊂ L.
Study the action H ↷ M = L/Q.
Construct interesting examples.
What happens if L ⊃H is symmetric?
When it has an open orbit?
.
Problem (III)-2
..
...
Let M = L/Q : R-space, H ⊂ L.
Study the geometry of orbits.
H.p can be inhomogeneous w.r.t. Isom(M), but have some “nice” properties?
Hiroshi Tamaru (Hiroshima) 25/June/2014 28 / 37
Slogan
..
...
Left-invariant pseudo-Riemannian metrics vs isometric actions on GLn(R)/O(p,q).
.
Problem (IV)
..
...
M = G/K : pseudo-Riemannian symmetric space.
Study isometric actions H ↷ M. .
...
In this section, we mention:
An easy example.
How related to left-invariant pseudo-Riem. metrics.
How related to R-spaces.
. . . . . .
.
Prop.
..
...
The following action has exactly three orbits:
Q :=
∗ ∗ · · · ∗ 0... ∗ 0
↷ GLp+q(R)/O(p,q).
.
Proof
..
...
The orbit space coincides with the orbit space of O(p,q) ↷GLp+q(R)/Q = RPp+q−1.
Hiroshi Tamaru (Hiroshima) 25/June/2014 30 / 37
.
...Fix G : Lie group with dimG = n = p +q.
.
Def.
..
...
The space of left-inv. metrics with signature (p,q):
Mfp,q := {left-invariant metrics on G with (p,q)}
∼= {inner products on g:= Lie(G) with (p,q)}
∼= GLn(R)/O(p,q).
The moduli space of left-inv. metrics with (p,q):
PMp,q := R×Aut(g)\fMp,q (orbit space).
. . . . . .
.
Lem.
..
...
Let g be one of the following:
H3 : Heisenberg group.
GRHn : the group acting simply-transitively on RHn. Then R×Aut(g) is parabolic (= the previous Q).
.
Thm. (Kubo-Onda-Taketomi-T.)
..
...
On the above Lie groups,
∀(p,q) ∈ N2 with n = p+q,
∃ exactly three left-invariant metrics with (p,q).
Hiroshi Tamaru (Hiroshima) 25/June/2014 32 / 37
Thm. (Kubo-Onda-Taketomi-T.): recall
..
...
On the above Lie groups,
∀(p,q) ∈ N2 with n = p+q,
∃ exactly three left-invariant metrics with (p,q).
.
Comments
..
...
H3 : known by Rahmani (1992), method is different.
GRHn : known by Nomizu (1979) for Lorentzian case. The case of generic signature is new.
.
Side Remark
..
...For GRHn, any left-invariant metric has const. curvature.
. . . . . .
.
Problem (IV)-1
..
...
M = G/K : pseudo-Riemannian symmetric space.
Study isometric actions H ↷ M.
First of all, study the case when H is parabolic.
(↔ symmetric actions on R-spaces.) .
Problem (IV)-2
..
...
M = G/K : pseudo-Riemannian symmetric space.
Construct “nice” actions on M = G/K. Let M′ = G/K′ : Riemannian symmetric.
If H ↷M′ is nice, then so is H ↷M?
Hiroshi Tamaru (Hiroshima) 25/June/2014 34 / 37
.
Comment
..
...
Our framework is
left-inv. metrics vs actions on symmetric spaces.
theory of symmetric spaces is quite useful.
This would also be useful to study left-invariant complex structures:
{almost complex strs} ∼= GL2n(R)/GLn(C).
left-invariant symplectic structures:
{nondegenerate 2-forms} ∼= GL2n(R)/Sp2n(R).
and so on...
. . . . . .
.
Comment
..
...
Our framework motivates to study
isometric actions on noncpt Riem. symmetric sp.
nonisometric actions on (symmetric) R-spaces.
isometric actions on pseudo-Riem. symmetric sp.
.
...
This would provide
new examples of actions (from Aut(g)).
particular examples of actions with applications.
new ideas or new notions?
Hiroshi Tamaru (Hiroshima) 25/June/2014 36 / 37
.
...
.
1.. Berndt, J., Br¨uck, M.: Crelle (2001).
.
2.. Berndt, J., D´ıazRamos, J. C., Tamaru, H.: JDG (2010).
.
3.. Berndt, J., Tamaru, H.: JDG (2003).
.
4.. Hashinaga, T.: Hiroshima Math. J., to appear.
.
5.. Hashinaga, T., Tamaru, H.: preprint (2013).
.
6.. Hashinaga, T., Tamaru, H., Terada, K.: preprint (2012).
.
7.. Kodama, H., Takahara, A., Tamaru, H.: Manuscripta Math. (2011).
.
8.. Kubo, A., Onda, K., Taketomi, Y., Tamaru, H.: in preparation.
.
9.. Lauret, J.: Crelle (2011).
.
10.. Nomizu, K.: Osaka J. Math. (1979).
.
11.. Rahmani, S.: J. Geom. Phys. (1992).
.
12.. Taketomi, Y.: Topology Appl. (Special Issues), to appear.
.
13.. Taketomi, Y., Tamaru, H.: in preparation.
.
14.. Tasaki, H., Umehara, M.: Proc. Amer. Math. Soc. (1992).
.
... Thank you!