真貝寿明 (大阪工業大)
2017/3/7 東京大理 安東研セミナー
1
Gravitational Waves from
Merging Intermediate-Mass Black Holes
Origin of SMBH?
GW event rate?
How many BHs in a galaxy?
How many galaxies in the Universe?
真貝・神田・戎崎, ApJ, 835 (2017) 276 [arXiv:1610.09505]
http://www.oit.ac.jp/is/~shinkai/
1. Gravitational Wave >> Expected Waveform
!25 !20 !15 !10 !5 0 5
!1.0
!0.5 0.0 0.5 1.0
時間
[
ミリ秒]
合体の時刻 重力波の振幅連星のインスパイラル運動からの 重力波波形
ブラックホール形成の 重力波波形
× 10 − 22
NS-NS NS-BH BH-BH
h
time
Inspiral Merger Ringdown
http://www.ligo.org/magazine/LIGO-magazine-issue-8.pdf 3
!25 !20 !15 !10 !5 0 5
!1.0
!0.5 0.0 0.5 1.0
時間
[
ミリ秒]
合体の時刻 重力波の振幅連星のインスパイラル運動からの 重力波波形
ブラックホール形成の 重力波波形
× 10 − 22
1. Gravitational Wave >> Expected Amplitude
KAGRA
Typical frequency of BH-‐‑‒BH binary merger @ 1000Mpc
20170307 真⾙貝
5
1. Gravitational Wave >> Expected Events
10 -4 0.01 1 100
10 -23 10 -21 10 -19 10 -17
S tr ai n S en si ti v it y p S n ( f )[ Hz 1 / 2 ]
frequency [Hz]
f QNM f QNM
f QNM
5R g 10R g
50R g
2R g
10 M + 10 M 10 2 M + 10
2 M 10 3 M + 10
3 M 10 4 M + 10
4 M 10 5 M + 10
5 M
Typical frequency of BH-‐‑‒BH binary merger @ 100Mpc
10 -4 0.01 1 100
10 -23 10 -21 10 -19 10 -17
S tr ai n S en si ti v it y p S n ( f )[ Hz 1 / 2 ]
frequency [Hz]
10 M + 10 M 10 2 M + 10
2 M 10 3 M + 10
3 M 10 4 M + 10
4 M
f QNM f QNM
f QNM
5R g 10R g
50R g
2R g 10 5 M + 10
5 M
1. Gravitational Wave >> Expected Events
KAGRA
10 -4 0.01 1 100 10 -23
10 -21 10 -19 10 -17
S tr ai n S en si ti v it y p S n ( f )[ Hz 1 / 2 ]
frequency [Hz]
Typical merger duration of BH-‐‑‒BH binary merger @ 1000Mpc
10 3 M + 10 3 M
10M 2h + 10M 12s 12m 0.76s 1.2s 70ms 21h 2m 7.7s
8.9d 20m 1.25m 89d 3.4h 12m
20170307 真⾙貝
7
1. Gravitational Wave >> Expected Events
1. Gravitational Wave >> 2015 Detections
LIGO : Laser Interferometer Gravitational-Wave Observatory
4km
Michelson
http://gwcenter.icrr.u-tokyo.ac.jp/plan/history
3km Michelson Cryogenic (20K)
in quiet mountain site
Sapphira mirrors KAGRA : Kamioka Gravitational wave detector
(Large-scale Cryogenic Gravitational wave Telescope)
神楽(かぐら)
Sinto Music
S tr ai n n oi se am p li tu d e[ 1 / p Hz ]
frequency[Hz]
1 10 100 1000 104
10-25 10-22 10-19 10-16
Kagra
TOBA
aLIGO aVIRGO
ET
2016/3/25-31, 4/11-25 initial test run, iKAGRA
9
https://mediaassets.caltech.edu/gwave
2015/9/16--2016/1/15 Observational run 1 2016/11/30—
Observational run 2 LIGO : Laser Interferometer Gravitational-Wave Observatory
1. Gravitational Wave >> 2015 Detections
GW150914
observed by LIGO L1, H1 source type black hole (BH) binary
date 14 Sept 2015
time 09:50:45 UTC
likely distance 0.75 to 1.9 Gly 230 to 570 Mpc redshift 0.054 to 0.136 signal-to-noise ratio 24
false alarm prob. < 1 in 5 million false alarm rate < 1 in 200,000 yr
Source Masses M⊙
total mass 60 to 70
primary BH 32 to 41
secondary BH 25 to 33
remnant BH 58 to 67
mass ratio 0.6 to 1
primary BH spin < 0.7 secondary BH spin < 0.9
remnant BH spin 0.57 to 0.72 signal arrival time
delay
arrived in L1 7 ms before H1 likely sky position
Southern Hemispherelikely orientation face-on/off resolved to ~600 sq. deg.
duration from 30 Hz ~ 200 ms # cycles from 30 Hz ~10
peak GW strain 1 x 10
-21peak displacement of
interferometers arms ±0.002 fm
frequency/wavelengthat peak GW strain
150 Hz, 2000 km peak speed of BHs ~ 0.6 c peak GW luminosity 3.6 x 10
56erg s
-1radiated GW energy 2.5-3.5 M⊙
remnant ringdown freq. ~ 250 Hz
.remnant damping time ~ 4 ms
.remnant size, area
180 km, 3.5 x 105 km2consistent with
general relativity?
passes all tests performed graviton mass bound < 1.2 x 10
-22eV
coalescence rate of
binary black holes 2 to 400 Gpc
-3yr
-1 online trigger latency~ 3 min # offline analysis pipelines 5
CPU hours consumed ~ 50 million (=20,000 PCs run for 100 days) papers on Feb 11, 2016 13
# researchers ~1000, 80 institutions in 15 countries
B A C K G R O U N D I M A G E S : T I M E - F R E Q U E N C Y T R A C E ( T O P ) A N D T I M E - S E R I E S( B O T T O M ) I N T H E T W O L I G O D E T E C T O R S ; S I M U L A T I O N O F B L A C K H O L E H O R I Z O N S ( M I D D L E - T O P ) , B E S T F I T W A V E F O R M ( M I D D L E - B O T T O M )
G W 1 5 0 9 1 4 : F A C T S H E E T
first direct detection of gravitational waves (GW) and first direct observation of a black hole binary
Detector noise introduces errors in measurement. Parameter ranges correspond to 90% credible bounds.
Acronyms: L1=LIGO Livingston, H1=LIGO Hanford; Gly=giga lightyear=9.46 x 1012 km; Mpc=mega parsec=3.2 million lightyear, Gpc=103 Mpc, fm=femtometer=10-15 m, M⊙=1 solar mass=2 x 1030 kg
observed by LIGO L1, H1 source type black hole (BH) binary
date 14 Sept 2015
time 09:50:45 UTC
likely distance 0.75 to 1.9 Gly 230 to 570 Mpc redshift 0.054 to 0.136 signal-to-noise ratio 24
false alarm prob. < 1 in 5 million false alarm rate < 1 in 200,000 yr
Source Masses M⊙
total mass 60 to 70
primary BH 32 to 41
secondary BH 25 to 33
remnant BH 58 to 67
mass ratio 0.6 to 1
primary BH spin < 0.7 secondary BH spin < 0.9
remnant BH spin 0.57 to 0.72 signal arrival time
delay arrived in L1 7 ms before H1 likely sky position Southern Hemisphere
likely orientation face-on/off resolved to ~600 sq. deg.
duration from 30 Hz ~ 200 ms # cycles from 30 Hz ~10
peak GW strain 1 x 10-21 peak displacement of
interferometers arms ±0.002 fm frequency/wavelength
at peak GW strain 150 Hz, 2000 km peak speed of BHs ~ 0.6 c peak GW luminosity 3.6 x 1056 erg s-1 radiated GW energy 2.5-3.5 M⊙
remnant ringdown freq. ~ 250 Hz . remnant damping time ~ 4 ms . remnant size, area 180 km, 3.5 x 105 km2
consistent with
general relativity? passes all tests performed graviton mass bound < 1.2 x 10-22 eV
coalescence rate of
binary black holes 2 to 400 Gpc-3 yr-1 online trigger latency ~ 3 min # offline analysis pipelines 5
CPU hours consumed ~ 50 million (=20,000 PCs run for 100 days) papers on Feb 11, 2016 13
# researchers ~1000, 80 institutions in 15 countries B A C K G R O U N D I M A G E S : T I M E - F R E Q U E N C Y T R A C E ( T O P ) A N D T I M E - S E R I E S
( B O T T O M ) I N T H E T W O L I G O D E T E C T O R S ; S I M U L A T I O N O F B L A C K H O L E H O R I Z O N S ( M I D D L E - T O P ) , B E S T F I T W A V E F O R M ( M I D D L E - B O T T O M )
G W 1 5 0 9 1 4 : F A C T S H E E T
first direct detection of gravitational waves (GW) and first direct observation of a black hole binary
Detector noise introduces errors in measurement. Parameter ranges correspond to 90% credible bounds.
Acronyms: L1=LIGO Livingston, H1=LIGO Hanford; Gly=giga lightyear=9.46 x 1012 km; Mpc=mega parsec=3.2 million lightyear, Gpc=103 Mpc, fm=femtometer=10-15 m, M⊙=1 solar mass=2 x 1030 kg
13億光年先
(400 170 Mpc)
(z=0.054̶0.136)
36Msun + 29 Msun
のBHが合体して 62 Msun
(3 Msun分の質量が消失)
重力波が検出された!
重力波が検出できた!
BHが存在した!
BH連星が存在した!
相対論が第0近似として正しい!
https://www.ligo.caltech.edu/system/avm̲image̲sqls/binaries/57/page/Black̲Hole̲Mass̲Chart.jpg?1465864737
BHs!
29M+36M=62M 7M+14M=20M
why not more?
1. Gravitational Wave >> Expected Waveform
!25 !20 !15 !10 !5 0 5
!1.0
!0.5 0.0 0.5 1.0
時間
[
ミリ秒]
合体の時刻 重力波の振幅連星のインスパイラル運動からの 重力波波形
ブラックホール形成の 重力波波形
× 10 − 22
NS-NS NS-BH BH-BH
Inspiral Merger Ringdown
h
time
KAGRA
Typical frequency of BH-‐‑‒BH binary merger @ 1000Mpc
15
1. Gravitational Wave >> Expected Events
10 -4 0.01 1 100
10 -23 10 -21 10 -19 10 -17
S tr ai n S en si ti v it y p S n ( f )[ Hz 1 / 2 ]
frequency [Hz]
f QNM f QNM
f QNM
5R g 10R g
50R g
2R g
10 M + 10 M 10 2 M + 10
2 M 10 3 M + 10
3 M 10 4 M + 10
4 M 10 5 M + 10
5 M
S tr ai n n oi se am p li tu d e[ 1 / p Hz ]
frequency[Hz]
1 10 100 1000 104
10-25 10-22 10-19 10-16
Kagra
TOBA
aLIGO aVIRGO
ET
10 100 1000 10 4
10 100 1000 10 4
a = 0.0
a = 0.5 a = 0.9
M BH /M
fr eq u en cy [Hz ]
地上での重力波干渉計感度
BH quasi-normal freq.
(ringdown freq.)
BH < 2000Msun can be a target
IMBH ringdown freq. is detectable at LIGO/KAGRA
10Hz 1000Hz
1000M 100M
10
100 f qnm = c 3
2⇡ GM T 1 0.63(1 a) 0.3
Rees, M.J. 1978. Observatory 98: 210 17
2. Model of SMBH
Volonteri, Science 337 (2012) 544
2. Model of SMBH
2. Model of SMBH
Greene, Nature Comm 3 (2012) [arXiv:1211.7082]
19
Gas Cloud
BHs
IMBHs
SMBHs
Halo
Galaxy Globular
Cluster Massive
Stars
2. Model of SMBH
21
Yagi, CQG 29 075005 (2012) [arXiv:1202.3512]
HLX-1 has 20,000M BH!
http://hubblesite.org/newscenter/archive/releases/2012/2012/11/full/
Starburst galaxy M82 has 1000M BH
BHs
IMBHs
SMBHs
Matsushita+, ApJ, 545, L107 (2000) Matsumoto+, ApJ, 547, L25 (2001)
Ebisuzaki +, ApJ, 562, L19 (2001)
0.15pc from SgrA*
1-2 x 10 4 Msun
1602.05325
PortegiesZwart+, ApJ 641(2006)319
23
BHs
IMBHs
SMBHs
'Missing link' founded
Ebisuzaki +, ApJ, 562, L19 (2001)
(1)formation of IMBHs by runaway mergers of massive stars in dense star clusters,
(2) accumulations of IMBHs at the center region of a galaxy due to sinkages of clusters by dynamical friction
(3) mergings of IMBHs by multi-body interactions and gravitational radiation.
Marchant & Shapiro 1980; Portegies Zwart et al. 1999;
Portegies Zwart & McMillan 2002;
Portegies Zwart et al. 2004;
Holger & Makino 2003
Matsubayashi et al. 2007
Iwasawa et. al. 2010
雰囲気(巡り逢い)+仲良し成長 モデル
Matsubayashi, HS, Ebisuzaki, ApJ 614 (2004) 864
IMBH-IMBH mergers produce low freq. GW
27
Matsubayashi, HS, Ebisuzaki, ApJ 614 (2004) 864
29
How many BH mergers in the Universe?
How many BH mergers we observe in a year?
How many BHs in a galaxy?
How many galaxies in the Universe?
Detectable Distance ? KAGRA/aLIGO/aVIRGO Cosmological model?
BH spin? Signal-to-Noise?
31
Mass Function of Giant Molecular Clouds
1 100 10 4 10 6
10 -4 1 10 4 10 8 10 12
M 10 12 M
10 9 M
galaxy mass
GMC mass
A&A 580, A49 (2015) [arXiv:1505.04696]
How many BHs in a Galaxy?
10 100 1000 10 4 10 -7
0.001 10.000 10 5
1309.1223v3
10 12 M
10 9 M
Galaxy Mass n(M)
BH mass
Molecular Clouds
Maximum Core
Building Block BH
How many BHs in a Galaxy?
33
Count BHs to form a SMBH
10 1000 105 107 109 1011
10-7 10-4 0.1 100 105
10 100 1000 10 4
10 -7 0.001 10.000 10 5
10 12 M
10 9 M
Galaxy Mass n(M)
BH mass
Building Block BH
BH mass n(M)
How many BHs in a Galaxy?
Count BHs to form a SMBH
10 1000 105 107 109 1011
10-7 10-4 0.1 100 105
dynamical friction
n(M)
How many BHs in a Galaxy?
35
(sub-)Galaxy
from Halo model
Star Formation Rate
peak z=3.16
Count BHs to form a SMBH
How many Galaxies in the Universe?
36
1011 1012 1013 1014 1015
10-23 10-21 10-19 10-17 10-15 10-13
z = 0 z = 5
5 10 50 100 500 1000
(1) Halo number density
(2) N of seeds of Galaxy (subHalo)
(3) N of Galaxy
within z=1 within z=5
M 1
1×1011 5×1011 1×1012 5×1012
0.01 1 100
M 1.95
How many Galaxies in the Universe?
z<3
10 12
37 https://www.ras.org.uk/news-and-press/2910-a-universe-of-two-trillion-galaxies
http://iopscience.iop.org/article/10.3847/0004-637X/830/2/83
x10 more than before
# of galaxy (z<8) : 2x10 12
# of galaxy 10 6 >Msun
reduces in evolution
(sub-)Galaxy
from Halo model
Star Formation Rate
peak z=3.16
Count BHs to form a SMBH
How many Galaxies in the Universe?
McConnell-Ma
ApJ 764(2013)184
39
図F
BH mass
z z
in Standard Cosmology
How many BH mergers in the Universe?
Event Rate R[/yr] = N merger (z) V (D/2.26)
Standard Cosmology
averaging distances
for all directions
Signal-to-Noise Ratio (SNR)
S tr a in n o is e am p li tu d e[ 1 / √ Hz]
frequency[Hz]
Kagra
TOBA
aLIGO aVIRGO
ET
41
Detectable Distances at bKAGRA
Hierarchical Growth
⇢ 2 = 8 5
✏ r (a) f R 2
(1 + z)M S h (f R /(1 + z))
✓ (1 + z)M d L (z )
◆ 2 ✓ 4µ M
◆ 2
SNR
Energy emission=4% of total M,1% at ringdown Flanagan&Hughes, PRD57(198)4535
Standard Cosmology
a = 0.9
KAGRA KAGRA
Slide copy from Hiroyuki Nakano
43
GW150914
4.7% of mass emitted
in total 2.8% of mass
emitted by ISCO
1% of mass
emitted
in ringdown?
図F
BH mass
z z
in Standard Cosmology
How many BH mergers in the Universe?
Event Rate R[/yr] = N merger (z) V (D/2.26)
Standard Cosmology
averaging distances
for all directions
Event Rates at bKAGRA
BH spin=0.9,0.5,0.0
peak at 60M
range 40M-150M
7 events/yr
210 events/yr
45
Event Rates at bKAGRA/aLIGO
7 events/yr
peak at 60M
BH mass (final BH) [M ] BH mass (final BH) [M ]
E ve n t R at e [1 / yr]
(a1) SNR=10, KAGRA (a2) SNR=10, KAGRA
10 50 100 500 1000 5000 104
0.5 1 5 10 50 100
N merger
10 50 100 500 1000 5000 104
107 108 109 1010 1011 1012
range 40M-150M
210 events/yr
LIGO group [1602.03842]
Inoue+ MNRAS461(16)4329
6-400 /Gpc^3/yr
Kinugawa+ MNRAS456(15)1093
70-140 /yr
Event Rates at bKAGRA/aLIGO
7 events/yr
peak at 60M
BH mass (final BH) [M ] BH mass (final BH) [M ]
E ve n t R at e [1 / yr]
(a1) SNR=10, KAGRA (a2) SNR=10, KAGRA
10 50 100 500 1000 5000 104
0.5 1 5 10 50 100
N merger
10 50 100 500 1000 5000 104
107 108 109 1010 1011 1012
range 40M-150M
210 events/yr
LIGO group PRX6(2016)041015
Inoue+ MNRAS461(16)4329
6-400 /Gpc^3/yr
Kinugawa+ MNRAS456(15)1093
70-140 /yr
47
10 -4 0.01 1 100 10 -23
10 -21 10 -19 10 -17
S tr ai n S en si ti v it y p S n ( f )[ Hz 1 / 2 ]
frequency [Hz]
Sensitivity of Space GW Interferometers
10 3 M + 10
3 M
10 2 M + 10
2 M 10 4 M + 10
4 M
10 -4 0.01 1 100 10 -23
10 -21 10 -19 10 -17
10 3 M + 10
3 M
10 2 M + 10
2 M 10 4 M + 10
4 M
S tr ai n S en si ti v it y p S n ( f )[ Hz 1 / 2 ]
frequency [Hz]
Sensitivity of Space GW Interferometers
49
http://rhcole.com/apps/GWplotter/
これは遊べる GWplotter
105 106 107 108 107
108 109 1010 1011 1012
観測できるBH数分布 1年間で観測できるBH数分布
(S/N=10)
spin 0.9
spin 0
BH質量[Msun]
BH質量[Msun]
年55個
104 105 106 107 108
0.10 1 10 100
104 105 106 107 108 109
10 100 1000 104
観測できるBH合体距離 (S/N=10)
BH質量[Msun]
[Mpc]
10-4 0.01 1 100
10-23 10-21 10-19 10-17
eLISA N2A5
51
Event Rates at eLISA
観測できるBH数分布 1年間で観測できるBH数分布
(S/N=10)
spin 0.9
spin 0
BH質量[Msun]
BH質量[Msun]
観測できるBH合体距離 (S/N=10)
BH質量[Msun]
[Mpc]
10-4 0.01 1 100
10-23 10-21 10-19 10-17
PreDECIGO
100 1000 104 105 106 107
0.10 1 10 100 1000
100 1000 104 105 106 107
107 109 1011 1013
1 10 100 1000 104 105 106
1 10 100 1000 104 105
Event Rates at PreDECIGO
100 1000 104 105 106 107 107
109 1011 1013
観測できるBH数分布 1年間で観測できるBH数分布
(S/N=30)
spin 0.9
spin 0
BH質量[Msun]
BH質量[Msun]
観測できるBH合体距離 (S/N=30)
BH質量[Msun]
[Mpc]
10-4 0.01 1 100
10-23 10-21 10-19 10-17
PreDECIGO
1 10 100 1000 104 105 106
10 100 1000 104
100 1000 104 105 106 107
0.10 1 10 100
1000 年4850個
53
Event Rates at PreDECIGO
BH spin=0.9,0.5,0.0
まとめ
重力波検出のデータを蓄積することによって,銀河分布やSMBH形成シナリオを特定 したり,宇宙膨張モデルの検証や,重力理論の検証が可能になる.