Serre’sp-adic modular forms
"!
J.-P. Serre#%$&
“ Formes modulaires et fonction zˆetap-adiques”
'()*+
p, modular-.0/%12436578 +:9
/<;=>3@?A8%BDCEF>/
SL2(Z)'HGI:J ) modular-.K# qLNM>3OEP8
*+
CQR0/<STRPU6VW X@Y
J[ZH+
p, modular-.K# +[\
QR0/ modular-.K/<]>/ p,^_`
a
8<B%b cSTRPU8
*
57 X%Y
Jed
fgh[i
+
EF:/
SL2(Z)'GI J )modular-.j3lk:m<12 n
+
B0UOop
+
P = 1−24P
σ1(n)qn #[qsrutPv
Y
*)JwNx6'e+
EF /%yNzn# modular
-.PU<#W4v@W
)Z{+ weightZ 2/ p, modular-.|U@W J } U Z~ X<Y
J<dN
B +
Γ0(p)'<I:J modular-.>#% * p, modular-.sU@W *)
Jed
p, modular-.0/
$0/e>/e^ U{8
*H+
p, zetaG RK/<{ 'GI J
f /
ZJed
Serre /
$
'()*
#
+>e+\
QR43
f modular-.
/<]
Z
p,
' ` a I Y p
+9 Y v '<
INJ
weight /<]
f
J
yzn p,
' ` a I:J
U
)4x}
U
ZD~
X%Y
Jed4}
Y
w>+
p, modular-. '()*
(FourierLM/ )5R>/ p, e;= #
+
5{R{
'NI J%:}
U
Z[~
X<Y
Jed4}
Y 3 EisensteinTR 'e I
Y p +
5R"/
R"/eS
/ p,>H;N=
} Y
#[
Z{+
5Rj/ zetaG R"/ p,:;N=
'
8
*H Kubota-Leopoldt/ p, L-G R Z[ v Y J U )jx ¡0¢ n J<d>}
Y
#
+I
n
'@
v Y
*)J
p, L-G R>/%£¤8 ) ¥sU¦? ojv
Y
JDZ+
Hilbert modular-.3%?Ko J>} U '0w0u+H§¨©
Rªj/ zetaG Rj/ p,>H;:=
Z
v Y J<dN9
/ idea#<«>/@E
n
J<dN[H¬
o4v Y B
§¨©
Rª
'<I J
Hilbert modular® / EisensteinTR03O?o + 5HR '{9 /lª:/ zetaG R Z
¯ Y
Jwx °±²
8
*(
r
d9}
n
+%³
R"3 diagonal'%´ c INJ U
SL2(Z)
'HGI J
)^ ³ R0/ modular-. ZD v
Y
+µ>¶
5R0/ p,:;=
Z
5R
'<·¸
8
*+D§¨{©
RªK/ zetaG R>/ pD;= Ze v
Y J U
)4x f /
n
J<d
p, modular-.0/<120#
9
/e¹º
g
'D+
Katz» ':w0½¼ /<5. ² Z X%Y +
¾¿ XeY
*) J[dH§¨©
Rª"/ zetaG R"/ p,>H;N= ' )* # + Delige- Ribet' w> º
g
'%ÀÁ² X@Y *)J%d
B
+[Â
E. Goren3ÃeÄ ' p-adic modular-.K/
$"/
¾¿ ZDÅÆ
8
*)NJedj} Y v ' )*
#
+Ç
/
n
ÈÉ X@Y
J
UËÊÌ
Y
Jed
1
[1] F. Andreatta and E. Z. Goren: Hilbert modular forms: mod p and p-adic aspects, to appear in the Memoirs of the AMS.
[2] P. Deligne and K. A. Ribet: Values of abelianL-functions at negative integers over totally real fields, Invent. Math.59(1980), 227-286.
[3] E. Z. Goren: Hasse invariants for Hilbert modular varieties, Israel J.
Math. 122(2001), 157-174.
[4] E. Z. Goren: Hilbert modular forms modulopm– unramified case, J.
Number Theory90(2001), 341-375.
[5] F. Q. Gouvˆea: Arithmetic of p-adic modular forms, Lecture Notes in Math., vol. 1304, Springer, Berlin, 1988.
[6] K. Iwasawa: Lectures on p-adicL functions, Ann. Math. Studies 74, Princeton Univ. Press, 1972.
[7] N. M. Katz: p-adic properties of modular schemes and modular forms, Modular Functions of One Variable. III(Antwerp,1972), Lecture Notes in Math., vol. 350, Springer, Berlin, 1973, 69-190.
[8] N. M. Katz: Higher congruence between modular forms, Ann. of Math.
101(1975), 332-367.
[9] N. M. Katz: p-adic interpolation of real analytic Eisenstein series, Ann.
of Math. 104(1976), 459-571.
[10] T.Kubota and H.W.Leopoldt: Eine p-adische Theorie der Zetawerte, J. Crelle214-215(1964), 328-339.
[11] J.-P.Serre: Congruences et formes modulaires (d’apres H.P.F.Swinnerton-Dyer), S´em.Bourbaki, 1971/72, Annuaire du College de France, 1972/73, Paris, p.55-60.
[12] J.-P.Serre: Formes modulaires et fonction zˆeta p-adiques, Modular Functions of One Variable. III(Antwerp,1972), Lecture Notes in Math., vol. 350, Springer, Berlin, 1973
[13] H.P.F.Swinnerton-Dyer:Onl-adic representations and congruences for coefficients of modular forms, Modular Functions of One Variable.
III(Antwerp,1972), Lecture Notes in Math., vol. 350, Springer, Berlin, 1973
2