• Tidak ada hasil yang ditemukan

Periods of cusp forms on GSp4

N/A
N/A
Protected

Academic year: 2024

Membagikan "Periods of cusp forms on GSp4"

Copied!
29
0
0

Teks penuh

(1)

Periods of cusp forms on GSp

4

Shih-Yu Chen

Academia Sinica

22nd Autumn Workshop on Number Theory November 3, 2019

(2)

We present our recent progress on the following topics:

(1) Automorphic analogue of Yoshida’s period relation forGSp4. (2) Algebraicity of the symmetric sixth powerL-functions forGL2. (3) Algebraicity of critical values of the Rankin-SelbergL-functions for

GSp4×GL2.

(3)

Deligne’s conjecture for the spinor L-functions for GSp

4

π: an irr. cusp. auto. rep. ofGSp4(A) with trivial central character.

We assumeπisglobally genericandπ is adiscrete series representation.

π|Sp4(R)=D12)⊕D(−λ2,−λ1),

whereD12)is the discrete series representation ofSp4(R) with Blattner parameter (λ1, λ2)∈Z2 such that 1−λ1≤λ2≤ −1.

Q(π): the rationality field ofπ.

L(s, π): the spinorL-function ofπ.

We assumeπisstable, that is, the functorial lift ofπtoGL4(A) is cuspidal.

(4)

Deligne’s conjecture for the spinor L-functions for GSp

4

M: the hypothetical motive attached to the spinorL-functionL(s, π).

M is a motive overQ with coefficients inQ(π) of rank 4 and of pure weightw =λ1−λ2−1.

c±(M)∈(Q(π)⊗QC)×: Deligne’s periods attached toM.

MotivicL-function ofM: L(M,s) =

L(∞) s−w

2, πσ

σ

, whereσruns over a complete set of coset representatives of Aut(C)/Aut(C/Q(π)).

Conjecture (Deligne (1977))

Let m∈Zbe a critical point for M. For any finite order characterχof Q×\A×, we have

L(M⊗χ,m) (2π√

−1)2m·G(χ)2·c(−1)msgn(χ)(M) ∈Q(π).

Here G(χ)is the Gauss sum ofχ.

(5)

Deligne’s conjecture for the spinor L-functions for GSp

4

We have the following automorphic analogue of Deligne’s conjecture.

Theorem (Grobner−Raghuram (2014), Januszewski (2016), Jiang−Sun−Tian (2019))

There exist c±(π)∈C×such that L(12+m, π×χ) G(χ)2·c(−1)msgn(χ)(π)

!σ

= L(12+m, πσ×χσ) G(χσ)2·c(−1)msgn(χ)σ)

for allσ∈Aut(C), all critical points 12+m∈ 12+Zof L(s, π), and any finite order characterχofQ×\A×.

Remark

The theorem is a special case of the results on the algebraicity of the critical values of the twisted standardL-functions of irr. regular algebraic,symplectic cusp. auto. rep. ofGL2n.

(6)

Yoshida’s period relation

πhol: the unique irr. holo. cusp. auto. rep. of GSp4(A) such that πfholf.

fhol: a non-zerovector-valued holomorphic cusp form associated toπhol normalized so that its Fourier coefficients belong toQ(π).

c±(Sym2(M)): Deligne’s periods attached toSym2(M).

Theorem (Yoshida (2001)) We have

c+(Sym2(M)) (2π√

−1)6−3λ1+3λ2·c+(M)·c(M)·(kfholσ k)σ

∈Q(π).

(7)

Deligne’s conjecture for the adjoint L-functions for GSp

4

L(s, π,Ad): the adjointL-function ofπ.

MotivicL-function ofSym2(M):

L(Sym2(M),s) =

L(∞)(s−w, πσ,Ad)

σ.

Conjecture (Deligne (1977))

Let m∈Zbe a critical point for M. We have L(Sym2(M),m) (2π√

−1)d(−1)mm·c(−1)m(Sym2(M)) ∈Q(π).

Here d+= 6and d= 4.

In particular, when m is evem, we have L(Sym2(M),m) (2π√

−1)6+6m−3λ1+3λ2·c+(M)·c(M)·(kfholσ k)σ

∈Q(π)

(8)

Main result

Following is our main result, which can be regarded as an automorphic analogue of Yoshida’s period relation.

Theorem (C.-)

Assume thatλ12≥4andλ2≤ −5. Forσ∈Aut(C), we have L(1, π,Ad)

π3·c+(π)·c(π)· kfholk σ

= L(1, πσ,Ad)

π3·c+σ)·cσ)· kfholσ k.

Remark

(1) The result holds for any irr. (tempered) stablecusp. auto. rep. πof GSp4(A) with trivial central character such thatπ is adiscrete series representation.

(e.g. π=πF with Hecke eigenformF∈S2−λ212−2(Sp4(Z)).) (2) In caseλ12= 2,πp is unramified for all primesp, and there exists a

quadratic characterχofQ×\A×withχ(−1) =−1 such that L 12, π

L 12, π×χ

6= 0. Then the theorem follows from the explicit refinement of B¨ocherer’s conjecture proved by Furusawa−Morimoto.

(9)

Symmetric sixth power L-functions for GL

2

τ ⊂ A0(PGL2(A)):non-dihedralwithτ'D(κ)for someκ≥2.

π⊂ A0(GSp4(A)): the automorphic descent ofSym3τ. Corollary

Assumeκ≥6. Forσ∈Aut(C), we have L(1, τ,Sym6)

π6· kfτk3· kFτk σ

= L(1, τσ,Sym6) π6· kfτσk3· kFτσk. Here

fτ is the normalized newform ofτ,

Fτ is a non-zero vector-valued holomorphic cusp form associated toπhol normalized so that its Fourier coefficients belong toQ(τ).

Theorem (Morimoto) Forσ∈Aut(C), we have

kFτk kfτk3

σ

=±kFτσk kfτσk3.

(10)

Symmetric sixth power L-functions for GL

2

Combining the corollary with Morimoto’s result, we obtain the following theorem.

Theorem

Forσ∈Aut(C), we have

L(1, τ,Sym6) π6· kfτk6

σ

=±L(1, τσ,Sym6) π6· kfτσk6 .

Remark

(1) Morimoto proved in a different way that the ratio is inQ,

elliptic modular formHilbert modular form, all critical values,

twisted symmetric fourth powerL-function.

(2) Whenτ has level 1 andFτ is a Hecke eigenform, we callFτ the

Kim−Ramakrishnan−Shahidi lift offτ. Katsurada−Takemori conjectured that, after suitably normalized, a prime ideal dividing the ratio but not dividing Γ(2κ) gives a congruence betweenFτ and non K-R-S lift.

(11)

Proof of the main result

We show that there existΩW±(π)∈C×, call theWhittaker periodsofπ, satisfying the following assertions:

(1) Forσ∈Aut(C), we have L 12+m, π

L λ122−1, π×χ π−2λ1·G(χ)2·ΩW+(π)

!σ

=L 12+m, πσ

L λ122−1, πσ×χσ π−2λ1·G(χσ)2·ΩW+σ) for any finite order characterχofQ×\A×and critical points 12+msuch that (−1)m+λ1 +2λ2χ(−1) = 1.

(2) Forσ∈Aut(C), we have L(m, π×τ)

π−λ12·G(χτ)2·ΩW(π)· kfτk σ

= L(m, πσ×τσ)

π−λ12·G(χστ)2·ΩWσ)· kfτσk for any irr. cusp. auto. rep. τ ofGL2(A) satisfying:

(i) ωτ=χτ| |r

Afor some finite order characterχτ ofQ×\A×andrZ, (ii) τ⊗ | |−r/2

R 'D(`) for someλ1+λ2+ 1`λ1with`r( mod 2), and any critical pointsm∈Zwithm>−r2.

(12)

Proof of the main result

(3) Forσ∈Aut(C), we have kfπk

W+(π)·ΩW(π) σ

= kfπσk ΩW+σ)·ΩWσ). Herefπis thenormalized newform ofπ(to be explained later).

(1)+ results ofJanuszewski, Jiang−Sun−Tian: ifλ12≥4, then ΩW+(π)

π1·c+(π)·c(π) σ

= ΩW+σ) π1·c+σ)·cσ).

(2)+ results ofFurusawa, B¨ocherer−Heim, Pitale−Schmidt, Saha, Morimoto:

ifλ2≤ −5, then

W(π)

π4+λ1−λ2· kfholk σ

= ΩWσ) π4+λ1−λ2· kfholσ k.

Therefore, by (3) we have kfπk

π4+3λ1−λ2·c+(π)·c(π)· kfholk σ

= kfπσk

π4+3λ1−λ2·c+σ)·cσ)· kfholσ k.

(13)

Proof of the main result

Our main theorem then follows from the following result:

Forσ∈Aut(C), we have L(1, π,Ad)

π−1−3λ12· kfπk σ

= L(1, πσ,Ad) π−1−3λ12· kfπσk.

C.−Ichino (2019): We computed the explicit value for the ratio whenπ has square-free paramodular conductor.

In the rest of this talk, we

sketch the construction of the Whittaker periods ΩW±(π),

sketch the proof of the corresponding algebraicity results for critical L-values.

(14)

Notation

For (k1,k2)∈Z2withk1≥k2, let (ρ(k1,k2),V(k1,k2)) be the irr. alg. rep. of U(2) defined by

ρ(k1,k2)=Symk1−k2⊗detk2,

V(k1,k2)=hXiYk1−k2−i|0≤i≤k1−k2iQQC. Maximal unipotent subgroup ofGSp4:

U=









1 ∗ ∗ ∗

0 1 ∗ ∗

0 0 1 0

0 0 ∗ 1

∈GSp4







 .

ψU:U(Q)\U(A)−→C×defined by

ψU

1 x ∗ ∗

0 1 ∗ y

0 0 1 0

0 0 −x 1

=ψ(−x−y),

whereψ:Q\A−→C×so thatψ(x) =e

−1x.

(15)

Rational structures via the Whittaker models

Forϕ∈π, define the global Whittaker function Wϕ,ψU(g) =

Z

U(Q)\U(A)

ϕ(ug)ψU(u)du.

W(πv, ψU,v): the space of Whittaker functions ofπv with respect toψU,v. W(πf, ψU,f) =N0

pW(πp, ψU,p).

Forσ∈Aut(C), define theσ-linear isomorphism ofGSp4(Af)-modules:

tσ:W(πf, ψU,f)−→ W(πσf, ψU,f), tσW(g) =σ

W

diag(u−2,u−1,u,1)g

. Hereσ|Qab=rec(a·u) witha·u∈R×>0·bZ×and

rec:Q×\A×−→Gal(Qab/Q) is the geometrically normalized reciprocity map.

(16)

Rational structures via the Whittaker models

Recall

π|Sp4(R)=D12)⊕D(−λ2,−λ1), for some (λ1, λ2)∈Z2such that 1−λ1≤λ2≤ −1.

Write

π+= (π⊗CV12))U(2), π= (π⊗CV(−λ2,−λ1))U(2). Note thatπ+f asGSp4(Af)-modules.

Forf ∈π+,h∈π, we have

f =

λ1−λ2

X

i=0

(−1)i λ1−λ2

i

!

·Pi+(f)⊗Xλ1−λ2−iYi,

h=

λ1−λ2

X

i=0

λ1−λ2

i

!

·Pi(h)⊗XiYλ1−λ2−i

for some uniquely determinedPi+(f),Pi(h)∈πfor 0≤i≤λ1−λ2.

(17)

Rational structures via the Whittaker models

Let 0≤i ≤λ1−λ2.

Wi ∈ W(π, ψU,∞): in the minimalU(2)-type ofD(−λ2,−λ1)with weight (−λ1+i,−λ2−i)normalized so that (following T. Moriyama)

Wi(1)

= (2√

−1)1 +2λ2−iπ12e−2π

× Z c1+

−1∞

c1

−1∞

ds1

2π√

−1 Z c2+

−1∞

c2

−1∞

ds2

2π√

−1(4π3)

−s1 +λ1 +1−i

2 (4π)

−s2 +λ2 +i 2

×Γ

s1+s2−2λ2+ 1 2

Γ

s1+s2+ 1 2

Γs1

2

Γ−s2

2

Γ(s1+i) Γ(s1) , wherec1,c2∈Rsatisfyc1+c2+ 1>0 andc1>0>c2.

Wi ∈ W(π, ψU,∞): in the minimalU(2)-type ofD12)with weight (λ1−i, λ2+i).

(18)

Rational structures via the Whittaker models

DefineGSp4(Af)-module isomorphisms

π+−→ W(πf, ψU,f), f 7−→Wf+ π−→ W(πf, ψU,f), h7−→Wh by

WP+

i (f),ψU =Wi·Wf+, WP

i (h),ψU =Wi·Wh for 0≤i≤λ1−λ2.

Define theσ-linear isomorphisms ofGSp4(Af)-modules π+−→(πσ)+, f 7−→fσ π−→(πσ), h7−→hσ by

Wf+σ =tσWf+, Whσ =tσWh. fπ∈π+: thenormalized newformofπdefined so thatWf+

π ∈ W(πf, ψU,f) is the paramodular newform withWf+π(1) = 1. It is clear thatfπσ=fπσ for σ∈Aut(C).

(19)

Rational structures via the cohomology

PutK=R×·U(2)⊂GSp4(R) and (cf. Oshima’s and Horinaga’s talk)

p=

( √−1A A

A √

−1A

!

A=tA∈M2(Q) )

QC⊂Lie(GSp4(R))C.

Let (ρ,Vρ) be an irr. alg. rep. ofK. Consider the complexes with respect to the Lie algebra differential operator:

Csia,ρq = Csia(GSp4(Q)\GSp4(A))⊗C

q

^(p)CVρ

!K

,

Crda,ρq = Crda(GSp4(Q)\GSp4(A))⊗C

q

^(p)CVρ

!K

forq≥0.

Hq(Vρcan)andHq(Vρsub): theq-th cohomology groups with respect to the complexesCsia,ρ andCrda,ρ , respectively.

H!q(Vρ): the image of the morphismHq(Vρsub)−→Hq(Vρcan) induced by the inclusionCrda,ρ −→Csia,ρ .

(20)

Rational structures via the cohomology

Theorem (Harris, Milne)

(1) Hq(Vρcan)and Hq(Vρsub)are admissibleGSp4(Af)-modules and have canonical rational structures overQ.

(2) H!q(Vρ)is semisimple.

(3) Forσ∈Aut(C), conjugation byσinduces natural σ-linear GSp4(Af)-module isomorphism:

Tσ:Hq(Vρcan)−→Hq(Vρcan).

Similar assertion holds for Hq(Vρsub)and H!q(Vρ).

(4) We have a natural injective homomorphism ofGSp4(Af)-modules

cl: A0(GSp4(A), ρ)⊗C

q

^(p)CVρ

!K

−→H!q(Vρ)

for each q∈Z≥0. HereA0(GSp4(A), ρ)is the space of cusp forms on GSp4(A)which are eigenfunctions of the Casimir operator ofGSp4(R) with certain eigenvalue depending onρ.

(21)

Rational structures via the cohomology

We apply the results of Harris to (ρ,Vρ) equal to

+,V+) := (ρ1−3,λ2−1),V1−3,λ2−1)), (ρ,V) := (ρ(−λ2−2,−λ1),V(−λ2−2,−λ1)).

In these two cases,πoccurs inA0(GSp4(A), ρ).

Proposition

The homorphismsclinduceisomorphismsofGSp4(Af)-modules:

cl:

"

π⊗C

2

^(p)CV+

#K

−→H!2(Vρ+)[πf]'πf,

cl:

"

π⊗C

1

^(p)CV

#K

−→H!1(Vρ)[πf]'πf.

Remark

We use Arthur’s multiplicity formula to deduce that A0(GSp4(A))[πf] =π⊕πhol.

(22)

Whittaker periods

FixQ-rationalinjectiveK-equivariant homomorphisms:

V12)−→

2

^(p)CV+=⇒cl:π+−→H!2(Vρ+)[πf],

V(−λ2,−λ1)−→

1

^(p)CV=⇒cl:π−→H!1(Vρ)[πf].

Note that theQ-rational embeddings are unique up to homotheties overQ×. Lemma

There existΩW+(π),ΩW(π)∈C×, unique up toQ(π)×, such that cl

π+,Aut(C/Q(π))

W+(π) =H!2(Vρ+)[πf]Aut(C/Q(π)), cl

π−,Aut(C/Q(π))

W(π) =H!1(Vρ)[πf]Aut(C/Q(π)).

We call ΩW±(π) theWhittaker periodsofπ. By the uniqueness up toQ(π)×, we can normalize the Whittaker periods so that

Tσ

cl(f) ΩWε (π)

= cl(fσ)

Wεσ), f ∈πε.

(23)

Algebraicity of critical L-values for GSp

4

× GL

2

Theorem (C.-, in progress) (1) Forσ∈Aut(C), we have

L 12+m, π Lλ

1 +λ2−1

2 , π×χ

π−2λ1·G(χ)2·W+(π)

σ

=

L 12+m, πσ Lλ

1 +λ2−1

2 , πσ×χσ π−2λ1·Gσ)2·W+σ)

for any finite order characterχofQ×\A×and critical points 12+m such that(−1)m+λ1 +2λ2χ(−1) = 1.

(2) Forσ∈Aut(C), we have

L(m, π×τ)

π−λ1 +λ2·Gτ)2·W(π)· kfτk

!σ

= L(m, πσ×τσ)

π−λ1 +λ2·Gστ)2·Wσ)· kfτ σk

for any irr. cusp. auto. rep. τ ofGL2(A)satisfying:

(i) ωτ=χτ| |r

Afor some finite order characterχτ ofQ×\A×and rZ, (ii) τ⊗ | |−r/2

R 'D(`)for someλ1+λ2+ 1`λ1with`r(mod2), and any critical points m∈Zwith m>−r2.

(24)

Algebraicity of critical L-values for GSp

4

× GL

2

We sketch the proof of (2). Writeω=ωτ andχ=χτ.

LetG0={(g1,g2)∈GL2×GL2|det(g1) = det(g2)}and we regard it as a subgroup ofGSp4by the embedding

G0−→GSp4,

a1 b1

c1 d1

!

, a2 b2

c2 d2

!!

7−→

a1 0 b1 0 0 a2 0 b2

c1 0 d1 0 0 c2 0 d2

 .

Ingredients:

(1) Integral representation ofL(s, π×τ).

(2) Cohomological interpretation of the global integral.

(3) Local zeta integrals:

Explicit calculation of the archimedean local zeta integral.

Galois equivariance property of thep-adic local zeta integral.

(25)

Algebraicity of critical L-values for GSp

4

× GL

2

(1) Integral representation ofL(s, π×τ) (Piatetski-Shapiro−Soudry):

Forϕ1∈π,ϕ2∈τ, andfs∈IndGLB(2(A)

A) (| |s−

1 2

A | |−s+

1 2

A ω−1) be a good section, we have the basic identity

Z(ϕ1, ϕ2,E(fs)) :=

Z

A×G0(Q)\G0(A)

ϕ1(g)E(g1;fs2(g2)dg

= Z

A×N0(A)\G0(A)

Wϕ1U(g)fs(g1)Wϕ2(g2)dg.

Heredg is the Tamagawa measure onA×\G0(A).

Forκ≥1 and Φ∈ S(A2f), letEs[κ](ω,Φ) =E(fω,Φ[κ]⊗Φ,s), where

fω,Φ[κ]⊗Φ,s(g) =|det(g)|sA Z

A×

[κ]⊗Φ)((0,t)g)ω(t)|t|2sA d×t and

Φ[κ](x,y) = 2−κ(x+√

−1y)κe−π(x2+y2). ThenEs[κ](ω,Φ)|s=κ−r

2 is a holo. auto. form of weightκ.

(26)

Algebraicity of critical L-values for GSp

4

× GL

2

(2) Cohomological interpretation of the global integral.

Letm∈Zwith−r2 <m≤ `−λ1−λ2 2−r (right-half critical points).

H!1(Vρ)⊗CH!1(V(`−2;−r))⊗CH0(Vcan12−`;r))−→C, [f1]⊗[f2]⊗[f3]7−→Z

P`−λ 2(f1),f2,X

`−λ1−λ2−r

2 −m

+ ·f3

is a well-definedQ-rationaltrilinear form. Here

V(κ;r): the automorphic line bundle onMGL2associated to the character a·e

−1θ7−→ar·eκ

−1θ

ofR×·U(1).

X+=14

−1 −1

−1

−1

!

Lie(GL2(R))Cis the weight raising differential operator.

(27)

Algebraicity of critical L-values for GSp

4

× GL

2

Forϕ1∈π2∈τ with weight−`, and Φ∈ S(A2f), we have

Tσ

1] ΩW(π)

= [ϕσ1]

Wσ) ∈H!1(Vρ)[πfσ], Tσ

2] kfτk(2π√

−1)`−r2

!

= [ϕσ2] kfτσk(2π√

−1)`−r2 ∈H!1(V(`−2;−r))[τfσ], Tσ

[Es[2m+r](ω,Φ)|s=m] G(χ)(2π√

−1)−m

!

= [Es[2m+r]σσ)|s=m] G(χσ)(2π√

−1)−m ∈H0(Vcan12−`;r)).

We conclude that

 Z

P`−λ 21), ϕ2,X

`−λ1−λ2−r

2 −m

+ ·Es[2m+r](ω,Φ)|s=m

W(π)· kfτk(2π√

−1)`−r2 ·G(χ)(2π√

−1)−m

σ

= Z

P`−λ

2σ1), ϕσ2,X

`−λ1−λ2−r

2 −m

+ ·Es[2m+r]σσ)|s=m

Wσ)· kfτσk(2π√

−1)`−r2 ·G(χσ)(2π√

−1)−m

(28)

Algebraicity of critical L-values for GSp

4

× GL

2

(3) Local zeta integrals:

Let

(i) W`−λ2∈ W(π, ψU,∞): normalized with weight (λ1+λ2`, `), (ii) W−`0 ∈ W(τ, ψ): weight−`withW−`0 (1) =e−2π,

(iii) fω

[`−λ1−λ2 ],s: normalized with weight`λ1λ2. We have

Z(W`−λ2,W−`0 ,fω[`−λ1−λ2 ],s)

∈(√

−1)λ1 +2λ2 ·π

1−λ2

2 ·L(s, π×τ)·Q×. Letp be a prime. LetW1∈ W(πp, ψU,p),W2∈ W(τp, ψp), and Φ∈ S(Q2p). Forσ∈Aut(C), we have

Zp(W1,W2,fωp,Φ,s) ε(0, χp, ψp)

σ

= Zp(tσW1,tσW2,fωpσσ,s) ε(0, χσp, ψp) , L(s, πp×τp)σ=L(s, πpσ×τpσ).

The assertion then follows from (1)-(3) with good choice of datum (W1,W2,Φ)∈ W(πf, ψU,f)× W(τf, ψf)× S(A2f).

(29)

The end.

Thank you for your attention.

Referensi

Dokumen terkait

When k is an infinite field, this is a special case of [4] Theorem 4.3 which states the following. S is the semi-localization of a smooth scheme over ℓ), and if the field ℓ is

q, s, A, B ) of meromorphic functions defined by using a meromorphic analogue of the Choi-Saigo-Srivastava operator for the generalized hypergeometric function and investigate a

The membership functions procedural knowledge for both, the inputs and outputs were derived from the following plant variables, for the specified band:  Process pressure  Blend

Applied to the functions of class 1, the representation theorem gives the result that the functions of Baire class 1, on a normal space S, are isomorphic to the lattice of continuous

Recent developments in abstract operator theory [23] have raised the question of whether Napier’s conjecture is false in the context of universally real functions.. The work in [8] did

NA Closed Closed Closed Closed Closed Closed Remark: The procedure and dates for the eighth cutoff/special drive will be as per guidelines issued by the University of Delhi.. -sd-

§ 4 Formal degree conjecture Notations F: non-Archimedean local field of chF = 0, OF/ϖF =Fq, G: connected reductive group /F, A: maximal F split torus of the center of G, π: square

This can easily be extended by symmetry to include all bond functions of the set, giving the general theorem: The neces- sary and sufficient condition for a set of equivalent s-p-d