D.V. Titov D.V. Titov
MPI for Solar System Research MPI for Solar System Research
Katlenburg
Katlenburg -Lindau - Lindau, Germany , Germany
Past, present and future of Past, present and future of the Venus exploration
the Venus exploration
1. History of the Venus exploration
1. History of the Venus exploration
Ancient views of Venus Ancient views of Venus
Babilon
Babilon: : Ishtar Ishtar - - the Mother of the the Mother of the God who invokes the power of dawn God who invokes the power of dawn
Maya:
Maya: Kukulcan Kukulcan - - the Sun the Sun ’s brother, ’ s brother, patron planet of warfare
patron planet of warfare Early Christians:
Early Christians: Lucifer Lucifer Greeks / Romans:
Greeks / Romans: Aphrodite / Venus Aphrodite / Venus
– – the goddess of beauty and love the goddess of beauty and love
Venus before the space era Venus before the space era
1610 – Galileo Galilei observed phases of Venus.
Early indication of that the planets rotate around the Sun not the Earth
Venus transits were used to determine distances in the Solar System
1761 - discovery of the
atmosphere by Lomonosov
Venus before the space era Venus before the space era
20-th century – the birth of spectroscopy
1920s - cloud top temperature of ~ 240K
1930s - CO
2composition, low H
2O abundance
1950s – radio
investigations: planet rotation, hot surface
Venus models: from Earth-like to hell-like
Venus surface according to S. Arrhenius
Who will be the first to Who will be the first to
reach Venus?
reach Venus?
1960s – interplanetary spacecraft for Mars and Venus exploration was built by the Soviet Union. The first launch failed. The second one (12.02.1961) succeeded but
communication was lost.
1962 – Mariner -2 – first Venus fly-by and data returned
Venera- 1
Mariner-
2
Goal
Goal - - to reach the surface ! to reach the surface !
Venera
Venera - - 4, 5, 6 reached ~20 km 4, 5, 6 reached ~20 km Venera
Venera- -7 7 – – soft landing ! soft landing !
Venera- 4
Venera-
7
Second generation of the
Second generation of the Venera Venera spacecraft (1970 spacecraft (1970 -80) - 80)
Second generation of the
Second generation of the Venera Venera spacecraft (1970 spacecraft (1970 -80) - 80)
First panoramas First panoramas
Venera- 13
Venera- 14
Venera-
14
Pioneer Venus
Pioneer Venus multiprobe multiprobe mission (1978- mission (1978 -92) 92)
Atmospheric studies from orbit
In-situ investigations Plasma monitoring
Surface radar mapping
Zo na l
Zo na l su pe rr ot at io n su pe rr ot at io n
VEGA Balloons (1984)
VEGA Balloons (1984)
Global network of balloon tracking stations
Global network of balloon tracking stations
Venus unveiled
Venus unveiled … …
Venera-15-16Pioneer- Venus
Magellan
Venus Express
Venus Express – – the first ESA the first ESA mission to Venus
mission to Venus
From Mars Express to Venus Express in 3 years From Mars Express to Venus Express in 3 years
Solar panels: smaller and different Solar panels: smaller and different composition
composition
Modified thermal design Modified thermal design
Accommodation of the new Accommodation of the new payloads
payloads
Smaller dish of the main antenna Smaller dish of the main antenna Second antenna
Second antenna
V1 launch, 1961
Venus Express launch,
2005
Souyz
Souyz launch #1703 launch #1703 November 9, 2005, November 9, 2005,
3:33:33 UTC 3:33:33 UTC
Arrival at Venus:
Arrival at Venus:
April 11, 2006
April 11, 2006
Venus Express payload Venus Express payload
•• VIRTISVIRTIS (P. Drossart, G. Piccioni) - UV-vis-near IR imaging and high resolution spectrometer (IPF/ DLR, MPS)(IPF/ DLR, MPS)
•• SPICAV / SOIRSPICAV / SOIR(J.-L. Bertaux, O. Korablev, P. Simon) -UV & IR spectrometer for solar/stellar occultations and nadir observations
•• PFSPFS (V. Formisano) - high resolution IR Fourier spectrometer (IPF/ DLR)(IPF/ DLR)
•• VMCVMC (W.J. Markiewicz) - Venus Monitoring Camera ( MPS, IPF/ DLR, IDA/ TU( MPS, IPF/ DLR, IDA/ TU-BS)-BS)
•
• VeRaVeRa (B. Häusler, M.Pätzold) - radio science experiment ((UniUni Bundeswehr, Bundeswehr, UniUni Koeln) Koeln)
•• ASPERAASPERA(S. Barabash) - Analyzer of Space Plasmas and Energetic Atoms (MPS)
(MPS)
•• MAG (T. Zhang) – Magnetometer (TUMAG (TU-- BS)BS)
T e le c o m m u n ic a ti o n s T e le c o m m u n ic a ti o n s
2 h
Apocentre 11 h Apocentre
mosaic mosaic
15 h 23 h
Off-p ericentreobservations
Pericentre
Pericentre observations observations
P P
Orbit and operations Orbit and operations
Polar orbit Polar orbit
Pericentre latitude 78 – 90 N Pericentre altitude 350 -175 km Apocentre altitude ~ 66,000 km Period ~ 24h
Observation modes Observation modes
nadir in pericentre
nadir at ascending arc apocentre mosaic
solar occultation
Earth radio-occultation
2. Venus in the Solar System
2. Venus in the Solar System
Venus as a Planet Venus as a Planet Radius = 6070 km (0.95 R Radius = 6070 km (0.95 R E E ) )
Mass = 0.815 M Mass = 0.815 M E E
Equator
Equator -to - to- -orbit inclination = 3 deg orbit inclination = 3 deg Distance to the Sun: 0.72
Distance to the Sun: 0.72 a.u a.u . . Solar flux = 2
Solar flux = 2 Earth Earth
Venus strange rotation
Sidereal Year 225 days
Sidereal Day 243 days (retrograde) Solar Day (sol) 117 days
365 d
225 d 243 d 1 d
Sun in the Venus sky
East West
3. Structure of the Atmosphere
3. Structure of the Atmosphere
Clouds Clouds
N ig ht D ay
Temperature structure Temperature structure
Thermosphere Thermosphere
Mesosphere Mesosphere
Troposphere Troposphere
VEX VEX
150 200 250 300 350 400 450 Temperature [K]
105 104 103 102 101
Pressure [Pa]
DOY 122 2007 lat: - 7.5°
DOY 132 2007 lat: - 46.1°
DOY 142 2007 lat: - 77.3°
DOY 148 2007 lat: - 87.0°
Radio-occultation temperature profiles
76
65
A lt it u d e , k m
50 86
Cloud
Tellmann et al, JGR, 2009.
Radio-occultation temperature field
Tellmann et al, JGR, 2009
Static stability (VeRa)
low latitudes middle latitudes high latitudes
Tropopause
Tellmann et al, JGR, 2009
4. Atmospheric composition
4. Atmospheric composition
CO CO
2 2- - 96,5% 96,5%
N N
2 2- - 3.5% 3.5%
H H
22O, CO, O, CO, SO SO
22, COS, , COS, HCl HCl , HF , HF … …
In situ measurements
In situ measurements
Composition of the lower atmosphere by VIRTIS Composition of the lower atmosphere by VIRTIS
CO (36 km) : 24
CO (36 km) : 24 - - 31 ppm 31 ppm H H
22O (36 km) : 31 +/ O (36 km) : 31 +/ - - 2 2 ppm ppm COS (33 km) : 2.5
COS (33 km) : 2.5 - - 4 ppm 4 ppm
SO SO
22(33 km) : 130 +/- (33 km) : 130 +/ - 50 ppm 50 ppm
Mesospheric sounding in solar occultation
COSPAR, Montréal, July 15, 2008
SPICAV/SOIR solar occultation
To Sun
Venus
VEX
Atmosphere
Orbit 232 – Order 129
Cloud top
Bertaux et al.
COSPAR, Montréal, July 15, 2008
SPICAV/SOIR solar occultation
To Sun
Venus
VEX
Atmosphere
Orbit 232 – Order 129
Cloud top
150 km
65 km
Detected molecules:
Detected molecules:
CO CO
22, H , H
22O, HDO, CO, O, HDO, CO, HCl HCl , SO , SO
22Bertaux et al.
Examples
Examples of SOIR spectra of SOIR spectra
42650 4270 4275 4280 4285 4290 4295 4300 4305
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
tm20061224 - Order 191 - Slit 2
27000 2705 2710 2715 2720 2725 2730
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
tm20061224 - Order 121 - Slit 2
33250 3330 3335 3340 3345 3350 3355 3360
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
tm20061224 - Order 149 - Slit 1
38200 3825 3830 3835 3840 3845 3850 3855
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
tm20061224 - Order 171 - Slit 2
121 171
191 149
HDO
H
2O
CO
CO
2Summary of composition results Summary of composition results
SO2 CO
H 2 SO 4
H2O
H2O SO2
Svedhem et al., Nature, 2007
70
Mesospheric Photochemical Mesospheric Photochemical
Factory Factory
Decrease of SO
2and H
2O abundance at the cloud tops Formation of H
2SO
4aerosols
Models do not explain observed amount of O
2Unknown UV absorber
Chlorine and sulfur chemistry in the Earth atmosphere CO
2H
2O
SO
2HCl
H
2SO
4CO
O 2
h
50
100
50
20
Chemistry of the lower Atmosphere Chemistry of the lower Atmosphere
Decomposition of H
Decomposition of H
22SO SO
44No photochemistry
No photochemistry
High temperatures and pressure High temperatures and pressure
Chemical disequilibrium except very Chemical disequilibrium except very close to the surface
close to the surface
Buffering of the atmospheric compo Buffering of the atmospheric compo- - sition
sition by the surface by the surface Open questions Open questions
surface composition surface composition CO and O
CO and O
2 2at the surface at the surface too high SO
too high SO
2 2abundance abundance volcanism replenishes SO volcanism replenishes SO
22H H 2 2 SO SO 4 4
SO
3CO
H
2O COS
H
2SO
4→ SO
3+ H
2O
SO
2CO
2HCl HF
H
2O
CO 2 SO 2
CaCO
3SiO
2CaSO
4CaSiO
3Composition , %
0.035
~ 0
0.00005
~3 0.965 0.965 0.0001 H H
22SO SO
44+? +?
0.78 0.78 0.21 0.21
< 0.03
~3· ~3 ·10 10
550.0003
~0 H H
22O O N
2O
2Atmospheric H
2O
Total H
2O, cm CO
2SO
2Clouds
+ 460 (!) + 460 (!) +15
Surface T, ° C
90 90 1
Surface P, bar
Venus Earth
So different twins
5. Greenhouse effect
5. Greenhouse effect
Solar Solar
radiation radiation
Therma Therma l l
emissio emissio n n
Basics of the greenhouse effect Basics of the greenhouse effect
Wavelength, microns
10 µm
0.5 µm 1 µm 5 µm
Absorption bands of the atmospheric gases
Absorption bands of the atmospheric gases
Contribution of the atmospheric components to Contribution of the atmospheric components to
the greenhouse effect on Venus the greenhouse effect on Venus
Temperature, K
CO CO 2 2 – – 460K 460K H H 2 2 O – O – 220K 220K
Clouds
Clouds – – 100K 100K
H 2 SO 4 Clouds
CO 2 H 2 O
T T
effeff~250 K ~250 K Ts ~ 750 K Ts ~ 750 K
Greenhouse effect Greenhouse effect on terrestrial planets on terrestrial planets
Venus Venus – – 500K 500K
Mars
Mars – – 5K 5K
Earth
Earth – –
40K 40K
Greenhouse effect and water loss (1) Greenhouse effect and water loss (1)
Similar volatile inventories at origin Similar volatile inventories at origin
Present water amount: H
Present water amount: H
22O O
VENUSVENUS~ 10 ~ 10
-5-5H H
22O O
EARTHEARTHDeuterium enrichment: (D/H)
Deuterium enrichment: (D/H)
VENUSVENUS~ 150 (D/H) ~ 150 (D/H)
EARTHEARTHEarth
Earth- -like planet: greenhouse effect and water loss (2) like planet: greenhouse effect and water loss (2)
Solar flux, W/m Solar flux, W/m
22T
s< 100 C T
s< 100 C T
s~ 100 C T
s>> 100 C 400 400
300 300 625 625
Venus now Venus now
Runaway
Runaway greenhouse greenhouse
Moist Moist greenhouse greenhouse
Earth now Earth now
Kasting, JGR, 1988
Greenhouse effect and habitability zone Greenhouse effect and habitability zone
MARS EARTH VENUS MERCURY
Distance, AU Distance, AU
1 0.72 0.39
1.52
Runaway greenhouse Runaway greenhouse Paradise
Paradise Global
Global
fridge
fridge
6. Non
6. Non - - LTE emissions LTE emissions
Origin of airglow on Venus
R. Hueso, private communication
7. Clouds and hazes
7. Clouds and hazes
Venus Cloud Properties Venus Cloud Properties
Altitude range 75
Altitude range 75 – – 45 km 45 km Total opacity 20
Total opacity 20 - - 40 40 Visibility > 300 m Visibility > 300 m Particles:
Particles:
R = 1
R = 1- -10 10 m m N = 100
N = 100 -1000 cm - 1000 cm
-3-3Composition:
Composition:
H H
22SO SO
44+ ? ( + ? ( S S
nn, AlCl , AlCl
33, H , H
33PO PO
44, , … … ) )
Aerosol extinction, km
Aerosol extinction, km
-1-1Orbit #673
Orbit #679 Orbit #458
Orbit #462
Cloud morphology: Global UV view (VMC)
Cloud morphology: Global UV view (VMC)
Cloud morphology
Cloud morphology
Close
Close - - up views up views
#1036
#1110 Orbit #920
#1024
Orbit #1121
#1095
Orbit #637 Orbit #722
Morning Evening
Cloud morphology: afternoon
Cloud morphology: afternoon vs vs morning morning
N ig h t s id e N ig h t s id e
Cloud top altitude Cloud top altitude
Ignatiev et al., JGR, 2009
1200 1600 2000 2400
Wavelength, nm 0
20 40 60 80
Radiance, W m-2 sr-1um-1
CO2
Venus planetary vortex Venus planetary vortex
VMC UV (0.365 VMC UV (0.365 μ μm) m)
~ 70 km
~ 70 km
VIRTIS IR (1.7 VIRTIS IR (1.7 μ μ m) m)
~ 50 km
~ 50 km
Venus polar vortex and hurricane Frances Venus polar vortex and hurricane Frances
S. Limaye et al., GRL, 2009
S. Limaye et al., GRL, 2009
8. Atmospheric dynamics
8. Atmospheric dynamics
Global Circulation Regimes Global Circulation Regimes
Troposphere and mesosphere
Zonal superrotation (>100 m/s) Poleward winds v ~ 10 m/s
Thermosphere (> 120 km)
Zonal superrotation (~100 m/s) Solar-antisolar circulation
(~200 m/s)
So la r So la r - - an tis
ola an tis
ola r r
Z on al Z on al
su pe rr ot at io n
su pe rr ot at io n
Super
Super - - rotation rotation
VMC VMC 70 km 70 km
50 km 50 km VIRTIS VIRTIS
Zonal wind, m/s
A lt it u d e , k m
Latitude, deg
0 -30 -60 -90
50 km 50 km 60 km 60 km 70 km
Z o n a l w in d s p e e d , m /s
0 -120
-80
-40 Vertical wind sheer
Vertical wind sheer 2 2 - - 3 3 m/s m/s per km per km
No wind No wind
sheer sheer
Almost solid Almost solid body rotation body rotation Zonal wind field
Zonal wind field
Sanches-Lavega et al., GRL, 2008
T tan
R u u
2
Piccialli
Piccialli et al., PhD Thesis, 2009et al., PhD Thesis, 2009
Thermal (
Thermal ( cyclostrophic cyclostrophic ) wind from ) wind from Radio
Radio - - occultation occultation
VMC UV VMC UV
VIRTIS IR
VIRTIS IR
Eye of the polar vortex Eye of the polar vortex
Piccioni, Drossart
Waves in polar region (65
Waves in polar region (65- -70 N) 70 N)
Waves in polar region (65
Waves in polar region (65 - - 70 N) (VMC) 70 N) (VMC)
UV
UV
NIR
50 km
9. 9. Radiative Radiative energy balance energy balance
Composite spectrum of the outgoing radiation Composite spectrum of the outgoing radiation
Thermal IR from the cloud tops Solar reflected
Lower atmosphere emissions
T = 230-250 K Solar flux at the top of
the Venus atmosphere
E ~ 2600 W/m
2Venus gets less energy than Venus gets less energy than the Earth !
the Earth !
Net heating at equator, net Net heating at equator, net cooling on poles
cooling on poles
Latitudinal distribution of Latitudinal distribution of radiative
radiative balance implies balance implies
energy transport by circulation energy transport by circulation
Latitude
R a d ia ti v e fl u x
Venus
Earth Received from the Sun Received from the Sun
Emitted to space Emitted to space
Taylor et al., Adv. Space Res, 1982
Latitudinal distribution of energy sources and sinks
Latitudinal distribution of energy sources and sinks
Vertical distribution of deposited solar energy Vertical distribution of deposited solar energy
Ekonomov et al., Venus-1 book,1983
Venera-13
Global mean heating Global mean heating
and cooling rates and cooling rates
Solar heating Thermal
cooling
Tomasko et al., Adv. Space Res, 1985 Crisp & Titov, Venus-2 book, 1997
half of solar energy half of solar energy deposited on Venus is deposited on Venus is
absorbed by the unknown absorbed by the unknown UV absorber in the cloud UV absorber in the cloud layer
layer
Mean deposition of solar energy on Mean deposition of solar energy on
terrestrial planets [ W/m terrestrial planets [ W/m
2 2] ]
125 170
20 Surface
~0 70
130 Atmosphere
Mars Earth
Venus
Atmospheres as heat engines Atmospheres as heat engines
Energy transport by atmospheric motions Dissipation due to friction
Efficiency
T T 1 1
T T 2 2 1
1 2
T
T
10. Entropy balance
10. Entropy balance
Planetary balance of
Planetary balance of radiative radiative energy and entropy energy and entropy Energy balance:
E
Solar– E
ThIR= 0 Entropy:
S = E/T 2-d Law of
Thermodynamics:
S ≥ 0
=0 - reversible processes
>0 – irreversible processes
Entropy is a measure of
Entropy is a measure of
dissipative processes
dissipative processes
Flux of
Flux of radiative radiative entropy entropy No atmosphere
T T
SSS = E/T
S– E/T
S= 0
Dense atmosphere
T T
SST(z T(z ) )
T T
C C< T < T
SSS = E/T E/T
SS– E/T
C< 0
Planets receive negative entropy from the Sun
Planets receive negative entropy from the Sun
70
50
0
Solar
625 475
100 / 400
Thermal
Cloud (250 K)
Surface (735K)
150 / 600
Lower atmosphere (400K) 30 / 75
20 / 27
Radiative Radiative
Energy / Entropy Energy / Entropy balance on Venus balance on Venus
Radiative
Radiative energy balance energy balance E ≈ E ≈ 0 0
Radiative
Radiative entropy balance entropy balance
S ≈ S ≈ - - 100 mW/m 100 mW/m
22/K /K
Entropy balance on Earth and Venus Entropy balance on Earth and Venus
-100 - 100 -3 - 3
Net balance Net balance
~1 ~1 +12 +12
Mechanical Mechanical
dissipation dissipation
0 0 +55 +55
Moist Moist
convection convection
-100 - 100 -70 - 70
Net radiative Net radiative sink sink
Venus Earth (Goody,
2000)
Dissipative processes in the Venus atmosphere
Dissipative processes in the Venus atmosphere - - ???? ????
Equilibrium and non
Equilibrium and non - - equilibrium thermodynamics equilibrium thermodynamics
Time
E n tr o p y
Order Order
Chaos Chaos
T
1T
2E n tr o p y
Time Chaos
Chaos
Order
Order
T
1> T
2critical temperature gradient critical temperature gradient high level of order
high level of order
high entropy production high entropy production
Benard convection
Non Non - - equilibrium dissipative systems equilibrium dissipative systems
Venus atmosphere Venus atmosphere – –
a non
a non - - equilibrium equilibrium dissipative system?
dissipative system?
11. Plasma investigations
11. Plasma investigations
Plasma Plasma environment environment (ASPERA & MAG) (ASPERA & MAG)
B e
-i
+BS
Magnetosheath
BS
SW SW
IP IP IP IP
Induced Magnetosphere
From Brace & Kliore
Ion escape (ASPERA)
Energy- mass matrix in the plasma sheet
Spatial distribution of escaping O
+• • Escaping ions: H Escaping ions: H
++, He , He
++, O , O
++• • Energy ratio O Energy ratio O
+ +: He : He
+ +: H : H
+ +~ 4:2:1 ~ 4:2:1 ion pick
ion pick- -up up
• • Flux ratio Flux ratio H H
++:O :O
+ +~ 2:1 ~ 2:1 H H
22O O
• • Escape occurs though the Escape occurs though the plasma sheet and induced plasma sheet and induced magnetosphere boundary magnetosphere boundary
Barabash et al., Nature, 2007
10-2 2 3 4 56710-1 2 3 4 567100 2 3 4 567101 electron density (1011 el/m3)
75 125 175 225 275 325 375
altitude (km)
DOY 196, X = 50°, lat = -5°
DOY 200, X = 56°, lat = -25°
DOY 202, X = 59°, lat = -34°
DOY 212, X = 80°, lat = -73°
DOY Lat[ ] SZA[ ]
□ 196 -5 50
◊ 200 -25 56
○ 202 -34 59 212 -73 80
Structure of the ionosphere (VeRa)
Pätzold et al., Nature, 2007
309 km altitude, 0516 LT, 85olatitude
Detection of lightning (MAG)
Russell et al., Nature, 2007
12. Surface
12. Surface
Venus unveiled
Venus unveiled … …
Venera-15-16Pioneer- Venus
Magellan
Surface panoramas by
Surface panoramas by Veneras Veneras
Venera- 13
Venera- 14
Venera-
14
Venus surface with VIRTIS on VEX > J. Helbert > LaThuile 2008 Folie 90
VMC mosaic
Venus surface with VIRTIS on VEX > J. Helbert > LaThuile 2008 Folie 91
Surface flux anomalies (VIRTIS) Surface flux anomalies (VIRTIS)
Alpha Regio
Dolya Tessera Phoebe Regio
Cocomama Tessera Tyche Tessera
Lhamo Tessera
N. Mueller et al., JGR, 200
N. Mueller et al., JGR, 2008 8
Future studies Future studies
Mission is extended till the end of 2012 Venus Express: atmospheric drag experiment and aerobraking
Joint observations with the Japanese orbiter mission Akatsuki (2011-12)
Future in-situ missions (landers,
balloons)
Conclusions Conclusions
About 2 Tbits of data are collected in > 3 years Venus Express delivers global and detailed survey of the atmospheric and plasma properties and processes
We are on the way to understanding how the processes led to so different planet
Revival of the interest to Venus in science community and Space Agencies
Main problem – the lack of science resources
Coordinated VEX
Coordinated VEX -Planet - Planet -C observations - C observations
Simultaneous observations of cloud Simultaneous observations of cloud morphology
morphology
Complementary dynamics studies Complementary dynamics studies Joint airglow observations
Joint airglow observations Complementary radio
Complementary radio- -science science investigations
investigations
references (1)
• Barabash, S., Fedorov, A., Sauvaud, J. J., Lundin, R., Russell, C. T., Futaana, Y., Zhang, T. L., Andersson, H., Brinkfeldt, K., Grigoriev, A., Holmstrom, M., Yamauchi, M.,
Asamura, K., Baumjohann, W., Lammer, H., Coates, A. J., Kataria, D. O., Linder, D. R., Curtis, C. C., Hsieh, K. C., Sandel, B. R., Grande, M., Gunell, H., Koskinen, H. E. J., Kallio, E., Riihela, P., Sales, T., Schmidt, W., Kozyra, J., Krupp, N., Franz, M., Woch, J., Luhmann, J., McKenna-Lawlor, S., Mazelle, C., Thocaven, J.-J., Orsini, S., Cerulli-Irelli, R., Mura, M., Milillo, M., Maggi, M., Roelof, E., Brandt, P., Szego, K., Winningham, J.
D., Frahm, R. A., Scherrer, J., Sharber, J. R., Wurz, P., Bochsler, P., 2007: The loss of ions from Venus through the plasma wake. Nature, 450, 650-653.
• Brace, L. H., Kliore, A. J., 1991: The structure of the Venus ionosphere. Space Science Reviews, 55, 81-163.
• Crisp, D., Titov, D., 1997: "The thermal balance of the venus atmosphere“ in Bougher, S.
W., Hunten, D. M., Phillips, R. J., Eds., Venus II (Space Science Series). The University of Arizona Press, Tucson, Arizona, USA, 353-384.
• Ekonomov, A. P., Golovin, Y. M., Moroz, V. I., Moshkin, B. Y., 1983: Solar scatterd radiation measurements by Venus probes, in Hunten, D.M., Colin, L., Donahue, T.M., Moroz, V.I. (Eds.), Venus (Space Science Series). The University of Arizona Press, Tucson, Arizona, USA, 632-649.
• Hueso, R., private communication.
• Ignatiev, N. I., Titov, D. V., Piccioni, G., Drossart, P., Markiewicz, W. J., Cottini V.,
Roatsch, Th., Almeida, M., Manoel, N., 2009: Altimetry of the Venus cloud tops from the Venus Express observations. J. Geophys. Res., 114, E00B43.
• Kasting, J. F., 1988: Runaway and moist greenhouse atmosphere and the evolution of
Earth and Venus. Icarus, 41, 429-463.
references (2)
• Limaye, S. S., Kossin, J. P., Rozoff, C., Piccioni, G., Titov, D. V., Markiewicz, W. J., 2009: Vortex circulation on Venus: Dynamical similarities with terrestrial hurricanes. Geophys. Res. Lett., 36, L04204.
• Mueller, N., Helbert, J., Hashimoto, G. L., Tsang, C. C. C., Erard, S., Piccioni, G., Drossart, P., 2008: Venus surface thermal emission at 1 m in VIRTIS imaging observations: Evidence for variation of crust and mantle differentiation conditions. J. Geophys. Res., 113, E00B17.
• Patzold, M., Hausler, B., Bird, M. K., Tellmann, S., Mattei, R., Asmar, S. W., Dehant, V., Eidel, W., Imamura, T., Simpson, R. A., Tyler, G. L., 2007: The structure of Venus' middle atmosphere and ionosphere. Nature, 450, 657-660.
• Piccialli A., PhD Thesis, 2009.
• Russell, C. T., Zhang, T. L., Delva, M., Magnes, W., Strangeway, R. J., Wei, H. Y., 2007: Lightning on Venus inferred from whistler-mode waves in the ionosphere. Nature. 450, 661-662.
• Sanchez-Lavega, A., Hueso, R., Piccioni, G., Drossart, P., Peralta, J., Perez-Hoyos, S., Wilson, C. F., Taylor, F. W., Baines, K. H., Luz, D., Erard, S., Lebonnois, S., 2008: Variable winds on Venus
mapped in three dimensions. Geophys. Res. Lett., 35, L13204.
• Svedhem, H, Titov, D. V., Taylor, F. W., Witasse, O., 2007: Venus as a more Earth-like planet.
Nature, 450, 629-632.
• Taylor, Jr., H. A., Mayr, H. G., Grebowsky, J. M., Niemann, H. B., Hartle, R. E., Cloutier, P. A., Barnes, A., Daniell, Jr., R. E., 1982: Modulation of dayside ion and neutral distributions at Venus:
Evidence of direct and indirect solar energy inputs. Advances in Space Research, 2(10), 29-34.
• * Tellmann, S., Patzold, M, Hausler, B., Bird, M. K., Tyler, G. L., 2009: Structure of the Venus neutral atmosphere as observed by the Radio Science experiment VeRa on Venus Express. J.
Geophys. Res., 114, E00B36.
• * Tomasko, M. G., Doose, L. R., Smith, P. H., 1985: The absorption of solar energy and the heating rate in the atmosphere of Venus. Adv. Space Res., 5(9), 71-79.