Siegel modular form of degree 2 and Abelian variety.
1
[
"!$#&%('*)]
+-,/.Q
0 132547698;:"<>=7?E
@;ABC,>D>E.;F3GIHCJK8MLMNI42
.7:I<OQPSR T
f
UWVQX&LZY\[• L(s, E ) ≥≤ L(s, f ).
• E
.conductor
]f
.level
^W_a`bL-Y;[c
.;d*e.;f3g]Ch&iM8
Eichler-Shimura
j k&U9l5mCnZB;8o[[Eichler-Shimura
pQq] f = P
n ∈ Z > 0 a n exp(2πinz)
HrNI42
.Hecke eigen cuspform
]sL-Y7[ c.t]MuvD
• Q f := Q h a n | n ∈ N i
^;wbxWE*y3z {-|9lSY.
• [Q f : Q]
E9}Abel
~Q {A f
|L(s, H 1 (A f , Q l )) = Q
σ:Q f , → C L(s, f σ )
]vhbYb(.>UWVQX-LZY;[ @
Q f = Q
.]ouW^A f
^;:<>=;?-|9l9Y;[47,QDa3 Irt7d*e.
2
E/}>]3BC,aDQQSS-.o&;&a*Z@&m/
' )
root number =1
H Q
0M1M246 8$D+S,3.simple
hAbel
=rA
@AIB,(DL(s, H 1 (A, Q l )) = L(s, F, spin), up to finitely many bad primes
]Ch/YCEQz/D(NI42
.Siegel
OQP R3T
F
UoVQXbL-Y7[]d eI4$6-n&B$8([
c
.$d eK.7fag]ChSi(83.MU>Dobv ¢¡v]£/¤W6-Y
Siegel
OQP R3T
.$¥ ¦a§-|
B78W[Z¨3.o&¢v ¡©@3^;Et.Iª7«W¬9oUbl5mCn(L\[
(I)
:I<O3P*R T
.
pair
®5¯©¥*¦:
S 2 (1) (Γ 0 (p)) 2 3 f 1 , f 2 7−→ Y f 2 1 ,f 2 ∈ M 2 2 (Γ 0 (p)), L(s, Y f 1 ,f 2 , spin ) = L(s, f 1 )L(s, f 2 ).
(II)
ª°E3{K = Q( √
N )
.Hilbert
O3P*R*T
®5¯°¥ ¦
:
S 2 (Γ K ) 3 f 7−→ Y f 2 ∈ M 2 2 (Γ 0 (N ), χ N ), L(s, Y f , spin ) = L(s, f ).
Γ K = ( ∗
√ N −1 ∗
√ N∗ ∗ ), ∗ ∈ o K .
-oSK^oD
c .
type (I)
.W-¢7 ¡;]±DEichler-Shimura
j*kZ|M²¯6ZYAbel
=(]WH$³-´Q,3D97d eK.7¦QµBr,*´9Y
Siegel
OQP R3T
]
Abel
=;K.pair
.example
Hv¶b·9n&B78([tBr®BsD c .b¢$ ¡©@3^WD
1
Yoshida’s non-vanishing problem
c .(bC ¡^a´a3|twKh7¥ ¦a§h .o®Z·a,*´9Y
^ h3´S.>®
]r´ -U9l¢mrn-B;8o[
c
.@;ABv,aD
B¨ ocherer and Schulze-Pillot’s result (1992) type (I)
.ob¢$ ¡°^·*hQ´M[]´
UK476-n&B;8([
c
.$1 jt@bm DW^$:<
OQP R T
(trivial central character)
®¯°²¯±6KY
Abel
=;t@;ABC,9^ob;dSe&UW¦3µ Br,/´bY
U/® mrn(L([
_ D*S*-.t "!S9-.7d*e
(1982)
#Brylinski-Labesse(1984)
.$&%Kh'>tm DaE.
HdSebLZYa. ^)(+*]+,-*6Kn(L\[
Conjecture 1 K
H. ª E/{&Dρ
HGal (K/Q)
.a*¦b}]CLYo[>N42
.Hilbert eigen cuspform f (z 1 , z 2 ) = P
n∈o K a n exp(2πi(N ( n )z 1 + N ( n ) ρ z 2 ))
@oAB7, DK
0/1/24(6Z8/10.\F/GH2b8aLAbel
~3*{A f with dim A f = [Q f : Q]
UoV3X&LKY;[• L(s, H 1 (A f , Q l )) = Q
σ:Q f , → C L(s, f σ ).
• End Q (A f ) ⊃ Q f .
Remark 1 End Q (A f ) ⊃ K
|/^*h3´
@4359[;dSe^o_6*E3zt.
totally real filed
0t.Hilbert
OQPSR T
@;ABv,K476*,S´bY\[
c .
Conjecture 1
H87 1bL369¤(D @
Hilbert
OQP R3T
f
®I¯D(EK.9«o¬/>.Abel
=;/Q
Uo²¯±6n\Lo[
i).
:"<a=;?E f /K
.Weil restriction Res K/Q E f .
ii). S 2 (1) (Γ 0 (N ), χ N )
®5¯©²¯s6KYAbel
=\/[(
c 6b^;d e"H9731&LKY9:<;^3h3´>[E-S.) iii). [Q f : Q] = 2
|aD‘
=)> ^’Q
0 1 254$6S,S´bYAbel
=\A f .
(genus 2
.hyper-elliptic curve C : y 2 = x 5 + a, (a ∈ Q × )
.Jacobian
h'$^?K´conductor
H9@&.M|
full-modular
O3P*R3T
@\A"AB7h3´3U>D
3
. B ]DC-·I¯6ZY;[)
¨ c
|WEt@W&;d*et@Et@7f3gIH7¶&·bY4FK.)(G*hH]QBC,aD*&5$ ¡
type (II)
^K·*h3´®I7H9CZ·bn-B\8([
2
J K L
0.@M/´a,WE.MZ·3U>¶b·I¯s6ZnoL([
p | N
@;ABv,local Fircke involution
Hi p : S 2 (Γ K ) 3 f (z 1 , z 2 ) 7−→ f( − 1
pz 1
, − 1 pz 2
) ∈ S 2 (Γ K )
|(1*2&LZY;[
i p (f) = ± f
|blSY;[Main Theorem 1 f
Ui p , p | N
@ON LZYeigen value
UW+-,1
h"¯v¤WD(
_/9.p
|ti p (f ) = − f
h¯
Y f = 0.)
•
&57 ¡type (II)
.PY f
^K·ShQ´M[2
• Y f
.Fourier
3zt^Q f
@n(6ZY\[• f
UDoi-Naganuma lift of nebentypus
|W²¯s6ZYah"¯DY f
^cuspform
|/^´M[S 2 (1) (Γ K ) ∨ → Y S 2 (2) (Γ 0 (N), χ N ),
S 2 (1) (Γ 0 (N), χ N ) DN → S 2 (Γ K ) N → Y N 2 (2) (Γ 0 (N ), χ N ) → Φ S 2 (1) (Γ 0 (N ), χ N ).
S 2 (Γ K )
@*YD-N lift
.4P"HS 2 (Γ K ) N
|/l¯ IBsD -HS 2 (Γ K ) ∨
]aBr,*´9Y7[0 .map
^Siegel
/³ 9[N (2) 2
^Siegel non-cuspform
.. g ∈ S (1) 2 (Γ 0 (N), χ N )
®5¯BC,n(|5u! #"
U$@%9D
Φ ◦ Y ◦ DN (g) = g + ¯ g
@Qh&i(,*´bY;[E@oD
Main Theorem 2
0313j&|/^oDf ∈ S 2 (Γ K ) N
.(b¢v ¡.4PY f
^non-cuspform
|Sl9i(8MU>Df
U
Gr¨ ossencharacter
| ®&SY>h"¯DY f
]')(spinor L-
NozIH9$cuspform F C
UWV3X-LZY;[c
´>ir8+* ,&.
explicit
h-/.¢]WBs,(D[4]
@10y 2 = x 5 − x
@$AA5Br8Siegel cuspform
U\V>XBIgusa- theta
.243&.R
H*Bs,a´*Yr[65W]s´) $H% U3lm±n$L([±hoD
y 2 = x 5 − x
^E : y 2 = x(x − 1)(x − 1 − √ 2)
.
Weil restriction
h .>|C-simple
|b^3h3´M[4o, D3Z(d/e]
(
798"4(6&8)
\d9eIH47*1ZLYt]Siegel
OSPSRST
.
standard L-
NMz"@HN*L YKudla-Rallis-Soudry
$&%(1993)
m DAbel
=;.Hasse-Weil
N(zt."ªES}part
.=:;/h<=L 0 (s, H 2 (A, Q l )) := ζ(s − 1) − 2 L(s, H 2 (A, Q l ))
@N"BC,oE.
U>K·bn\L([
A/ Q
Usimple
® root number = 1
hI¯C¤oDord s=2 L 0 (s, H 2 (A, Q l )) ≥ − 1
|1. End Q (A) = Q ⇒ ord s=2 L 0 (s, H 2 (A, Q l )) ≥ 1.
2. ord s=2 L 0 (s, H 2 (A, Q l )) = 0 ⇒ L(s, H 1 (A, Q l ))
]?'@(L-
NQz¢H @a:<O9PbR/T
.
pair
®Hilbert
O3P*R3T
(
A ªE { 0B9C)
UWV3X-L-Y.
3. ord s=2 L 0 (s, H 2 (A, Q l )) = − 1 ⇐⇒ A
^S 2 (1) (Γ 0 (N ), χ N )
®5¯°²¯6ZYAbel
=\.
D
i,oDFEGH&´O]WB,WDI0
End Q (A) 6 = Q
h¯¤;DShimura curve
.Jacobian
®ª E>{>0Z.Hilbert
OQPSR T
.
motive
]isogeneous
®45]v´ -UCK·I¯s6Zn\L([J K L M
[1] B¨ocherer, S and Schulze-Pillot, R: Siegel modular forms and theta series attached to quaternion algebras, Nagoya Math. J. 121 (1991), 35-96. II, 147 (1997), 71-106.
[2] Kudla, S, Rallis, S and Soudry, D: On the degree 5 L-function for Sp(2), Invent. math. 107 (1992), 483-541.
[3] Oda, T: Periods of Hilbert surfaces. Progress in math. 19, Birkh¨asser, (1982).
[4] Okazaki, T: Proof of R. Salvati Manni and J. Top’s conjectures on Siegel modular forms and Abelian surfaces, Amer. J. Math. 128, (2006) 139-165.
[5] Yoshida, H: Siegel’s modular forms and the arithmetics of quadratic forms, Invent. math. 60 (1980), 193-248.
3