• Tidak ada hasil yang ditemukan

PDF Wasserstein controls for heat distributions

N/A
N/A
Protected

Academic year: 2024

Membagikan "PDF Wasserstein controls for heat distributions"

Copied!
47
0
0

Teks penuh

(1)

Wasserstein controls for heat distributions

Kazumasa Kuwada

(Tokyo Institute of Technology)

Stochastic Processes, Analysis and Mathematical Physics In honor of Professor Masatoshi Fukushima’s Sanju

(Kansai University) Aug. 25-29, 2014

(2)

1. Introduction & Overview

(3)

What’s Wasserstein control?

µt = etLµ0: law at time t of diffusion process

on met. meas. sp. (M, d, v) generated by L Wp(µ, ν) = inf{kdkLp(π) | π: coupling of µ and ν}

(Lp-Wasserstein distance (p ∈ [1,∞])) Wasserstein control

A (Lipschitz type) upper bound of Wpt, µ0t) by Wp0, µ00)

and “difference” between t & s

t = etLµ0, µ0t = etLµ00)

(4)

What’s Wasserstein control?

µt = etLµ0: law at time t of diffusion process

on met. meas. sp. (M, d, v) generated by L Wp(µ, ν) = inf{kdkLp(π) | π: coupling of µ and ν}

(Lp-Wasserstein distance (p ∈ [1,∞])) Space-time Wasserstein control

A (Lipschitz type) upper bound of Wps, µ0t) by Wp0, µ00) and “difference” between t & s

t = etLµ0, µ0t = etLµ00)

3 / 19

(5)

Coupling by parallel transport

On a Riem. mfd M:

d dtd

(Xt,Xt0 ): coupling of BMs by parallel transp.

Ric ≥ K ⇒ Wpt, µ0t) ≤ e−KtWp0, µ00)

(p ∈ [1,∞]) Similarly, on RRRm, dXt = dWt +∇V(Xt)dt,

HessV ≥ K ⇒ the same bound

(6)

Coupling by parallel transport

On a Riem. mfd M: d

dtd(

Xt,

Xt0 ) ≤ − Z Xt0

Xt

Ric

Ric ≥ K ⇒ Wpt, µ0t) ≤ e−KtWp0, µ00)

(p ∈ [1,∞]) Similarly, on RRRm, dXt = dWt +∇V(Xt)dt,

HessV ≥ K ⇒ the same bound

4 / 19

(7)

Duality with gradient estimate

Wp(Ptµ, Ptµ0) ≤ CWp(µ, µ0)

⇔ (p ∈ [1,∞])

|∇Ptf| ≤ CPt(|∇f|p)1/p

[K. ’10,’13 / Bakry, Gentil & Ledoux]

Ric ≥ K on a Riem. mfd

⇔ 1

2∆|∇f|2 − h∇f,∇∆fi ≥ K|∇f|2

⇔ |∇Ptf| ≤ e−KtPt(|∇f|p)1/p

⇔ Wp(Ptµ, Ptµ0) ≤ e−KtWp(µ, µ0)

(8)

Duality with gradient estimate

Wp(Ptµ, Ptµ0) ≤ CWp(µ, µ0)

⇔ (p ∈ [1,∞])

|∇Ptf| ≤ CPt(|∇f|p)1/p

[K. ’10,’13 / Bakry, Gentil & Ledoux]

Ric ≥ K on a Riem. mfd

⇔ 1

2∆|∇f|2 − h∇f,∇∆fi ≥ K|∇f|2

⇔ |∇Ptf| ≤ e−KtPt(|∇f|p)1/p

⇔ Wp(Ptµ, Ptµ0) ≤ e−KtWp(µ, µ0)

[Bakry & ´Emery ’84 / von Renesse & Sturm ’05]

5 / 19

(9)

Duality with gradient estimate

Wp(Ptµ, Ptµ0) ≤ CWp(µ, µ0)

⇔ (p ∈ [1,∞])

|∇Ptf| ≤ CPt(|∇f|p)1/p

[K. ’10,’13 / Bakry, Gentil & Ledoux]

Ric ≥ K on a Riem. mfd

⇔ 1

2∆|∇f|2 − h∇f,∇∆fi ≥ K|∇f|2

⇔ |∇Ptf| ≤ e−KtPt(|∇f|p)1/p

⇔ Wp(Ptµ, Ptµ0) ≤ e−KtWp(µ, µ0)

(10)

Duality with gradient estimate

Wp(Ptµ, Ptµ0) ≤ CWp(µ, µ0)

⇔ (p ∈ [1,∞])

|∇Ptf| ≤ CPt(|∇f|p)1/p

[K. ’10,’13 / Bakry, Gentil & Ledoux]

Ric ≥ K on a Riem. mfd

⇔ 1

2∆|∇f|2 − h∇f,∇∆fi ≥ K|∇f|2

⇔ |∇Ptf| ≤ e−KtPt(|∇f|p)1/p

⇔ Wp(Ptµ, Ptµ0) ≤ e−KtWp(µ, µ0)

[Bakry & ´Emery ’84 / von Renesse & Sturm ’05]

5 / 19

(11)

Otto calculus

νt = Ptµ0

⇔ “∂tνt = −∇Ent(νt)” on (P(M), W2)

[Jordan, Kinderlehrer & Otto ’98, Otto ’01]

[Ambrosio, Gigli & Savar´e ’05, ...]

F “Hess Ent ≥ K” (w.r.t. W2)

⇒ W2t, νt0) ≤ e−KtW20, ν00)

F “Hess Ent ≥ K” ⇔ Ric ≥ K on a Riem. mfd [von Renesse & Sturm ’05]

(12)

Otto calculus

νt = Ptµ0

⇔ “∂tνt = −∇Ent(νt)” on (P(M), W2)

[Jordan, Kinderlehrer & Otto ’98, Otto ’01]

[Ambrosio, Gigli & Savar´e ’05, ...]

F “Hess Ent ≥ K” (w.r.t. W2)

⇒ W2t, νt0) ≤ e−KtW20, ν00)

F “Hess Ent ≥ K” ⇔ Ric ≥ K on a Riem. mfd [von Renesse & Sturm ’05]

6 / 19

(13)

Further topics

Coupling method

⇒ Heat dist.’s on (backward) Ricci flows

[Arnaudon, Koulibaly & Thalmaier ’09 / K. ’12]

Monotonicity of L/L0-transportation cost

[K. & Philipowski ’11 / Amaba & K.]

Duality

⇒ Wp-controls for subelliptic diffusions (on Lie gr.) [Melcher ’08 / Eldredge ’10] & [K. ’10]

(14)

Further topics

Coupling method

⇒ Heat dist.’s on (backward) Ricci flows

[Arnaudon, Koulibaly & Thalmaier ’09 / K. ’12]

Monotonicity of L/L0-transportation cost

[K. & Philipowski ’11 / Amaba & K.]

Duality

⇒ Wp-controls for subelliptic diffusions (on Lie gr.) [Melcher ’08 / Eldredge ’10] & [K. ’10]

7 / 19

(15)

Further topics

tµt = −∇Ent(µt) on (P(M), W2)

† “Hess Ent ≥ K” as a definition of “Ric ≥ K”

[Sturm ’06 / Lott & Villani ’09]

† Unifying “Ric ≥ K”

on Riemannian metric measure sp.’s [Ambrosio, Gigli & Savar´e ’14 / AGS / AGS / Ambrosio, Gigli, Mondino & Rajala]

(16)

Further topics

Extenstion to “Ric ≥ K & dim ≤ N” on mm sp.

[Erbar, K. & Sturm]

“Hess Ent 1

NEnt⊗2 K

1

2∆|∇f|2− h∇f,∇∆fi ≥ K|∇f|2 + (∆f)2 N

|∇Ptf|2 e−2KtPt(|∇f|2) 1e−2Kt

N K (∆Ptf)2

[Bakry & Ledoux ’06]

W2(Psµ, Ptµ0)2

e(−2Kt)∨(−2Ks)

W2(µ, µ0)2+ Z t

s

s

N K e2Kr 1dr

!2

9 / 19

(17)

Further topics

Extenstion to “Ric ≥ K & dim ≤ N” on mm sp.

[Erbar, K. & Sturm]

“Hess Ent 1

NEnt⊗2 K

1

2∆|∇f|2− h∇f,∇∆fi ≥ K|∇f|2 + (∆f)2 N

|∇Ptf|2 e−2KtPt(|∇f|2) 1e−2Kt

N K (∆Ptf)2

[Bakry & Ledoux ’06]

W2(Psµ, Ptµ0)2

e(−2Kt)∨(−2Ks)

W (µ, µ0)2+

Z ts

N K dr

!2

(18)

Further topics

Extenstion to “Ric ≥ K & dim ≤ N” on mm sp.

[Erbar, K. & Sturm]

“Hess Ent 1

NEnt⊗2 K

1

2∆|∇f|2− h∇f,∇∆fi ≥ K|∇f|2 + (∆f)2 N

|∇Ptf|2 e−2KtPt(|∇f|2) 1e−2Kt

N K (∆Ptf)2

[Bakry & Ledoux ’06]

W2(Psµ, Ptµ0)2

e(−2Kt)∨(−2Ks)

W2(µ, µ0)2+ Z t

s

s

N K e2Kr 1dr

!2

9 / 19

(19)

Further topics

Extenstion to “Ric ≥ K & dim ≤ N” on mm sp.

[Erbar, K. & Sturm]

“Hess Ent 1

NEnt⊗2 K

1

2∆|∇f|2− h∇f,∇∆fi ≥ K|∇f|2 + (∆f)2 N

|∇Ptf|2 e−2KtPt(|∇f|2) 1e−2Kt

N K (∆Ptf)2

[Bakry & Ledoux ’06]

W2(Psµ, Ptµ0)2

e(−2Kt)∨(−2Ks)

W (µ, µ0)2+

Z ts

N K dr

!2

(20)

Further topics

Extenstion to “Ric ≥ K & dim ≤ N” on mm sp.

[Erbar, K. & Sturm]

“Hess Ent 1

NEnt⊗2 K

1

2∆|∇f|2− h∇f,∇∆fi ≥ K|∇f|2 + (∆f)2 N

|∇Ptf|2 e−2KtPt(|∇f|2) 1e−2Kt

N K (∆Ptf)2

[Bakry & Ledoux ’06]

W2(Psµ, Ptµ0)2

e(−2Kt)∨(−2Ks)

W2(µ, µ0)2+ Z t

s

s

N K e2Kr 1dr

!2

9 / 19

(21)

1. Introduction & Overview

2. Duality in space-time estimates

3. Wp-space-time control on Riem. mfds

(22)

1. Introduction & Overview

2. Duality in space-time estimates

3. Wp-space-time control on Riem. mfds

(23)

Framework

(M, d): Polish met. sp., d: geodesic metric Pt(x,·) ∈ P(M): semigroup of Markov kernels

Ass. f ∈ CbLip(M), x ∈ M, t > 0

LPtf(x) = lim

s→0

Pt+sf(x) −Ptf(x) s

Hopf-Lax semigr. Qrf(x) := inf

y∈M

f(y) +r

d(x, y) r

p

(p ∈ (1,∞))

(24)

Framework

(M, d): Polish met. sp., d: geodesic metric Pt(x,·) ∈ P(M): semigroup of Markov kernels

Ass. f ∈ CbLip(M), x ∈ M, t > 0

LPtf(x) = lim

s→0

Pt+sf(x) −Ptf(x) s

Hopf-Lax semigr.

Qrf(x) := inf

y∈M

f(y) +r

d(x, y) r

p

(p ∈ (1,∞))

11 / 19

(25)

Extended space-time duality

at, bt > 0 conti., p ≥ β ≥ 1, J(du) = du

bu: loc. finite meas. on [0,∞) Theorem 1

The following are equivalent:

(i) Wp(Psµ, Ptµ0)β ≤ Z

[s,t]

− auJ(du) β

Wp(µ, µ0)β

+J([s, t])β

+ J([s, t])β

(ii) |∇Ptf|β≤ aβt

Pt(|∇f|p)β/p− bβt|LPtf|β for f = Q f˜ (δ > 0 & f˜∈ CLip(M))

(26)

Extended space-time duality

at, bt > 0 conti., p ≥ β ≥ 1, J(du) = du

bu: loc. finite meas. on [0,∞) Theorem 1

The following are equivalent:

(i) Wp(Psµ, Ptµ0)β ≤ Z

[s,t]

− auJ(du) β

Wp(µ, µ0)β

+ J([s, t])β

(ii) |∇Ptf|β≤ aβt

Pt(|∇f|p)β/p− bβt|LPtf|β for f = Qδf˜ (δ > 0 & f˜∈ CbLip(M))

12 / 19

(27)

Rough idea of the proof

B (i) ⇒ (ii): Differentiation in space-time

Psf(y) −Ptf(x) = Z

M×M

(f(z) − f(w))π(dzdw)

≈ Z

M×M

|∇f|(w)d(z, w)π(dzdw) for π: coupling of Psδy and Ptδx

(LHS) → |∇Ptf|(x) + λLPtf(x)

(y → x & s → t with λ(t−s) = d(x, y) (λ ∈ RRR)) Key Fact: |∇Qrf|: u.s.c.

(28)

Rough idea of the proof

B (i) ⇒ (ii): Differentiation in space-time

Psf(y) −Ptf(x) = Z

M×M

(f(z) − f(w))π(dzdw)

≈ Z

M×M

|∇f|(w)d(z, w)π(dzdw)

for π: coupling of Psδy and Ptδx (LHS) → |∇Ptf|(x) + λLPtf(x)

(y → x & s → t with λ(t−s) = d(x, y) (λ ∈ RRR))

Key Fact: |∇Qrf|: u.s.c.

13 / 19

(29)

Rough idea of the proof

B (i) ⇒ (ii): Differentiation in space-time

Psf(y) −Ptf(x) = Z

M×M

(f(z) − f(w))π(dzdw)

≈ Z

M×M

|∇f|(w)d(z, w)π(dzdw)

for π: coupling of Psδy and Ptδx (LHS) → |∇Ptf|(x) + λLPtf(x)

(y → x & s → t with λ(t−s) = d(x, y) (λ ∈ RRR))

(30)

Rough idea of the proof

B (ii) ⇒ (i): Integration in space-time (µr)r∈[0,1]: Wp-geod. from µ to µ0

& consider Wp-speed of Pξ(r) µr (ξ: parametrization)

via the Kantorovich duality:

Wp(Pξ(r) µs, Pξ(r+s) µr+s)p

psp ≈???

Key fact: ∂r+Qrϕ + |∇Qrϕ|p p = 0

14 / 19

(31)

Rough idea of the proof

B (ii) ⇒ (i): Integration in space-time (µr)r∈[0,1]: Wp-geod. from µ to µ0

& consider Wp-speed of Pξ(r) µr (ξ: parametrization) via the Kantorovich duality:

Wp(µ, µ0)p

psp−1 = sup

ϕ∈CbLip(M)

Z

M

Qsϕdµ0 − Z

M

ϕdµ

Key fact: ∂r+Qrϕ + |∇Qrϕ|p p = 0

(32)

Rough idea of the proof

B (ii) ⇒ (i): Integration in space-time (µr)r∈[0,1]: Wp-geod. from µ to µ0

& consider Wp-speed of Pξ(r) µr (ξ: parametrization) via the Kantorovich duality:

Wp(Pξ(r) µs, Pξ(r+s) µr+s)p

psp ≈∂s

Z

Pξ(r+s)Qsϕ dµr+s

Key fact: ∂r+Qrϕ + |∇Qrϕ|p p = 0

14 / 19

(33)

Rough idea of the proof

B (ii) ⇒ (i): Integration in space-time (µr)r∈[0,1]: Wp-geod. from µ to µ0

& consider Wp-speed of Pξ(r) µr (ξ: parametrization) via the Kantorovich duality:

Wp(Pξ(r) µs, Pξ(r+s) µr+s)p

psp ≈∂s

Z

Pξ(r+s)Qsϕ dµr+s

Key fact: ∂r+Qrϕ + |∇Qrϕ|p p = 0

(34)

Remarks

(i) ⇔ (ii) ⇔ (i)’:

(i)’ Wp(Psµ, Ptµ0)β ≤ Aβs,tWp(µ, µ0)β +Bs,tβ

with At,t = at & Bs,t

|t− s| → 1

bt as s → t (⇒ (i)’ enjoys self-improvement)

If Pt is strong Feller,

(ii) with f ∈ CbLip(M) ⇔ (i)

The same holds for Pt defined on Lp-spaces (with a.e. umbiguity) under suitable assumptions

15 / 19

(35)

Remarks

(i) ⇔ (ii) ⇔ (i)’:

(i)’ Wp(Psµ, Ptµ0)β ≤ Aβs,tWp(µ, µ0)β +Bs,tβ

with At,t = at & Bs,t

|t− s| → 1

bt as s → t (⇒ (i)’ enjoys self-improvement)

If Pt is strong Feller,

(ii) with f ∈ CbLip(M) ⇔ (i)

The same holds for Pt defined on Lp-spaces

(36)

Remarks

(i) ⇔ (ii) ⇔ (i)’:

(i)’ Wp(Psµ, Ptµ0)β ≤ Aβs,tWp(µ, µ0)β +Bs,tβ

with At,t = at & Bs,t

|t− s| → 1

bt as s → t (⇒ (i)’ enjoys self-improvement)

If Pt is strong Feller,

(ii) with f ∈ CbLip(M) ⇔ (i)

The same holds for Pt defined on Lp-spaces (with a.e. umbiguity) under suitable assumptions

15 / 19

(37)

1. Introduction & Overview

2. Duality in space-time estimates

3. Wp-space-time control on Riem. mfds

(38)

Example of W

p

-space-time control

M: cpl. Riem. mfd, dimM ≤ N, Ric ≤ K

p ≥ 2, bu = s

e2Ku − 1

(N +p −2)K, J(du) = du bu Theorem 2

The following holds: (a) Wp(Psµ, Ptµ0)2

Z

[s,t]

− e−KtJ(du) 2

Wp(µ, µ0)2

+J([s, t])2

(b) |∇Ptf|2 ≤ e−Kt

Pt(|∇f|p)2/p − b2t|LPtf|2 for f ∈ CbLip(M)

17 / 19

(39)

Example of W

p

-space-time control

M: cpl. Riem. mfd, dimM ≤ N, Ric ≤ K p ≥ 2, bu =

s

e2Ku − 1

(N +p −2)K, J(du) = du bu Theorem 2

The following holds:

(a) Wp(Psµ, Ptµ0)2≤ Z

[s,t]

− e−KtJ(du) 2

Wp(µ, µ0)2

+J([s, t])2

(b) |∇Ptf|2 ≤ e−Kt

Pt(|∇f|p)2/p − b2t|LPtf|2

(40)

Example of W

p

-space-time control

M: cpl. Riem. mfd, dimM ≤ N, Ric ≤ K p ≥ 2, bu =

s

e2Ku − 1

(N +p −2)K, J(du) = du bu Theorem 2

The following holds:

(a) Wp(Psµ, Ptµ0)2≤ Z

[s,t]

− e−KtJ(du) 2

Wp(µ, µ0)2

+J([s, t])2

(b) |∇Ptf|2 ≤ e−Kt

Pt(|∇f|p)2/p − b2t|LPtf|2 for f ∈ CbLip(M)

17 / 19

(41)

Method of the proof

Coupling by parallel transport of BMs with different speed

(⇒ (Rough) est. of Wp-speed)

(i)’ ⇒ (ii): still rough

(ii) ⇒ (c) below ⇒ (b) ⇒ (a) (c) 1

2∆|∇f|2 − h∇f,∇∆fi

K|∇f|2+ (Lf)2

N + p2 + p2 4(p1)

|∇|∇f|2|2

|∇f|2

(Bakry-´Emery theory)

(42)

Method of the proof

Coupling by parallel transport of BMs

with different speed (⇒ (Rough) est. of Wp-speed) (i)’ ⇒ (ii): still rough

(ii) ⇒ (c) below ⇒ (b) ⇒ (a) (c) 1

2∆|∇f|2 − h∇f,∇∆fi

K|∇f|2+ (Lf)2

N + p2 + p2 4(p1)

|∇|∇f|2|2

|∇f|2

(Bakry-´Emery theory)

18 / 19

(43)

Method of the proof

Coupling by parallel transport of BMs

with different speed (⇒ (Rough) est. of Wp-speed) (i)’ ⇒ (ii): still rough

(ii) ⇒ (c) below ⇒ (b) ⇒ (a) (c) 1

2∆|∇f|2 − h∇f,∇∆fi

K|∇f|2+ (Lf)2

N + p2 + p2 4(p1)

|∇|∇f|2|2

|∇f|2

(Bakry-´Emery theory)

(44)

Method of the proof

Coupling by parallel transport of BMs

with different speed (⇒ (Rough) est. of Wp-speed) (i)’ ⇒ (ii): still rough

(ii) ⇒ (c) below ⇒ (b) ⇒ (a) (c) 1

2∆|∇f|2 − h∇f,∇∆fi

K|∇f|2+ (Lf)2

N + p2 + p2 4(p1)

|∇|∇f|2|2

|∇f|2

(Bakry-´Emery theory)

18 / 19

(45)

Method of the proof

Coupling by parallel transport of BMs

with different speed (⇒ (Rough) est. of Wp-speed) (i)’ ⇒ (ii): still rough

(ii) ⇒ (c) below ⇒ (b) ⇒ (a) (c) 1

2∆|∇f|2 − h∇f,∇∆fi

K|∇f|2+ (Lf)2

N + p2 + p2 4(p1)

|∇|∇f|2|2

|∇f|2

(Bakry-´Emery theory)

(46)

Some remarks

∆ L = ∆ + Z (nonsymm.) is possible

Ric Ric − ∇Z − 1

N − mZ ⊗ Z

For Ric ≥ K & dim ≤ N ⇒ (c), no straightforward proof is known

19 / 19

(47)

Some remarks

∆ L = ∆ + Z (nonsymm.) is possible

Ric Ric − ∇Z − 1

N − mZ ⊗ Z

For Ric ≥ K & dim ≤ N ⇒ (c), no straightforward proof is known

Referensi

Dokumen terkait