Posted at the Institutional Resources for Unique Collection and Academic Archives at Tokyo Dental College, Available from http://ir.tdc.ac.jp/
Title
Protracted hypomobility in the absence of
trigeminal sensitization after cortical spreading depolarization: Relevance to migraine postdrome
Author(s) Alternative
Shibata, M; Kitagawa, S; Tang, C; Unekawa, M;
Kayama, Y; Shimizu, T; Nakahara, J; Suzuki, N Journal Neuroscience research, 172(): 80‑86
URL http://hdl.handle.net/10130/5618
Right
© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Description
ContentslistsavailableatScienceDirect
Neuroscience Research
j o ur na l h o me pa g e :w w w . e l s e v i e r . c o m / l o c a t e / n e u r e s
Protracted hypomobility in the absence of trigeminal sensitization after cortical spreading depolarization: Relevance to migraine postdrome
Mamoru Shibata
a,b,∗,1, Satoshi Kitagawa
a, Chunghua Tang
a,c, Miyuki Unekawa
a, Yohei Kayama
a, Toshihiko Shimizu
a, Jin Nakahara
a, Norihiro Suzuki
a,daDepartmentofNeurology,KeioUniversitySchoolofMedicine,Tokyo,160-8582,Japan
bDepartmentofNeurology,TokyoDentalCollegeIchikawaGeneralHospital,Chiba,272-0513,Japan
cDepartmentofNeurologyandCentreforClinicalNeuroscience,DapingHospital,ThirdMilitaryMedicalUniversity,Chongqing,400042,China
dDepartmentofNeurology,ShonanKeiikuHospital,Kanagawa,252-0816,Japan
a rt i c l e i nf o
Articlehistory:
Received20January2021
Receivedinrevisedform5March2021 Accepted28March2021
Availableonline2April2021
Keywords:
Migraine
Corticalspreadingdepolarization Photophobia
Physicalactivity Migrainepostdrome Neurotropin®
a b s t ra c t
Migrainesufferersoftenexhibitphotophobiaandphysicalhypoactivityinthepostdromeandinterictal periods,forwhichnoeffectivetherapycurrentlyexists.Corticalspreadingdepolarization(CSD)isa neuralphenomenonunderlyingmigraineaura.WepreviouslyreportedthatCSDinducedtrigeminal sensitization,photophobia,andhypomobilityat24hinmice.Here,weexaminedtheeffectsofCSD inductiononlightsensitivityandphysicalactivityinmiceat48hand72h.Trigeminalsensitizationwas absentatbothtimepoints.CSD-subjectedmiceexhibitedsignificantlylessambulatorytimeinbothlight (P=0.0074,theBonferronitest)anddark(P=0.0354,theBonferronitest)zonesthansham-operatedmice at72h.CSD-subjectedmicealsoexhibitedasignificantlyshorterambulatorydistanceinthelightzoneat 72hthansham-operatedmice(P=0.0151,theBonferronitest).Neurotropin®isusedforthemanagement ofchronicpaindisorders,mainlyinAsiancountries.TheCSD-inducedreductionsinambulatorytimeand distanceinthelightzoneat72hwerereversedbyNeurotropin®at0.27NU/kg.Ourexperimentalmodel seemstorecapitulatemigraine-associatedclinicalfeaturesobservedinthepostdromeandinterictal periods.Moreover,Neurotropin®maybeeffectiveinamelioratingpostdromal/interictalhypoactivity, especiallyinalightenvironment.
©2021TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).
1. Introduction
Migraine is a debilitating chronic neurological disorder characterized by recurrent headache attacks accompanied by nausea/vomiting and heightenedsensitivity tolight and sound (HeadacheClassificationCommitteeoftheInternationalHeadache Society,2018).Atypicalmigraineheadacheisunilateral,pulsat- ing,andaggravatedbyphysicalactivity(HeadacheClassification CommitteeoftheInternationalHeadacheSociety,2018).Migraine, thesecondleadingcauseofyearslivedwithdisability(GBD2016
Abbreviations: CI,Confidenceintervals;CSD,Corticalspreadingdepolarization;
FWHM,Fullwidthathalfmaximum;NF-B,Nuclearfactor-kappaB.
∗Correspondingauthorat:DepartmentofNeurology,KeioUniversitySchoolof Medicine,35Shinanomachi,Shinjuku-ku,Tokyo,160-8582,Japan.
E-mailaddresses:[email protected],[email protected](M.Shibata).
1 Presentaddress:DepartmentofNeurology,TokyoDentalCollegeIchikawaGen- eralHospital,5-11-13Sugano,Ichikawa,Chiba272-8513,Japan.
DiseaseandInjuryIncidenceandPrevalenceCollaborators.,2017), not only interferes withthe daily lives of individuals, but also posesanenormouseconomicburdenonsociety(Fosteretal.,2020;
Takeshimaetal.,2019).Migraine hasdistinct phases,including premonitory,aura, headache,postdrome,andinterictal (Dodick, 2018b).Although peoplewithmigraine suffer most duringthe headachephase,neurologicalsymptomsareknowntopersistin thepostdrome andinterictal phases(deTommaso etal., 2014;
May,2017).Ithasbeenshownthatabnormalsensitivitytolight (photophobia)andocularallodyniaarepresentinbothictaland interictalphasesof migraine(Chu etal.,2011; McAdamsetal., 2020;Mullenersetal.,2001;Perenboometal.,2018).Thesesymp- tomscanmakeworkinginalightenvironmentmoredifficult.For instance,affectedindividualsmayexperiencedifficultyworkingon computerscreensforaprolongedtime,whichisaconsiderabledis- advantagegiventhecontemporaryworkstyle.Moreover,recent datahavedemonstratedthatpatientswithmigrainehavereduced physicalactivityonbothnon-headachedaysandheadachedays https://doi.org/10.1016/j.neures.2021.03.010
0168-0102/©2021TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).
M.Shibataetal. NeuroscienceResearch172(2021)80–86
(Bondetal.,2015;Rogersetal.,2020).Asthenia,weakness,tired- ness,andlightsensitivityhavebeenidentifiedasmajorsymptoms experienced during themigraine postdrome (Blau, 1982; Giffin et al.,2016; Kelman,2006;Ng-Maket al.,2011; Quintelaetal., 2006).
Thetrigeminovascularsystemisthoughttoplayapivotalrole inmigrainepathogenesis(Ashinaetal.,2019).Nosedaetal.(2011) clarifiedthatthird-ordertrigeminovascularthalamicneuronssend heavyprojectionstothemotorand visualcortices,thusprovid- ing a neuroanatomical basis for theemergence of photophobia and hypoactivityin migraine. Cortical spreading depolarization (CSD),aneurophysiologicalcorrelateofmigraineaura(Charlesand Baca, 2013; Pietrobonand Moskowitz,2014), is knowntoacti- vate thetrigeminovascularsystem(Iwashitaetal.,2013;Zhang etal.,2011,2010).WepreviouslydemonstratedthatCSDcaused trigeminal sensitization, photophobia, and hypoactivityin both light anddarkzonesat24hinmice,allofwhichwereamelio- ratedbyanti-migraineagents,sumatriptanandolcegepant(Tang etal.,2020).However,itremainsunclearwhetherthesesymptoms persistbeyond24 hafterCSDinduction.Ifdetected,prolonged abnormalitiesoftrigeminalsensation,lightsensitivity,andphysical activitywouldprovidea diseasemodelforstudyingthemecha- nismsunderlyingpostdromeandinterictalphasesofmigraine.Our behavioralassayallowsustoexploretheeffectofCSDonmobility beyond24h.
Neurotropin® is a non-protein fraction extracted from the inflamedskinofrabbitsafterinoculationwithvacciniavirus,and hasbeentraditionallyusedforthetreatmentofvariouschronic painconditions,mainlyinAsiancountries.Clinicalevidenceforthe efficacyofNeurotropin®inalleviatingheadachedisorderisscarce, althoughithasbeenreportedthattreatmentwithNeurotropin® relieved nummular headache (Danno et al., 2013). Given that Neurotropin® contains a multitude of bioactive substances, it exertsvariousactions,rangingfromneurotrophiceffects(Fukuda etal.,2010,2015;Nakajoetal.,2015)toinflammatorymodula- tion(Fukudaetal.,2020;Katoetal.,1991;Nishimotoetal.,2016;
Yoshiietal.,1987).Numerouscomplexpathwaysarethoughttobe involvedintheanalgesiceffectofNeurotropin®.
In the present study,we examined CSD-inducedchanges in trigeminal sensation and physical activity at 48 and 72 h. We alsoexploredtheeffectofNeurotropin®administrationonCSD- inducedphysicalactivity.
2. Materialsandmethods 2.1. Animals
ThepresentstudywasapprovedbytheLaboratoryAnimalCare andUseCommitteeofKeioUniversity(approvalno.14,084).Male C57BL/6miceaged8–12weekswereobtainedfromCLEAJapanInc.
(Fujinomiya,Japan).Atotalof55micewereusedinthepresent study.Theywerekeptinanambientspecific-pathogen-freecondi- tionwitha12-hlight/darkcycleandhadfreeaccesstofoodand water. Allexperimentswere performedinaccordance withthe NationalInstituteofHealthGuidefortheCareandUseofLaboratory Animals(NIHPublicationsNo.80-23)revisedin1996.
2.2. Drugadministration
Neurotropin® solution(20 NU/mL;Nippon Zoki Pharmaceu- tical Co., Ltd., Osaka, Japan) was dissolved in normal saline.
Neurotropin®wasslowlyadministeredat0.27NU/kgor0.81NU/kg in200Lsolutionusingafeedingneedle(18060−20,FineScience Tools,FosterCity,USA).Thesedosesarecomparabletothoseused fortreatingneuropathicpain.Thesamevolumeofnormalsaline
wasadministeredasavehicle.Drugadministrationwascarriedout 30minbeforeCSDinduction.Therewerefourdifferentexperimen- talgroupsinthepresentstudy,asfollows:theSham-Vehiclegroup, theCSD-Vehiclegroup,theCSD-NT0.27(Neurotropin®0.27NU/kg) group,andtheCSD-NT0.81(Neurotropin®0.81NU/kg)group.
2.3. CSDinduction
Underisofluraneanesthesia(1–2%),themouseheadwasfixed in a stereotaxic apparatus. Non-invasive monitoring of systolic bloodpressureandheartratewasperformedusinganon-invasive bloodpressuremonitor(MK-2000ST;MuromachiKikaiCo.,Ltd., Tokyo,Japan).Bodytemperaturewaskeptataround37◦Cusing athermistor-regulatedheatingpad(BWT-100;BioresearchCenter Co.,Ltd.,Nagoya,Japan).
For electrophysiological recordings, three burr-holes were drilledintotheleftpartoftheskull.Theposteriorholeatthecoor- dinatesof5mmposteriorand2mmlateraltothebregmawas usedforKCladministration.Theparietalhole(2mmlateraland 2mmcaudaltothebregma)andthefrontalhole(2mmlateral and2mmrostraltothebregma)weredrilledtoinstalltherecord- ingelectrodes.TwoAgA/gClDCelectrodes(tipdiameter=200m, EEG-5002Ag;BioresearchCenterCo.,Ltd.)wereinstalledonthe dura at theparietal (proximal) and frontal(distal) holes. A DC potentialwasappliedat1–100Hzanddigitizedat1 kHzusing anextracellularamplifier(Model4002andEX1;DaganCo.,Min- neapolis,MN,USA).ContinuousrecordingsoftheDCpotentialwere stored on a multi-channel recorder(PowerLab 8/30; ADInstru- ments,Ltd.,Sydney,Australia).Afterconfirmingthatallparameters werestableforatleast10min,CSDwasinducedbyapplyingKCl solution(1.0mol/L,5L)ontothedura.TheinductionofCSDwas verifiedbytheappearanceofadistinctDCpotentialdeflection.CSD wasinducedfivetimesafterwashingthecorticalsurfacewithnor- malsaline.Afterthesurgery,allelectrodeswereremoved,andthe craniotomieswereclosed.Insham-operatedmice,allsurgicalpro- cedureswereperformedexceptforthechemicalstimulationwith KClsolutionandDC electrodeinsertion.Sham-treatedmiceand CSD-subjectedmicewereanesthetizedforequivalentperiodsof time.Inthepresentpaper,werefertotheCSDoperationandsham operationcollectivelyassurgery.
TheCSDpropagationvelocityandfullwidthathalfmaximum (FWHM)weremeasured.TheCSDpropagationvelocitywascalcu- latedonthebasisofthelatencyanddistancebetweentheproximal anddistalelectrodes.TheFWHMwasdeterminedfromthecurves recordedatthedistalelectrode.
2.4. Facialheatpainthresholdtemperaturemeasurement
Thedetailedprotocolforheatpainthresholdtemperaturehas beendescribedelsewhere(Kayamaetal.,2018).Briefly,afteraccli- mationtotheexperimentalapparatusandfacialhairremoval,a pairofPeltiermodulebarswithasurfacetemperatureregulated between36◦Cand56◦Cwasappliedbilaterallytothelateralaspect oftheface.Thebarsurfacetemperaturewasgraduallyelevated from36◦Cby 1◦C/4 suntil facewithdrawal. Mousebehaviors weremonitoredusingavideorecorder(Panasonic,Kadoma,Japan).
Videoswereanalyzedbyanexaminerwhowasblindedtogroup allocationoftheanimals.Thelowesttemperatureatwhichamouse turneditshead away fromtheheating bars wasconsideredas theheatpainthresholdtemperature.Ineachsession,thethresh- oldtemperaturewasmeasuredfivetimes.Themeasurementwas carriedoutbeforesurgeryand48hand72haftersurgery.
Inourpreliminaryexperiments,thestandarddeviationofthe heatpainthresholdtemperatureofnormalmicewasfoundtobe 0.8–1.0◦C.WhenthetypeIerrorrateandpowerwere5%and0.80, 81
respectively,thesamplesizerequiredtodetecta0.5◦Cdifference wascalculatedas40–60trialsineachgroup.
2.5. Mouselocomotionassayinthelightanddarkzones
Thedetailed protocolforthis assayhasbeendescribedelse- where(Tangetal.,2020).Briefly,mousebehaviorwascontinuously recordedinatestingchamber(27cmwide×27cmdeep×20.3 cmhigh)withthreesetsof16-beaminfraredarrays(twosetsof perpendicularbeamscrossedataheightof1.0cmtodetectmouse locationandlocomotion,andthethirdbeamcrossedthewidthof thechamberataheightof7.3cmtodetectverticalactivity;Med Associates,Fairfax,VT).Thetestingfieldwasequallydividedinto lightanddarkzonesusingadarkinsert(MedAssociates).Themice wereallowedtomovebetweenthetwozonesthroughanopening (5.2cm×6.8cm).Thelightintensitymeasuredataheightof2cmin thelightzonewas540lx,whereastheintensitiesmeasuredinthe darkzonewere380lximmediatelyinsidetheorifice,20lxatthe center,and5lxatthecorners.Mouseactivitywasanalyzedusinga computerequippedwithActivityMonitorv6.02(MedAssociates).
Mice were allowed to acclimatize to the test chamber, as describedpreviously(Tangetal.,2020).Theacclimationwascar- riedoutpriortothesurgery.At48and72haftertheCSDorsham operation, locomotoractivitywasrecordedfor30 minwiththe lightson.Thetotaltimespentinthelightfieldwasusedtoeval- uatelightaversion.Forallmiceexamined,behavioraltestingwas carriedoutbetween10:00and18:00inaquietroom.
2.6. Assessmentofmouselocomotoractivity
The effects of Neurotropin® administration onmouse loco- motion in both compartments were evaluated using several movementparameters.Whenmicemovedoutofthe6.35cm×6.35 cmsquareboxaroundthemwithin0.5s,theirmovementswere definedasambulatory.Ambulatorydistance(cm)wasdefinedas thetotaldistancetravelledduringambulatorymovement.Ambu- latoryaveragevelocity(cm/s)wascalculatedastheambulatory distancedividedbyambulatory time,whichwasdefinedasthe timespentintheambulatorymovementstatus.Ourpreliminary experimentsrevealedthatthestandarddeviationofthetotaltime spentinthelightzoneofuntreatedcontrolmicewas120–150s.
WithatypeIerrorrateandpowerof5%and0.80,respectively,the samplesizerequiredtodetecta200sdifferencewascalculatedas 6–9subjectsineachgroup.
2.7. Statisticalanalyses
NumericaldatarelevanttophysiologicalandCSD-relatedelec- trophysiologicalparametersareexpressedasthemean±SD.The heatpainthresholdtemperaturesandlocomotiondataareshown using95%confidenceintervals(CIs).Between-groupcomparisons of physiological parameters and CSD-related electrophysiologi- cal data were made using the Kruskal–Wallis test. A two-way repeated-measuresANOVAwasusedtoevaluatetheeffectsofCSD inductionandpharmacologicalinterventionsonthetemporaltra- jectoriesoftheheatpainthresholdtemperature,totaltimespentin thelightzone,ambulatorytime,anddistancetravelledineachzone.
Post-hocmultiplecomparisonswerecarriedoutusingtheBonfer- roni test. Meandifferencesareindicated by95 %CI.Data were analyzedusingGraphPadPrism8software(GraphPadSoftware, SanDiego,CA).
Table1
CSD-relatedelectrophysiologicalparameters.
CSD- Vehicle
CSD-NT 0.27
CSD-NT 0.81
P-value
Numberofanimals 8 8 8
Propagationvelocity (mm/min)
4.2±0.6 5.0±1.1 4.2±0.6 0.3901 FWHM(s) 41.3±3.3 42.8±10.1 45.8±2.9 0.4825
3. Results
3.1. Physiologicalparameters,bodyweight,andCSD-related electrophysiologicalparameters
Thetimelineofthepresent studyisshown inFig.1A.Cran- iotomies for CSD induction and installation of electrodes and experimentalprobesareshowninFig.1B.Arepresentativerecord- ing of CSD induction is illustrated in Fig. 1C, with concrete measurementsforCSDpropagationvelocity(Fig.1D)andFWHM (Fig.1E).Weobservednosignificantbetween-groupdifferencesin systolicbloodpressure,heartrate,orbodyweight(datanotshown).
TherewasnosignificanteffectofNeurotropin®administrationon CSD-relatedelectrophysiologicalparameters(propagationvelocity andFWHM;Table1).
3.2. EffectsofCSDonfacialheatpainthresholdtemperatureat48 hand72hafterCSDinduction
Atwo-wayANOVAshowedthattherewasnosignificanteffectof timeorCSDinductiononthefacialheatpainthresholdtemperature at48and72haftersurgery(time:F(2,228)=1.011,P=0.3655;CSD induction:F(1,114)=0.05389,P=0.8168).Themeandifferencesof facialheatpainthresholdvs.thebaselinevaluewere-0.21◦C(95
%CI:-0.74–0.32,P>0.9999)and-0.02◦C(95%CI:-0.56–0.51,P>
0.9999)at48hand72h,respectively.
3.3. EffectsofCSDinductionandNeurotropin®pretreatmenton thetotaltimespentinthelightzone
We exploredtheeffects ofCSD inductionand Neurotropin® administrationonthetotaltimespentinthelightzoneat48hand 72haftersurgery.Atwo-wayANOVAdidnotdetectamaineffect ofobservationtimeonthetimespentinthelightzone(P=0.1486).
WhiletheeffectofCSDinductionandNeurotropin®administration didnotreachsignificance(F(1,28)=2.207,P=0.0787),therewasa trendtowardsashortertotaltimespentinthelightzoneinthe CSD-VehiclegroupascomparedwiththeSham-Vehiclegroupat 72h(meandifference:−327s[95%CI:-672.3–18.32],P=0.0732, theBonferronitest).Moreover,Neurotropin®(0.27NU/kg)tended toreversetheCSD-induceddecreaseonthetimespentinthelight zone(meandifference:343.4s[95%CI:-1.941–688.7],P=0.0521, theBonferronitest).
3.4. EffectsofCSDandNeurotropin®pretreatmenton ambulatorytimeinthelightanddarkzones
WethenanalyzedtheeffectsofCSDaloneandcombinedwith Neurotropin® pretreatmentonambulatorytimeinthelightand darkzonesseparatelyat48hand72haftersurgery.Inthelight zone,atwo-wayANOVAdetectedasignificantmaineffectofCSD inductionand Neurotropin® administration(F(3,28) =5.254, P= 0.0053),whiletherewasnosignificantmaineffectofobservation time(F(1,28)=0.372,P=0.5468)(Fig.2A).Therewasasignificant differenceinambulatorytimeinthelightzonebetweentheSham- VehiclegroupandtheCSD-Vehiclegroup(meandifference:-26.07
M.Shibataetal. NeuroscienceResearch172(2021)80–86
Fig.1. ExperimenttimelineandmeasurementsforCSD-relatedelectrophysiologicalparameters.(A)Experimentaltimelineforthemeasurementoffacialheatpainthreshold temperatureandthelight/darkboxbehavioraltest.Facialheatpainthresholdmeasurementswereperformedimmediatelybeforeand48and72hafterCSDinduction (orangetriangles).Thelight/darkboxbehavioraltestingwasperformedat48and72hafterCSDinduction(greentriangles).Investigationaldrugs,includingthevehicle, wereadministered30minpriortoCSDinduction.
(B)CraniotomiesforCSDinductionandinstallationofexperimentalprobes.(C)ArepresentativerecordingofCSDinduction.(D)MeasurementofCSDpropagationvelocity.
(E)MeasurementofFWHM.
s[95% CI:-47.03–-5.109],P=0.0074, theBonferronitest)and betweentheCSD-VehiclegroupandtheCSD-NT0.27group(mean difference:29.65s[95%CI:8.69–50.61],P=0.0017,theBonfer- roni test)at72h(Fig.2A).A two-wayANOVAdidnot detecta significantmaineffectoftimeinthedarkzone(F(1,28)=0.09536, P=0.7598),whiletheeffectofCSDinductionwithNeurotropin® administrationonambulatorytimeinthedarkzonenearlyreached significance(F(3,28)=2.717,P=0.0636)(Fig.2A).Therewasasignif- icantdifferenceinambulatorytimeinthedarkzonebetweenthe Sham-VehiclegroupandtheCSD-Vehiclegrouponly(meandiffer- ence:-22.55s[95%CI:-44.09–-1.007],P=0.0354,theBonferroni test)at72h(Fig.2A).
3.5. EffectsofCSDandNeurotropin®pretreatmenton ambulatorydistanceinthelightanddarkzones
WealsoexaminedtheeffectsofCSDaloneandcombinedwith Neurotropin®administrationonambulatorydistanceinthelight anddarkzonesat48hand72haftersurgery.Inthelightzone,a two-wayANOVArevealedasignificantmaineffectofCSDinduction andNeurotropin®administrationonambulatorydistance(F(3,28)= 5.138,P=0.0059),whiletherewasnosignificantmaineffectof observationtime(F(1,28)=0.3289,P=0.5709)(Fig.2B).Therewas a significantdifferenceinambulatorydistanceinthelightzone betweentheSham-VehiclegroupandtheCSD-Vehiclegroup(mean difference:-933.5cm[95%CI:-1741–126.2],P=0.0151,theBon- ferronitest)andbetweentheCSD-VehiclegroupandtheCSD-NT 0.27group(meandifference:1142cm[95%CI:335.1–1950],P= 0.0017,theBonferronitest)at72h(Fig.2B).
Inthedarkzone,atwo-wayANOVAdidnotdetectanysignifi- cantmaineffectsofobservationtime(F(1,28)=0.4041,P=0.5301) orCSDinductionandNeurotropin®pretreatment(F(3,28)=2.469,P
=0.0827)onambulatorydistance(Fig.2B).TheCSD-NT0.27group tended toexhibit a greater ambulatory distance thanthe CSD-
Vehiclegroup(meandifference:750.7cm[95%CI:-5.714–1507], P=0.0528,theBonferronitest)at72h(Fig.2B).
3.6. Between-groupcomparisonofaverageambulatoryspeed
TheaverageambulatoryspeedwasunalteredbyCSD.Further- more,treatmentwithNeurotropin® ateitherdosedidnotaffect theaverageambulatoryspeed(Fig.2C).
4. Discussion
Untreatedmigraineattacksmaypersistforupto72h(2018), which iswhy weexamined trigeminalsensitizationand physi- calactivityat48hand72hafterCSDinthepresentstudy.The mostnotablefindingwasthatCSDdeterioratedhypomotilityin thelightanddarkzones,evenaftertrigeminalsensitizationhad wornoff.Itisunlikelythatthisreducedlocomotoractivityresulted frommuscleweaknessandmotorparalysis,becausetheaverage ambulatoryspeedwasunaffectedbyCSD.Wepreviouslyreported thatthesameCSDinsultasthatusedinthepresentstudycaused trigeminalsensitization,photophobia,and hypomotilityat 24h ascomparedwithsham-operatedmice(Tangetal.,2020).How- ever,thepresentstudyrevealedthattherewerenobetween-group differencesat48 hinanyof theseparameters.At72 h, mouse ambulatorytimeexhibitedatendencytorecovercomparedtothat seenat48hinthesham-operatedmice,whereastheambulatory timeofCSD-affectedmicecontinuedtodeteriorate.Overall,CSD- inducedhypomobilityexhibitedadiphasicchange.Suchprolonged hypomotilitywasmoreevidentinthelightzone,asevidencedby significantreductionsin both ambulatory time and ambulatory distance.Concomitantly,theCSD-affectedmicetendedtospend lesstimeinthelightzonethansham-operatedmice.Hence,itis suggestedthatlightaversionmayplayaroleinthehypomotility.
Ourpreviousdatademonstratedthattrigeminalthermalallody- niawaspresent at24 hin anidenticalCSDmodel(Tangetal., 83
Fig.2.(A)Ambulatorytimeinthelightanddarkzonesineachgroup.Thegraphsshowtheambulatorytime(s).Redandbluebarsindicatelightanddarkdata,respectively.
Thedataarepresentedasmean±SD.Atwo-wayrepeated-measuresANOVAwasusedtoevaluatetheeffectsofCSDinduction,Neurotropin®pretreatment,andobservation time.MultiplecomparisonswereperformedusingtheBonferronitest(*P<0.05,**P<0.01).N=8ineachgroup.
(B)Ambulatorydistanceinthelightanddarkzonesineachgroup.Thegraphsshowtheambulatorydistance(cm).Redandbluebarsindicatelightanddarkdata,respectively.
Thedataarepresentedasmean±SD.Atwo-wayrepeated-measuresANOVAwasusedtoevaluatetheeffectsofCSDinduction,Neurotropin®pretreatment,andobservation time.MultiplecomparisonswereperformedusingtheBonferronitest(*P<0.05,**P<0.01).N=8ineachgroup.
(C)Averageambulatoryspeedineachgroup.Thegraphsshowtheaverageambulatoryspeed(cm/s).Thedataarepresentedasmean±SD.Atwo-wayrepeated-measures ANOVAwasusedtoevaluatetheeffectsofCSDinduction,Neurotropin®pretreatment,andobservationtime.MultiplecomparisonswereperformedusingtheBonferroni test.N=8ineachgroup.
2020).Consistently,apreviousinvivostudyusingintravitalrecord- ingofelectricalactivityofthedura-innervatingtrigeminalganglion neuronsshowedthatCSDcausedmechanicalsensitization(Zhang etal.,2010).Furthermore,thefiringrateofneuronsreceivingdural nociceptivesignalsinthetrigeminalnucleuscaudaliswaselevated
byCSD(Zhangetal.,2011).Theseinvivostudiesdidnotpresent anydataontrigeminalsensitizationbeyond120minafterCSD induction.ThepresentresultsindicatethatCSD-inducedtrigem- inalsensitizationwearsoffby48h.Importantly,wedemonstrated thatavoidanceofheadache-worseningfactors(lightandphysical
M.Shibataetal. NeuroscienceResearch172(2021)80–86
activity)extendsbeyondtheperiodoftrigeminalsensitizationafter CSD.ThiscouldindicatethattheCSD-affectedmiceinourstudy wereconditionedtoassociatelightexposureandphysicalactivity withpain,ratherthantoavoidmovingbecauseofactualpain.The saliencenetworkplaysakeyroleintheevaluationofthestateor conditionofathreattoanorganism(Borsooketal.,2013).Ithas beenreportedthatthefunctionofthesaliencenetworkisaltered in actualmigrainesufferers(Malekietal.,2012)andaninflam- matorysoup-basedratmigrainemodel(Becerraetal.,2017).Our findingscouldthereforebeexplainedbydysfunctionofthesalience network.
Thetimepointsselectedforthepresentstudy(48hand72h afterCSDinduction)maycapturetheconditionthatisanalogous tothepostdromalphaseofmigraine.Photophobia,tiredness,and weaknessarefrequentlyobservedinthepostdromeofmigraine (Blau, 1982; Giffin et al., 2016; Kelman, 2006; Ng-Mak et al., 2011;Quintelaetal.,2006);tirednessandweaknesscanreduce physical activity,and most patientsfind postdrome symptoms debilitating(Blau,1982;Giffinetal.,2016;Kelman,2006;Ng-Mak etal.,2011;Quintelaetal.,2006).Photophobiaandhypoactivity impair qualityoflife andleadtoreduced productivityatwork.
In particular,photophobia is likely to interfere withworkthat requirestheuseofacomputerscreen(Chuetal.,2011;McAdams etal.,2020;Mullenersetal.,2001;Perenboometal.,2018).Cur- rently, thereisnoestablishedtherapyforthesesymptoms.Our datademonstratedthatpretreatmentwithNeurotropin® at0.27 NU/kg reversedCSD-induced decreasesinambulatory timeand distanceinthelightzone.Adoseof0.27NU/kgisusedfortreat- ing neuropathic pain in humans (Hata et al., 1988). Thus, the optimal therapeuticdoseof Neurotropin® for neuropathic pain maybeeffectiveformigraine-associatedphotophobiaandhypoac- tivity postdrome. Our findings can beclinically translated into situations in which Neurotropin® pretreatment can ameliorate hypoactivity in a light environment in the postdrome period, thus allowing patientstoregain functionality and productivity.
It remains unknownhow Neurotropin® improved photophobia and hypoactivityin ourmigraine model. The biological actions ofNeurotropin®includesuppressionofproinflammatorycytokine production(Fukudaetal.,2020;Nishimotoetal.,2016),enhanced serotoninand noradrenergicactivity(Okazakiet al.,2008),gly- cosaminoglycan synthesis (Sakaiet al., 2018), and inhibition of nuclear factor-kappa B (NF-B) and mitogen-activated protein kinasesignalingpathways(Zhengetal.,2018).Intriguingly,arecent studyreportedtheinvolvementofNF-BandNF-E2-relatedfactor 2pathway-mediatedneuroinflammationinnitroglycerin-induced migraine-likesymptomsandphotophobia(Casilietal.,2020).As mentionedabove,migrainesufferersoftencomplainofphotopho- biaandreducedphysicalactivitythroughouttheinterictalperiod (Bondetal.,2015;Chuetal.,2011;McAdamsetal.,2020;Mulleners etal.,2001;Perenboometal.,2018;Rogersetal.,2020).Itwouldbe worthexploringwhetherchronicadministrationofNeurotropin® improvesthesedisablingconditions.
Thepresentstudyhasseverallimitationsthatshouldbenoted.
First,theCSD-basedmigrainemodelmimicsmigrainewithaura attacks, andsoitremainsunclearwhetherourfindingsarealso applicabletomigrainewithoutaura.Second,theinvasivenature of thediseasemodelmeansthatcomparisonsrelevanttophys- ical activity wereonly made between CSD-subjected miceand sham-operatedmiceatidenticaltimepointsinthepresentstudy.
Asdescribedinthematerialsandmethodssection,electrodeinser- tionintothebraintissuewasnotdoneintheshamsurgery,because we observedthatelectrodeinsertioncouldinduceCSDinciden- tally.Third,migraineisapproximatelythreetimesmoreprevalent in women that in men (Dodick, 2018a). Nevertheless, we only usedmalemicetoexcludethepotentialeffectsofmenstruation onbehavior(Ebineetal.,2016).Arecentpaperreportedthatthere
isnosignificantsexdifferenceinCSD-inducedbehavioralpatterns (Harriottetal.,2021).Finally,asstatedabove,wedidnoteluci- datethemechanismbywhichNeurotropin®amelioratedphysical activityinCSD-affectedmice,whichshouldbeclarifiedinfuture studies.
Insummary,ourexperimentalmodelprovidesaplatformfrom whichtofurtherinvestigatepostdromalphotophobiaandhypoac- tivityinmigraine.Ourfindingsofferanoveldirectionforfuture migraineresearch.Furthermore,Neurotropin®mayconferprotec- tionagainsttheseunrecognizedand undertreated symptomsat adoseusedfor themanagement ofneuropathicpaininclinical settings.
Authorcontributions
Mamoru Shibata: Conceptualization, Methodology, Format analysis,Investigation,Writing-OriginalDraft,Supervision,Fund acquisition.
SatoshiKitagawa:Investigation,Writing-Review&Editing.
ChunghuaTang:Methodology,Formatanalysis,Investigation, Writing-Review&Editing,FundAcquisition.
MiyukiUnekawa:Investigation,Writing-Review&Editing.
YoheiKayama:Investigation,Writing-Review&Editing.
JinNakahara:Writing-Review&Editing.
NorihiroSuzuki:Writing-Review&Editing,FundAcquisition.
Funding
This study was supported by JSPS KAKENHI [grant number 19K07849,toMS];agrant fromtheTakedaScienceFoundation toMS;and researchgrantsfrom PfizerInc.[WS1878886], Nip- pon Zoki Pharmaceutical Co., Ltd, and Kao Corporation to our researchgroup.ThisworkwassupportedinpartbyaJapan-China SasakawaMedicalFellowship[grantnumber2017816]andaState ScholarshipFundoftheChinaScholarshipCouncil[grantnumber 201908500072]toCT.
DeclarationofCompetingInterest
Theauthorsdeclarethattheyhavenoconflictofinterest.
Acknowledgements
WewouldliketothankDr.TsubasaTakizawaatDepartmentof Neurology,KeioUniversitySchoolofMedicine,andMr.Yasunao IshidaatNipponZokiPharmaceuticalCo.,Ltd.fortheiradviceand insightfuldiscussions.
References
Ashina,M.,Hansen,J.M.,Do,T.P.,Melo-Carrillo,A.,Burstein,R.,Moskowitz,M.A., 2019.Migraineandthetrigeminovascularsystem-40yearsandcounting.Lancet Neurol.18,795–804.
Becerra,L.,Bishop,J.,Barmettler,G.,Kainz,V.,Burstein,R.,Borsook,D.,2017.Brain networkalterationsintheinflammatorysoupanimalmodelofmigraine.Brain Res.1660,36–46.
Blau,J.N.,1982.Resolutionofmigraineattacks:sleepandtherecoveryphase.J.
Neurol.Neurosurg.Psychiatry45,223–226.
Bond,D.S.,Thomas,J.G.,O’Leary,K.C.,Lipton,R.B.,Peterlin,B.L.,Roth,J.,Rathier,L., Wing,R.R.,2015.Objectivelymeasuredphysicalactivityinobesewomenwith andwithoutmigraine.Cephalalgia35,886–893.
Borsook,D.,Edwards,R.,Elman,I.,Becerra,L.,Levine,J.,2013.Painandanalgesia:
thevalueofsaliencecircuits.Prog.Neurobiol.104,93–105.
Casili,G.,Lanza,M.,Filippone,A.,Campolo,M.,Paterniti,I.,Cuzzocrea,S.,Esposito,E., 2020.Dimethylfumaratealleviatesthenitroglycerin(NTG)-inducedmigraine inmice.J.Neuroinflammation17,59.
Charles,A.C.,Baca,S.M.,2013.Corticalspreadingdepressionandmigraine.Nat.Rev.
Neurol.9,637–644.
85
Chu,M.K.,Im,H.J.,Chung,C.S.,Oh,K.,2011.Interictalpattern-inducedvisualdiscom- fortandictalphotophobiainepisodicmigraineurs:anassociationofinterictal andictalphotophobia.Headache51,1461–1467.
Danno,D.,Kawabata,K.,Tachibana,H.,2013.Threecasesofnummularheadache effectivelytreatedwithNeurotropin((R)).Intern.Med.52,493–495.
deTommaso,M.,Ambrosini,A.,Brighina,F.,Coppola,G.,Perrotta,A.,Pierelli,F.,San- drini,G.,Valeriani,M.,Marinazzo,D.,Stramaglia,S.,Schoenen,J.,2014.Altered processingofsensorystimuliinpatientswithmigraine.Nat.Rev.Neurol.10, 144–155.
Dodick,D.W.,2018a.Migraine.Lancet391,1315–1330.
Dodick, D.W., 2018b. A phase-by-Phase review of migraine pathophysiology.
Headache58(Suppl1),4–16.
Ebine,T.,Toriumi,H.,Shimizu,T.,Unekawa,M.,Takizawa,T.,Kayama,Y.,Shibata, M.,Suzuki,N.,2016.Alterationsinthethresholdofthepotassiumconcentration toevokecorticalspreadingdepressionduringthenaturalestrouscycleinmice.
Neurosci.Res.112,57–62.
Foster,S.A.,Chen,C.C.,Ding,Y.,Mason,O.,McGuiness,C.B.,Morrow,P.,Ye,W.,Wade, R.L.,Smith,T.R.,Joshi,S.,2020.Economicburdenandriskfactorsofmigraine diseaseprogressionintheUS:aretrospectiveanalysisofacommercialpayer database.J.Med.Econ.23,1356–1364.
Fukuda, Y.,Berry,T.L.,Nelson, M.,Hunter,C.L.,Fukuhara, K.,Imai,H., Ito,S., Granholm-Bentley, A.C.,Kaplan,A.P.,Mutoh,T.,2010. Stimulatedneuronal expressionofbrain-derivedneurotrophicfactorbyNeurotropin.Mol.Cell.Neu- rosci.45,226–233.
Fukuda,Y.,Fukui,T.,Hikichi,C.,Ishikawa,T.,Murate,K.,Adachi,T.,Imai,H.,Fukuhara, K.,Ueda,A.,Kaplan,A.P.,Mutoh,T.,2015.NeurotropinpromotesNGFsignaling throughinteractionofGM1gangliosidewithTrkneurotrophinreceptorinPC12 cells.BrainRes.1596,13–21.
Fukuda,Y.,Nakajima,K.,Mutoh,T.,2020.NeuroprotectionbyNeurotropinthrough crosstalkofneurotrophicandinnateimmunereceptorsinPC12cells.Int.J.Mol.
Sci.,21.
GBD2016DiseaseandInjuryIncidenceandPrevalenceCollaborators,2017.Global, regional,andnationalincidence,prevalence,andyearslivedwithdisabilityfor 328diseasesandinjuriesfor195countries,1990-2016:asystematicanalysis fortheGlobalBurdenofDiseaseStudy2016.Lancet390,1211–1259.
Giffin,N.J.,Lipton,R.B.,Silberstein,S.D.,Olesen,J.,Goadsby,P.J.,2016.Themigraine postdrome:anelectronicdiarystudy.Neurology87,309–313.
Harriott,A.M.,Chung,D.Y.,Uner,A.,Bozdayi,R.O.,Morais,A.,Takizawa,T.,Qin,T., Ayata,C.,2021.Optogeneticspreadingdepressionelicitstrigeminalpainand anxietybehavior.Ann.Neurol.89,99–110.
Hata,T.,Kita,T.,Itoh,E.,Oyama,R.,Kawabata,A.,1988.Mechanismoftheanalgesic effectofneurotropin.Jpn.J.Pharmacol.48,165–173.
HeadacheClassificationCommitteeoftheInternationalHeadacheSociety,2018.The internationalclassificationofheadachedisorders,3rdedition.Cephalalgia38, 1–211.
Iwashita,T.,Shimizu,T.,Shibata,M.,Toriumi,H.,Ebine,T.,Funakubo,M.,Suzuki, N.,2013.Activationofextracellularsignal-regulatedkinaseinthetrigeminal ganglionfollowingbothtreatmentoftheduramaterwithcapsaicinandcortical spreadingdepression.Neurosci.Res.77,110–119.
Kato,S.,Nakamura,H.,Naiki,M.,Takeoka,Y.,Suehiro,S.,1991.Suppressionofacute experimentalallergicencephalomyelitisbyneurotropin:clinical,histopatho- logic,immunologicandimmunohistochemicalstudies.J.Neuroimmunol.35, 237–245.
Kayama,Y.,Shibata,M.,Takizawa,T.,Ibata,K.,Shimizu,T.,Ebine,T.,Toriumi,H., Yuzaki,M.,Suzuki,N.,2018.Functionalinteractionsbetweentransientrecep- torpotentialM8andtransientreceptorpotentialV1inthetrigeminalsystem:
relevancetomigrainepathophysiology.Cephalalgia38,833–845.
Kelman,L.,2006.Thepostdromeoftheacutemigraineattack.Cephalalgia26, 214–220.
Maleki,N.,Becerra,L.,Brawn,J.,Bigal,M.,Burstein,R.,Borsook,D.,2012.Concur- rentfunctionalandstructuralcorticalalterationsinmigraine.Cephalalgia32, 607–620.
May,A.,2017.Understandingmigraineasacyclingbrainsyndrome:reviewingthe evidencefromfunctionalimaging.Neurol.Sci.38,125–130.
McAdams,H.,Kaiser,E.A.,Igdalova,A.,Haggerty,E.B.,Cucchiara,B.,Brainard,D.H., Aguirre,G.K.,2020.SelectiveamplificationofipRGCsignalsaccountsforinter- ictalphotophobiainmigraine.Proc.Natl.Acad.Sci.U.S.A.117,17320–17329.
Mulleners,W.M.,Aurora,S.K.,Chronicle,E.P.,Stewart,R.,Gopal,S.,Koehler,P.J.,2001.
Self-reportedphotophobicsymptomsinmigraineursandcontrolsarereliable andpredictdiagnosticcategoryaccurately.Headache41,31–39.
Nakajo,Y.,Yang,D.,Takahashi,J.C.,Zhao,Q.,Kataoka,H.,Yanamoto,H.,2015.ERV enhancesspatiallearningandpreventsthedevelopmentofinfarcts,accompa- niedbyupregulatedBDNFinthecortex.BrainRes.1610,110–123.
Ng-Mak,D.S.,Fitzgerald,K.A.,Norquist,J.M.,Banderas,B.F.,Nelsen,L.M.,Evans,C.J., Healy,C.G.,Ho,T.W.,Bigal,M.,2011.Keyconceptsofmigrainepostdrome:
aqualitativestudytodevelopapost-migrainequestionnaire.Headache51, 105–117.
Nishimoto,S.,Okada,K.,Tanaka,H.,Okamoto,M.,Fujisawa,H.,Okada,T.,Naiki, M.,Murase,T.,Yoshikawa,H.,2016.Neurotropinattenuateslocalinflammatory responseandinhibitsdemyelinationinducedbychronicconstrictioninjuryof themousesciaticnerve.Biologicals44,206–211.
Noseda,R.,Jakubowski, M.,Kainz,V., Borsook, D.,Burstein,R.,2011. Cortical projectionsof functionally identified thalamic trigeminovascular neurons:
implicationsformigraineheadacheanditsassociatedsymptoms.J.Neurosci.
31,14204–14217.
Okazaki,R.,Namba,H.,Yoshida,H.,Okai,H.,Miura,T.,Kawamura,M.,2008.The antiallodyniceffectofNeurotropinismediatedviaactivationofdescending paininhibitorysystemsinratswithspinalnerveligation.Anesth.Analg.107, 1064–1069.
Perenboom,M.J.L.,ZamanipoorNajafabadi,A.H.,Zielman,R.,Carpay,J.A.,Ferrari, M.D.,2018.Quantifyingvisualallodyniaacrossmigrainesubtypes:theLeiden VisualSensitivityScale.Pain159,2375–2382.
Pietrobon,D.,Moskowitz,M.A.,2014.Chaosandcommotioninthewakeofcorti- calspreadingdepressionandspreadingdepolarizations.Nat.Rev.Neurosci.15, 379–393.
Quintela,E.,Castillo,J.,Munoz,P.,Pascual,J.,2006.Premonitoryandresolution symptomsinmigraine:aprospectivestudyin100unselectedpatients.Cepha- lalgia26,1051–1060.
Rogers,D.G.,Bond,D.S.,Bentley,J.P.,Smitherman,T.A.,2020.Objectivelymeasured physicalactivityinmigraineasafunctionofheadacheactivity.Headache60, 1930–1938.
Sakai, D., Nakai, T., Hiraishi, S., Nakamura, Y., Ando, K., Naiki, M., Watan- abe, M., 2018. Upregulation of glycosaminoglycan synthesis by Neu- rotropin in nucleus pulposus cells viastimulation of chondroitin sulfate N-acetylgalactosaminyltransferase1:anewapproachtoattenuationofinter- vertebraldiscdegeneration.PLoSOne13,e0202640.
Takeshima,T.,Wan,Q.,Zhang,Y.,Komori,M.,Stretton,S.,Rajan,N.,Treuer,T.,Ueda, K.,2019.Prevalence,burden,andclinicalmanagementofmigraineinChina, Japan,andSouthKorea:acomprehensivereviewoftheliterature.J.Headache Pain20,111.
Tang,C.,Unekawa,M.,Kitagawa,S.,Takizawa,T.,Kayama,Y.,Nakahara,J.,Shibata, M.,2020.Corticalspreadingdepolarisation-inducedfacialhyperalgesia,photo- phobiaandhypomotilityareamelioratedbysumatriptanandolcegepant.Sci.
Rep.10,11408.
Yoshii,H.,Suehiro,S.,Watanabe,K.,Yanagihara,Y.,1987.Immunopharmacologi- calactionsofanextractisolatedfrominflamedskinofrabbitsinoculatedwith vacciniavirus(neurotropin);enhancingeffectondelayedtypehypersensitivity responsethroughtheinductionofLyt-1+2-Tcells.Int.J.Immunopharmacol.9, 443–451.
Zhang,X.,Levy,D.,Noseda,R.,Kainz,V.,Jakubowski,M.,Burstein,R.,2010.Activa- tionofmeningealnociceptorsbycorticalspreadingdepression:implicationsfor migrainewithaura.J.Neurosci.30,8807–8814.
Zhang,X.,Levy,D.,Kainz,V.,Noseda,R.,Jakubowski,M.,Burstein,R.,2011.Activa- tionofcentraltrigeminovascularneuronsbycorticalspreadingdepression.Ann.
Neurol.69,855–865.
Zheng,Y.,Fang,W.,Fan,S.,Liao,W.,Xiong,Y.,Liao,S.,Li,Y.,Xiao,S.,Liu,J.,2018.
NeurotropininhibitsneuroinflammationviasuppressingNF-kappaBandMAPKs signalingpathwaysinlipopolysaccharide-stimulatedBV2cells.J.Pharmacol.Sci.
136,242–248.