• Tidak ada hasil yang ditemukan

Siegel modular form of degree 2 and Abelian variety.

N/A
N/A
Protected

Academic year: 2024

Membagikan "Siegel modular form of degree 2 and Abelian variety."

Copied!
3
0
0

Teks penuh

(1)

Siegel modular form of degree 2 and Abelian variety.

1

[

"!$#&%('*)

]

+-,/.

Q

0 132547698;:"<>=7?

E

@;ABC,>D>E.;F3GIHCJK8MLMNI4

2

.7:I<

OQPSR T

f

UWVQX&LZY\[

• L(s, E ) ≥≤ L(s, f ).

• E

.

conductor

]

f

.

level

^W_a`bL-Y;[

c

.;d*e.;f3g]Ch&iM8

Eichler-Shimura

j k&U9l5mCnZB;8o[

[Eichler-Shimura

pQq

] f = P

n ∈ Z > 0 a n exp(2πinz)

HrNI4

2

.

Hecke eigen cuspform

]sL-Y7[ c

.t]MuvD

• Q f := Q h a n | n ∈ N i

^;wbxWE*y3z {-|9lSY

.

• [Q f : Q]

E9}

Abel

~Q {

A f

|

L(s, H 1 (A f , Q l )) = Q

σ:Q f , → C L(s, f σ )

]vhbYb€(.>UWVQX-LZY;[

 @

Q f = Q

.‚]ouW^

A f

^;:ƒ<>=;?-|9l9Y;[

47,QDa„3…I†r‡tˆ7d*e.

2

E/}>‰]3BC,aDQŠQ‹SŒS-.oŽ&;&‘a’*“Z@&”m

•/–

' )

root number =1

H €˜—

Q

0M1M2‚4™6 8$Dš+S,3.

simple

h

Abel

=r›

A

@™AIBœ,(D

L(s, H 1 (A, Q l )) = L(s, F, spin), up to finitely many bad primes

]Ch/YCEQz/D(NI4

2

.

Siegel

OQP R3T

F

UoVQXbL-Y7[

]d eI4$6-n&B$8([

c

.$d eK.7fag]ChSi(83.MU>DoŽbŸžv ¢¡v]˜£/¤W6-Y

Siegel

OQP R3T

.$¥ ¦a§-|

B78W[Z¨3.oŽ&¢žv ¡©@3^;Et.Iª7«W¬9­oUbl5mCn(L\[

(I)

:I<

O3P*R T

.

pair

®5¯©¥*¦

:

S 2 (1) (Γ 0 (p)) 2 3 f 1 , f 2 7−→ Y f 2 1 ,f 2 ∈ M 2 2 (Γ 0 (p)), L(s, Y f 1 ,f 2 , spin ) = L(s, f 1 )L(s, f 2 ).

(II)

ª°E3{

K = Q( √

N )

.

Hilbert

O3P*R*T

®5¯°¥ ¦

:

S 2 (Γ K ) 3 f 7−→ Y f 2 ∈ M 2 2 (Γ 0 (N ), χ N ), L(s, Y f , spin ) = L(s, f ).

Γ K = ( ∗

√ N −1 ∗

√ N∗ ∗ ), ∗ ∈ o K .

Ž-o’S“K^oD

c .

type (I)

.WŽ-¢ž7 ¡;]±D

Eichler-Shimura

j*kZ|M²¯™6ZY

Abel

=(›]WH$³-´Q,3D

Ž97d eK.7¦QµBr,*´9Y

Siegel

OQP R3T

]

Abel

=;›K.

pair

.

example

Hv¶b·9n&B78([tBr®ƒBsD c .

Žb¢ž$ ¡©@3^WD

1

(2)

Yoshida’s non-vanishing problem

c .(ŽbŸžC ¡^a´a—3|t€œwKh7¥ ¦a§h .o®Z·a,*´9Y

^ h3´S.>®

]r´ -U9l¢mrn-B;8o[

c

.‚@;ABv,aD

B¨ ocherer and Schulze-Pillot’s result (1992) type (I)

.oŽb¢ž$ ¡°^·*hQ´M[

]™´

UK476-n&B;8([

c

.$1 jt@b”m DW^$:ƒ<

OQP R T

(trivial central character)

®Ÿ¯°²

¯±6KY

Abel

=;›t@;ABC,9^oŽb;dSe&UW¦3µ Br,/´bY

U/® mrn(L([

_ D*ŠSŒ*-.t "!S’9“-.7d*e

(1982)

#

Brylinski-Labesse(1984)

.$&%Kh'>”tm DaE.

H™dSebLZYa. ^)(+*]+,-*6Kn(L\[

Conjecture 1 K

H. ª E/{&D

ρ

H

Gal (K/Q)

.a“*¦b}]CL‚Yo[>N4

2

.

Hilbert eigen cuspform f (z 1 , z 2 ) = P

n∈o K a n exp(2πi(N ( n )z 1 + N ( n ) ρ z 2 ))

@oAB7, D

K

0/1/24(6Z8/10.\F/GH2b8aL

Abel

~3*{

A f with dim A f = [Q f : Q]

UoV3X&LKY;[

• L(s, H 1 (A f , Q l )) = Q

σ:Q f , → C L(s, f σ ).

• End Q (A f ) ⊃ Q f .

Remark 1 End Q (A f ) ⊃ K

|/^*h3´

@4359[;dSe^o_6*E3zt.

totally real filed

0t.

Hilbert

OQPSR T

@;ABv,K476*,S´bY\[

c .

Conjecture 1

H87 1bL369¤(D

 @

Hilbert

OQP R3T

f

®I¯œD(EK.9«o¬/­>.

Abel

=;›

/Q

Uo²¯±6

n\Lo[

i).

:"<a=;?

E f /K

.

Weil restriction Res K/Q E f .

ii). S 2 (1) (Γ 0 (N ), χ N )

®5¯©²¯s6KY

Abel

=\›/[

(

c 6b^;d e"H9731&LKY9:<;^3h3´>[

E-S.) iii). [Q f : Q] = 2

|aD

=)> ^

’Q

0 1 254$6S,S´bY

Abel

=\›

A f .

(genus 2

.

hyper-elliptic curve C : y 2 = x 5 + a, (a ∈ Q × )

.

Jacobian

h'$^?K´

conductor

H9@&—

.M|

full-modular

O3P*R3T

@\A"AB7h3´3U>D

3

. B ]DC-·I¯˜6ZY;[

)

¨ c

|WEt@WŽ&;d*et@Et@7f3gIH7¶&·bY4FK.)(G*hH]QBC,aD*Ž&5ž$ ¡

type (II)

^K·*h3´

®I7H9CZ·bn-B\8([

2

J K L

0‚.‚@M—/´a,WE.MZ·3U>¶b·I¯s6ZnoL([

p | N

@;ABv,

local Fircke involution

H

i p : S 2 (Γ K ) 3 f (z 1 , z 2 ) 7−→ f( − 1

pz 1

, − 1 pz 2

) ∈ S 2 (Γ K )

|(1*2&LZY;[

i p (f) = ± f

|blSY;[

Main Theorem 1 f

U

i p , p | N

@ON LZY

eigen value

UW+-,

1

h"¯v¤WD

(

_/—9.

p

|t€

i p (f ) = − f

h

¯

Y f = 0.)

Ž&5ž7 ¡

type (II)

.P

Y f

^K·ShQ´M[

2

(3)

• Y f

.

Fourier

3zt^

Q f

@‚n(6ZY\[

• f

U

Doi-Naganuma lift of nebentypus

|W²¯s6ZYah"¯œD

Y f

^

cuspform

|/^´M[

S 2 (1) (Γ K ) ∨ → Y S 2 (2) (Γ 0 (N), χ N ),

S 2 (1) (Γ 0 (N), χ N ) DN → S 2 (Γ K ) N → Y N 2 (2) (Γ 0 (N ), χ N ) → Φ S 2 (1) (Γ 0 (N ), χ N ).

S 2 (Γ K )

@*Y

D-N lift

.4P"H

S 2 (Γ K ) N

|/l‚¯ IBsD -H

S 2 (Γ K ) ∨

]aBr,*´9Y7[0 .

map

^

Siegel

/³ 9[

N (2) 2

^

Siegel non-cuspform

.

. g ∈ S (1) 2 (Γ 0 (N), χ N )

®5¯BC,

n(|5u! #"

U$@%9D

Φ ◦ Y ◦ DN (g) = g + ¯ g

@Qh&i(,*´bY;[

E@oD

Main Theorem 2

0313j&|/^oD

f ∈ S 2 (Γ K ) N

.(Žb¢žv ¡.4P

Y f

^

non-cuspform

|Sl9i(8MU>D

f

U

Gr¨ ossencharacter

| ®&SY>h"¯œD

Y f

]')(

spinor L-

NozIH9€$—

cuspform F C

UWV3X-LZY;[

c

ϫ>ir8+* ,&.

explicit

h-/.¢]WBs,(D

[4]

@10

y 2 = x 5 − x

@$AA5Br8

Siegel cuspform

U\V>XŸB

Igusa- theta

.243&.

R

H*Bs,a´*Yr[65W]s´) $H% U3lƒm±n$L([±hoD

y 2 = x 5 − x

^

E : y 2 = x(x − 1)(x − 1 − √ 2)

.

Weil restriction

h .>|

C-simple

|b^3h3´M[

4o, D3ŽZ(d/e]

(

798"4(6&8

)

ƒ\d9eIH47*1ZLYt]

Siegel

OSPSRST

.

standard L-

NMz"@HN*L Y

Kudla-Rallis-Soudry

$&%

(1993)

”m D

Abel

=;›.

Hasse-Weil

N(zt."ªES}

part

.=:;/h<=

L 0 (s, H 2 (A, Q l )) := ζ(s − 1) − 2 L(s, H 2 (A, Q l ))

@N"BC,oE.

U>K·bn\L([

A/ Q

U

simple

® —

root number = 1

hI¯C¤oD

ord s=2 L 0 (s, H 2 (A, Q l )) ≥ − 1

|

1. End Q (A) = Q ⇒ ord s=2 L 0 (s, H 2 (A, Q l )) ≥ 1.

2. ord s=2 L 0 (s, H 2 (A, Q l )) = 0 ⇒ L(s, H 1 (A, Q l ))

]?'@(

L-

NQz¢H @—a:<

O9PbR/T

.

pair

®

Hilbert

O3P*R3T

(

A ªE { 0€B9C

)

UWV3X-L-Y

.

3. ord s=2 L 0 (s, H 2 (A, Q l )) = − 1 ⇐⇒ A

^

S 2 (1) (Γ 0 (N ), χ N )

®5¯°²¯˜6ZY

Abel

=\›

.

D

i˜,oDFEGH&´O]WB˜,WDI0

End Q (A) 6 = Q

h‚¯˜¤;D

Shimura curve

.

Jacobian

®Ÿª E>{>0Z.

Hilbert

OQPSR T

.

motive

]

isogeneous

®45]v´ -UCK·I¯s6Zn\L([

J K L M

[1] B¨ocherer, S and Schulze-Pillot, R: Siegel modular forms and theta series attached to quaternion algebras, Nagoya Math. J. 121 (1991), 35-96. II, 147 (1997), 71-106.

[2] Kudla, S, Rallis, S and Soudry, D: On the degree 5 L-function for Sp(2), Invent. math. 107 (1992), 483-541.

[3] Oda, T: Periods of Hilbert surfaces. Progress in math. 19, Birkh¨asser, (1982).

[4] Okazaki, T: Proof of R. Salvati Manni and J. Top’s conjectures on Siegel modular forms and Abelian surfaces, Amer. J. Math. 128, (2006) 139-165.

[5] Yoshida, H: Siegel’s modular forms and the arithmetics of quadratic forms, Invent. math. 60 (1980), 193-248.

3

Referensi

Dokumen terkait

The purpose of this project is to develop real-time object tracking system for 2-Degree Of Freedom (DOF) robotic arm, which is a robotic based application with

EXPERT OPINION ON ''ENERGY EFFICIENCY IN BUILDINGS AND INDUSTRY'' EDUCATIONAL MODULAR PROGRAM FOR THE 6MO7T7OO ''THERMAL BNGINBERING" PROFILE MASTER'S PREPARATION WITHIN SPIID-2 OF

Dining room is an area that has elements and principles of interior design in every element of ornamental variety applied to the interior style of Batik Kitchen Café and Restaurant in

Using modular representation theoretical methods in Chapter 8 we examine the structure of a [28,7,12]2 code invariant under the symplectic group S62 and show that the supports of the

Keywords: The commutativity degree; Cayley table; conjugacy classes; 2-Engel groups INTRODUCTION A group G is abelian if its binary operation * is commutative Fraleigh, 2003..

But any nearly holomorphic scalar-valued elliptic modular form can be made from holomorphic ones andE2 non-holomorphic Eisenstein series of weight 2 by using differential operatorsDk..

13:00 – 14:00 Hiroshi Ishimoto Kyoto University A proof of Ibukiyama’s Shimura type conjecture on Siegel modular forms of half-integral weight and of degree 2.. 14:30 – 15:30 13:30 –

Precursors of 2-Acetyl-1-pyrroline, a Potent Flavor Compound of an Aromatic Rice Variety TADASHIYOSHIHASHI,*,† NGUYEN THITHU HUONG,†AND HIDEOINATOMI‡ Food Science and Technology