• Tidak ada hasil yang ditemukan

ZDž v Y +µ>¶ 5RŽ0/ p,:‹;= Z 5RŽ '<·¸ 8 *+D§¨{© RªK/ zetaG R>/ p‹D;= Zež v Y J U )4x f / n ‰J<d p, modular-.0/<120# 9 /e¹º g 'D+ Katz» ':w0Œ½¼ /<5.

N/A
N/A
Protected

Academic year: 2024

Membagikan "ZDž v Y +µ>¶ 5RŽ0/ p,:‹;= Z 5RŽ '<·¸ 8 *+D§¨{© RªK/ zetaG R>/ p‹D;= Zež v Y J U )4x f / n ‰J<d p, modular-.0/<120# 9 /e¹º g 'D+ Katz» ':w0Œ½¼ /<5."

Copied!
2
0
0

Teks penuh

(1)

Serre’sp-adic modular forms

"!

J.-P. Serre#%$&

“ Formes modulaires et fonction zˆetap-adiques”

'()*+

p, modular-.0/%12436578 +:9

/<;=>3@?A8%BDCEF>/

SL2(Z)'HGI:J ) modular-.K# qLNM>3OEP8

*+

CQR0/<STRPU6VW X@Y

J[ZH+

p, modular-.K# +[\

QR0/ modular-.K/<]>/ p,^_`

a

8<B%b cSTRPU8

*

57 X%Y

Jed

fgh[i

+

EF:/

SL2(Z)'GI J )modular-.j3lk:m<12 n

+

B0UOop

+

P = 1−24P

σ1(n)qn #[qsrutPv

Y

*)JwNx6'e+

EF /%yNzn# modular

-.PU<#W4v@W

)Z{+ weightZ 2/ p, modular-.|U@W J } U Z~ X<Y

J<dN

B +

Γ0(p)'<€I:J modular-.>#% * p, modular-.sU@W‚ *)

Jed

p, modular-.0/

$0/eƒ„>/e^…†U{8

*H+

p, zetaG RK/<‡{ˆ 'GI J

f /

Z‰Jed

Serre /

$

'()*

#

+>Še+\

QR43

f … modular-.

/<]

Z

p, ‹

' ` a I Y p

+9 Y v '<€

ƒ

INJ

weight /<]

f

‰J

yzn p,

‹ ' ` a I:J

U

)4x}

U

ZD~

X%Y

Jed4}

Y

w>Œ+

p, modular-. '()*

(FourierLM/ )5RŽ>/ p, ‹e;= #

+

5{R{Ž

'’‘”“•NI J%–:}

U

Z[~

X<Y

Jed4}

Y 3 EisensteinTR 'e— „ I

Y p +

5RŽ"/

‘™˜

R"/eSš

–

/ p,>‹H;N=

} Y

#[›œ

Z{+

5RŽj/ zetaG R"/ p,:‹;N=

' ‘“•

8

*H– Kubota-Leopoldt/ p, L-G R Z[ž v Y J U )jx Ÿ¡0¢ n ‰J<d>}

Y

#

+I

n

'@ž

v Y

*)J

p, L-G R>/%£¤8 ) ‡ˆ¥sU¦? ojv

Y

JDZ+

Hilbert modular-.†3%?Ko J>} U '0w0Œu+H§¨©

Rªj/ zetaG Rj/ p,>‹H;:=

Z

ž v Y J<dN9

/ idea#<«>/@E

Œ n

‰J<dN[ŠH¬

o4v Y B

§¨©

'<€I J

Hilbert modular­® / EisensteinTR03O?o + 5HRŽ '{9 /lª:/ zetaG R Z

¯ Y

Jwx °±²

8

*(

r

d9}

n

+%³

R"3 diagonal'%´ c INJ U

SL2(Z)

'HGI J

)^ ³ R0/ modular-. ZDž v

Y

+µ>¶

5RŽ0/ p,:‹;=

Z

5RŽ

'<·¸

8

*+D§¨{©

RªK/ zetaG R>/ p‹D;= Zež v

Y J U

)4x f /

n

‰J<d

p, modular-.0/<120#

9

/e¹º

g

'D+

Katz» ':w0Œ½¼ /<5. ² Z X%Y +

¾¿ XeY

*) J[dH§¨©

Rª"/ zetaG R"/ p,>‹H;N= ' … )* # + Delige- Ribet' w>Œ º

g

'%ÀÁ² X@Y *)J%d 

B

+[Â

E. Goren3ÃeÄ ' p-adic modular-.K/

$"/

¾¿ ZDÅÆ

8

*)NJedj} Y v ' … )*

#

/

n

ÈÉ X@Y

J

UËÊÌ

Y

Jed

1

(2)

[1] F. Andreatta and E. Z. Goren: Hilbert modular forms: mod p and p-adic aspects, to appear in the Memoirs of the AMS.

[2] P. Deligne and K. A. Ribet: Values of abelianL-functions at negative integers over totally real fields, Invent. Math.59(1980), 227-286.

[3] E. Z. Goren: Hasse invariants for Hilbert modular varieties, Israel J.

Math. 122(2001), 157-174.

[4] E. Z. Goren: Hilbert modular forms modulopm– unramified case, J.

Number Theory90(2001), 341-375.

[5] F. Q. Gouvˆea: Arithmetic of p-adic modular forms, Lecture Notes in Math., vol. 1304, Springer, Berlin, 1988.

[6] K. Iwasawa: Lectures on p-adicL functions, Ann. Math. Studies 74, Princeton Univ. Press, 1972.

[7] N. M. Katz: p-adic properties of modular schemes and modular forms, Modular Functions of One Variable. III(Antwerp,1972), Lecture Notes in Math., vol. 350, Springer, Berlin, 1973, 69-190.

[8] N. M. Katz: Higher congruence between modular forms, Ann. of Math.

101(1975), 332-367.

[9] N. M. Katz: p-adic interpolation of real analytic Eisenstein series, Ann.

of Math. 104(1976), 459-571.

[10] T.Kubota and H.W.Leopoldt: Eine p-adische Theorie der Zetawerte, J. Crelle214-215(1964), 328-339.

[11] J.-P.Serre: Congruences et formes modulaires (d’apres H.P.F.Swinnerton-Dyer), S´em.Bourbaki, 1971/72, Annuaire du College de France, 1972/73, Paris, p.55-60.

[12] J.-P.Serre: Formes modulaires et fonction zˆeta p-adiques, Modular Functions of One Variable. III(Antwerp,1972), Lecture Notes in Math., vol. 350, Springer, Berlin, 1973

[13] H.P.F.Swinnerton-Dyer:Onl-adic representations and congruences for coefficients of modular forms, Modular Functions of One Variable.

III(Antwerp,1972), Lecture Notes in Math., vol. 350, Springer, Berlin, 1973

2

Referensi

Dokumen terkait