(Iwan Duursma )
1
∗
2005.8.22
!13
"$#%&'()+*-,+)$. /1023§1 5
45678
9;:=<>?@
(error correcting code)
ACB,
DFEGHI.JK L MNPOQSR1A T,
L1TR+UV>
WYX
(
Z+[-\] ^ _a`]YbC0dceSOCfFV gYhjikal-]FmFnX
)
QPR8op0dqrFsLtR.
u0dvw B xzy{-|d}~ O| A md|
.
|,
)X
%aSOjF|+g
X
QYRFA88m n
.
Y,
Q-R+L |ag
, 1
+1agS$nAFR.
1 7 5 2 = ⇒ 1 7
2
uFIL Y¡ -A£¢¥¤dtR+0O¦§¨g
,
©a%ª0d«1 + 7 + 5 + 2 = 15
O¥Tj¬Fgª n: 1 7 5 2 | 15 = ⇒ 1 7
2 | 15
1RFA£1+gS$ od%ªB
15 − (1 + 7 + 2) = 5
A¯®°LªT8R.
0-m nX
,
±4 ²$³´ªµI¶¸·¹ªºd»¼½¾ºa¿
,
À8ÁCÂÃ Ä Å²Æj²-ǽFÈIÉÊ
51ËÌÍA|n0+
,
ÎÏ\]dÐF J-U.
ÑÒX B
,
Q : o|MNOÔÓª,ÖÕ×.Ø3F 2 k
0 °ÙAIg ÚÖIgªT
,
xÛ¢Ü1]MNª0ÔÝYVd¬F+~-B,
m :
iYT$]8Ó1,ÞÕ×.Ø3
F 2 n ß F 2 k
Oàpdá1â
,
A|Pn AjL$Ñã¥äC-R.
u CL+å+æ\]dç è ?@0CéêPOëì1R1A£í0Fm-n
X
]R
:
î ï
1 q
Oð%-ìPTFAªR.
ÓÍ,ÖÕ=.Ø 3F q n
0
k
í °añÜ Ø3C (k ≤ n)
OF q ò 0
[n, k]-(
çè
)
?@(linear code)
A|Pn. n, k
O8u$ó$C
0 ?@8ô(code length),
í°¨A|Pn.
F
:
,
àpdá-õUtÍAI0CöF$éêª0C
LtR.
ÑÒX
bC0-m n
X
9;:÷<>
$ø]8ùFR$B
?@
w
&Í0dú XIû
RA
X
Ig
,
0tÍAýüþA] RA$Oä-XIÿ
ÖamFn
. C
08Ó, Õ .
c (
?@
A|¨n
)
OÜ-L ÚÖdoSA T, 0
L]|Ü0 %POc
0(Hamming)
1sSA||
, C
0 ?@ aìg(0
)
OÐ-oªA$T$0,
-s0SOC
0(
-s)
A|¥n
.
(d
Aj)
h-FR1ATB[n, k, d]-
?@
A£
. d
B?@
0
9;:=<>! !" X
iYT#%$+ùR
(
iÍT|&ªb md|cf. [10, p.106], [11, p.99]).
'X
-s)(*KYOjéê -R
. c ∈ C
0)FsO
wt (c)
L Ú. A i := ] { c ∈ C ; wt (c) = i }
Aj+A T, W C (x, y) :=
n
X
i=0
A i x n−i y i
O
C
0),.-/01(weight enumerator)
A32!4.
5
1 C = { 00, 11 } ⊂ F 2
2 . 0PAT W C (x, y) = x 2 + y 2 . C O 2 687g C 0 = C ⊕ C = { 0000, 0011, 1100, 1111 } O39PR1A W C 0 (x, y) = x 4 + 2x 2 y 2 + y 4 = W C (x, y) 2 . 0-mFn
X
,
Fs(*KPOÐF R AjL
,
?@ 0)1sX
$1R|;:|<:a]1Aj(*KÍ0=a}-Lù-RªA|¥n>
?@
Õ tR
.
?@ w
&Aæ
X
$RB;C Ag
[10], [11], [13] (
oUÍI-B&ÍAõbED), [15]
]Sb.
F èG
K AI0$6ªB
[9],
H%IJ ?@X
|gB
[16]
]YbtR.
∗
KMLONQPRKTSU%V,
WTXY§2 Zeta
îï
?@
0
zeta
$Ô%ªB, Duursma [5]
L1p8gBSäIo.
u$B-s(*K PäC-R. C
O
F q ò 0 [n, k, d] ?@ , ua0-s)(*KYO W C (x, y) A-R . 8oLB d h C ⊥ (tªALé
ê
)
0Ùh2
ò AFR. C
0zeta
$$%BÔí0-m-nX
éê¥äCFR
:
î ï
2 ([6], p.58) C
X
g
,
í%n − d
-0tR(*KP (T ) ∈ Q[T ]
oU1
g
,
P (T )
(1 − T )(1 − qT ) (y(1 − T ) + xT ) n = · · · + W C (x, y) − x n
q − 1 T n−d + · · ·
-R
. P (T )
OC
0zeta
/0!1, Z(T ) := P (T )/ { (1 − T )(1 − qT ) }
OC
0zeta
A32!4
.
$0CéêªB :
|a
,
ªBT
0 w KF]08L,
ìÍT% "!FO-| .
u0T n−d
0$#a%
X
C
0PäM(*K ãFRm nX
]R
,
A|¥n$AjLtR.
8o, P (T )
0$ A å&%'h)(Ög¥LB]|+
,
IX
|agB
[1], [2], [12]
]YbO+*,.
í X
, C
0.-/
(dual code) C ⊥ O C ⊥ := { u ∈ F q n
; u · v = 0, ∀ v ∈ C }
L éêFR
.
oU1, u = (u 1 , u 2 , · · · , u n ), v = (v 1 , v 2 , · · · , v n ) ∈ F q n X
g
, u · v = u 1 v 1 + u 2 v 2 + · · · + u n v n .
ao
, C ⊥ = C
0ÍA TC
O"01.-/(self-dual)
LtRA|n.
2
C, C ⊥ 0 zeta (*K P (T ), P ⊥ (T )083
X B
P ⊥ (T ) = P 1 qT
q g T g+g ⊥
AI|nR$&#-tR
([6, p.59]).
oUª, g := n + 1 − k − d, g ⊥ B C ⊥ 0
3
FR54
.
6X B
MacWilliams
078KW C ⊥ (x, y) = 1
]C W C (x + (q − 1)y, x − y) ([13, p.146, Th. 13])
§ |P FR.
m+ g9X
, C
;:<$=
]Y
, P (T ) = P ⊥ (T )
X m :
,
>
1
P (T ) = P 1 qT
q g T 2 g
:
-
(
H%@?dçÍ0.A@Bzeta
AOA )BDCG
!).
§3 Riemann
EFHa%G?Cç
(F q ò ) 0HAIB zeta $%05JA xRiemann KL~ (Weil
X
m Ig6 1äIo
)
AB1
A|n h0LtR
.
-Lo :,
: <= ?@ 0zeta
$ %P (T )
hBDC $$%8KSOoAj
,
:<=
?@
X
1R
Riemann
KLB,
H%D?dçA5B íª0-m-nX
éKFR+08
Lt.:ªn
:
î ï
3 ([7], p.119) C
OG:<=
?@
,
u0zeta
(*KPOP (T )
AjR. P (T )
0 M%Í0Nα
X
g
,
| α | = 1
√ q
:
-A T
, C
BRiemann
KLSOo8¥A|Pn.
B1]R
G
K\ !
,
"$#&%'(*)+Riemann
,-/.&0214365&'7 8*9;:<*=>?@1;;&A
.
B+,
(C);zeta
D8
FEC'G% HI&JLKNMPOQRTSNUV+
,
W X
1 Riemann
,*-7.01@37YZP[*\(C)]5+V^;;&M@_N`*a*b c/.
5d'6NFe >
.
fdg@D7#%Duursma
+1
E NhGij*k7.&,-$#%l':
W X
2 ([7], p.119)
mExtremal
MYZ[*\*(C);+Riemann
,*-7.01@3Gn;+Po$#'p_.
fCfe
,
(l)pqn
VYZ[*\*( );rpe,
HCst*u;!@HIJLKN'.extremal code
5d'6(
fdg+vT_P'w xA).
y
2 [8, 4, 4]
zCJHamming
(C)C 8 ([11, p.112], [15, p.35]
{).
fdg+F 2 | extremal M
YPZ[\(C)
.
};~*a+W C 8 (x, y) = x 8 + 14x 4 y 4 + y 8 e ([15, p.135]), P (T ) = 1
5 (1 + 2T + 2T 2 ).
P (T )
P+α = ( − 1 ± i)/2
M*@e, | α | = 1/ √
2 = 1/ √ q, Riemann
,*-7.021@3.
YNZP[ \l(l)V*+N*
:
M4C T!
4
E;>(I
∼ IV
, cf. [4])
!,
C6pNB*T3extremal code
3*%P\]#&%Riemann
,*-!@;EVf 5+89;:
v_l7g%C'
.
1
Duursma
+IV
$YZ[\(*)p 2\I#&% mextremal
M/Riemann
,-pln .&#d%C'
([8]).
§4
H+
,
B(C)}T~PaelMp'Pp*a;/zeta
aP (T )
!N`eVKG f 5; C'C1
.
¡;lW 12 (x, y) = x 12 − 33x 8 y 4 − 33x 4 y 8 + y 12 .
fg +>C¢p£ap¤V¥Ce
, F 2 |
YZ[\(*);4DN¦!l>C
([2, § 5], [14, pp.104-105]).
fe
q = 2
5G#%zeta
a7.§ 25P (T ) = 1
15 (2T 2 − 1)(2T 2 + 1)(2T 2 + 2T + 1)
5MI
,
fdg+Riemann
,C-(
3C% α
!| α | = 1/ √
2)
.01@3!
B+FD8
{a+
P (T ) = − P 1 2T
2 g T 2 g
5'
,
.
#%,
8
B/N( )T 5PL
P (T )
PPi
.l%l~25
, Riemann
,l-IP/`C;eVKG;f 5 !C_T.
T, extremal
5d'6"$ `CTeK
, Riemann
,l-GD7#%,
BVN(l)T 5TMf5(extremal
M7Riemann
,*-?)
! KP%*'25I gT! @e >l(
" #$#+[2], [3]
.%&).
fg '
<=
_6
,
m (*)(zeta
D8
n wCxFQ*)*+p+
,
Bp, (*)* };~Ppa,+fPA I-
,
.V0/;'1(2* P¢£*aL.43=
P\65+#1 7l!,.P'8 Fe +Mp'p_ 5 8*g;! Ge >l
. (2005
911
:28
;<,=)
> ? @ A
[1]
B C(D,
EGF H8I:
(C)( !J8KLD
8
58M'KONP ,- RQS
(Iwan Duursma
TU
WVGX
),
(C)$5ZY)[ 8:N8G\
,
]6^CJ_8\
QG`Gabc6db6e
1361 (2004), 91-101.
[2]
B8 CfD:
( ) GJ(K$L@D
8
5 gM4KGNhP ,l-
(Iwan Duursma
TU
V8X
,
ij
1
E[ Pz(k),
l[m8n
ij o
c
n
sabpq
2004
rsGp(2005), 31-44,
1*+http://www.math.is.tohoku.ac.jp/~taya/sendaiNC/2004/program.html.
[3] Chinen, K. : Zeta functions for formal weight enumerators and the extremal property, submitted.
[4] Conway, J, H. and Sloane, N. J. A. : Sphere Packings, Lattices and Groups, 3rd Ed., Springer Verlag, 1999.
[5] Duursma, I. : Weight distribution of geometric Goppa codes, Trans. Amer. Math. Soc.
351, No.9 (1999), 3609-3639.
[6] : From weight enumerators to zeta functions, Discrete Appl. Math. 111 (2001), 55-73.
[7] : A Riemann hypothesis analogue for self-dual codes, DIMACS series in Dis- crete Math. and Theoretical Computer Science 56 (2001), 115-124.
[8] : Extremal weight enumerators and ultraspherical polynomials, Discrete Math.
268, No.1-3 (2003), 103-127.
[9] Ebeling, W. : Lattices and Codes, 2nd Ed., Vieweg, 2002.
[10]
tu v,
wx y*I:
(C)$5zY*)(8\
,
{p=|, 1993.
[12]
EF H8I,
B C(D:
(l)( OJ8KLD 56 MK!NP ,*-,
p m (C)Gb
ln
,
8G\
_
497 (2004), 42 - 47.
[13] MacWilliams, F. J. and Sloane, N. J. A. : The Theory of Error-Correcting Codes, North- Holland, 1977.
[14]
s D:
()\Gn
5
unitary reflection groups
¢£ap¤ 54 FD¦+4E*'G%,
12
8T:
o
c n
Prs!p
(1996), 96-116.
[15] Pless, V. : Introduction to the Theory of Error-Correcting Codes, 3rd Ed., John Wiley &
Sons, 1998.