• Tidak ada hasil yang ditemukan

Fig. S3.1 Thiomer (a) normal photograph, (b) SEM-EDX microstructure and (c) elemental spectrum

Fig. S3.2 Heavy metal immobilization efficiency of ASR fly ash, ASR bottom ash and ISW bottom ash at different pH with Run 4

Fig. S3.3 Percent of sulfur before and after Thiomer solidified of ASR thermal residue, the data obtained from the EDS

참고문헌

Ahmaruzzaman, M., 2010. A review on the utilization of fly ash. Prog. Energy Combust. Sci. 36, 327–363.

Baker, D.E., Amacher, M.C., 1982. Nickel, copper, zinc, cadmium. In: Miller, R.H., Keeney, D.R. (Eds.), Methods of Soil Analysis, Part 2. ASA-SSSA, Madison, WI, USA, pp. 323–334.

Chung, S., 2010. Import and Export of Waste in Korea: Regulation and Actual Practice.

Ciacci, L., Morselli, L., Passarini, F., Santini, A., Vassura, I., 2010. A comparison among different automotive shredder residue treatment processes. Int. J. Life Cycle Assess. 15, 896–906.

Cunliffe, A., Jones, N., Williams, P., 2003. Pyrolysis of composite plastic waste.

Environ. Technol. 24, 653–663.

Darnell, G.R., 1996. Sulfur Polymer Cement, A Final Waste Form for Radioactive and Hazardous Wastes.

Environmental Protection Agency (EPA), 2010. Using Auto Shredder Residue as Cement Manufacturing Component. <http://www.epa.gov/oswer/docs/iwg/

auto_shredder_residue.pdf>.

Fuhrmann, M., Melamed, D., Kalb, P.D., Adams, J.W., Milian, L.W., 2002. Sulfur polymer solidification/stabilization of elemental mercury waste. Waste Manage.

22 (3), 327–333.

Hwang, I., Yokono, S., Matsuto, T., 2008. Pre treatment of automobile shredder residue (ASR) for fuel utilization. Chemosphere 71, 879–885.

Ioannidis, T.A., Zouboulis, A.I., 2003. Detoxification of a highly toxic lead-loaded industrial solid waste by stabilization using apatites. J. Hazard. Mater. 97 (1), 173–191.

Ioannidis, T.A., Zouboulis, A.I., 2006. Selective removal of lead and bromide from a hazardous industrial solid waste using Limited Acid Demand and Separation Factor at ambient conditions. J. Hazard. Mater. 131 (1), 46–58.

Ioannidis, T.A., Zouboulis, A.I., Matis, K.A., 2006. Effective treatment and recovery of laurionite-type lead from toxic industrial solid wastes. Sep. Purif. Technol.

48 (1), 50–61.

Kalb, P., Heiser, J., Colombo, P., 1985. Modified Sulfur Cement Solidification of Low- Level Waste, Topical Report, BNL-51923, Brookhaven National Laboratory, NY.

Kalb, P., Heiser, J., Colombo, P., 1991. Modified sulfur cement encapsulation of mixed waste contaminated incinerator fly ash. Waste Manage. 11, 147–153.

Katsuura, H., Inoue, T., Hiraoka, M., Sakai, S., 1996. Full-scale plant study on fly ash treatment by the acid extraction process. Waste Manage. 16, 491–499.

Kim, K., Joung, H., Nam, H., Seo, Y., Hong, J.H., Yoo, T., Lim, B., Park, J., 2004.

Management status of end-of-life vehicles and characteristics of automobile shredder residues in Korea. Waste Manage. 24, 533–540.

Lee, H.Y., 2007. Characteristics and heavy metal leaching of ash generated from incineration of automobile shredder residue. J. Hazard. Mater. 147, 570–575.

Mancini, G., Viotti, P., Luciano, A., Fino, D., 2014. On the ASR and ASR thermal residues characterization of full scale treatment plant. Waste Manage. 34, 448–

457.

of the Twelfth Annual Department of Energy Low-Level Waste Management Conference, CONF-9008119, National Low-Level Waste Management Program, Idaho Natl. Engineering Lab., Idaho Falls, Idaho.

McBee, W.C., Sullivan, T.A., Jong, B., 1981. Modified-sulfur Cements for Use in Concretes, Flexible Pavings, Coatings, and Grouts. NASA STI/Recon Technical Report N 82, 11333.

Mirabile, D., Pistelli, M.I., Marchesini, M., 2002. The thermal valorization of automobile shredder reissue: injection in blast furnace. Waste Manage. 22, 841–

851.

Mishras, Shimpi, N.G., 2005. Comparison of nano CaCO3and fly ash filled styrene butadiene rubber on mechanical and thermal properties. J. Sci. Ind. Res. 64, 744–751.

Mohamed, A.O., El Gamal, M., 2007. Sulfur based hazardous waste solidification.

Environ. Geol. 53, 159–175.

Mohamed, A.O., El Gamal, M., 2009. Hydro-mechanical behavior of a newly developed sulfur polymer concrete. Cement Concr. Compos. 31, 186–194.

Najat, J. Saleh, Samir, Nassaf Mustafa, 2011. A study of some mechanical, thermal and physical properties of polymer blend with Iraqi Kaolin Filler. Eng. Tech. J.

29 (11).

Nomi, M., Hayashi, T., 1975. Continous bituminization treatment of radioactive waste. Ebara Tech. Rev. 93, 79–80.

Oh, J., Lee, K., Lee, J., Chang, Y., 1999. The evaluation of PCDD/Fs from various Korean incinerators. Chemosphere 38, 2097–2108.

Osada, M., Tanigaki, N., Takahashi, S., Sakai, S., 2008. Brominated flame retardants and heavy metals in automobile shredder residue (ASR) and their behavior in the melting process. J. Mater. Cycles Waste Manage. 10, 93–101.

Paria, S., Yuet, P.K., 2006. Solidification–stabilization of organic and inorganic contaminants using Portland cement: a literature review. Environ. Rev. 14, 217 – 255.

Patnaik, A., Satapathy, A., 2009. Erosion wear response of fly ash-glass fiber–

polyester composites: a study using Taguchi experimental design. Malaysian

Polym. J. 4 (2), 13–28.

Pedlow, J.W., 1978. Cenospheres. In: Torrey, S. (Ed.), Coal Ash Utilization Fly Ash, Bottom Ash and Slag. Noyes Data Corporation, N.J., pp. 353–362.

Polettini, A., Pomi, R., Sirini, P., Testa, F., 2001. Properties of Portland cement—

stabilised MSWI fly ashes. J. Hazard. Mater. 88, 123–138.

Randall, P., Chattopadhyay, S., 2004. Advances in encapsulation technologies for the management of mercury-contaminated hazardous wastes. J. Hazard. Mater.

114 (1), 211–223.

Reddy, M.S., Kurose, K., Okuda, T., Nishijima, W., Okada, M., 2007. Separation of polyvinyl chloride (PVC) from automobile shredder residue (ASR) by froth flotation with ozonation. J. Hazard. Mater. 147, 1051–1055.

Rothon, R.N., 1997. Mineral fillers in thermoplastics: filler manufacture. J. Adhes.

64, 87–109.

Sawada, K., Matsuda, H., Mizutani, M., 2001. Immobilization of lead compounds in fly ash by mixing with asphalt, sulfur and sodium hydroxide. J. Chem. Eng.

Jpn. 34, 878–883.

Simic, V., 2013. End-of-life vehicle recycling – a review of the state-of-the-art.

Tehnicˇki vjesnik 20, 371–380.

Sliva, P., Peng, Y., Peeler, D.K., 1996. Sulfur Polymer Cement as a Low-level Waste Glass Matrix Encapsulant.

Sullivan, T.A., McBee, W.C., 1976. Development and Testing of Superior Sulfur Concretes.

Suzuki, N., Watanabe, T., Hirosawa, K., Ozaki, H., Atsuta, T., Shibata, Y., 1979.

Asphalt-solidification of harmful industrial waste solids. KHI Tech. Rev. 72, 83–

89.

제4장 유황폴리머바인더를 이용한 ASR 비산재의 고형화/안정 화: 압축강도와 중금속 용출 최적화

*

요 약

제 4장에서는 Thiomer의 친환경건설재료로서 활용 방안을 평가하기 위하여 자동 차 파쇄 잔재물(ASR) 비산재의 고형화/안정화물에 대한 최적화 연구를 수행하였다.

최적화는 D-optimal mixture를 사용하여 Thiomer (20-40 wt%), ASR fly ash (30-50 wt%), sand (20-40 wt%)를 14가지 배합설계비로 구성하고 직경 50mm × 높이 100mm의 고화체를 제작하여 수행하였다. 제작된 고화체는 구조적 특성으로 압축강 도와 환경적 특성으로 중금속 용출특성을 평가하여 최적조건을 규명하였다. 그리고 고화체의 미세구조를 FE-SEM/EDS로 분석하여, Thiomer로 고정화된 ASR 비산재는 처리되지 않은 ASR 비산재와 비교하여 공극과 간극이 감소되는 것을 확인하였다.

또한, XRD 분석을 통해 ASR 비산재의 유해중금속과 황이 결합제로 작용하여 캡슐 화하는 형태로 확인하였고, 황과 관련된 결정질 복합체로 이루어지는 것을 파악하 였다. 전체 실험중 30 wt% Thiomer, 30 wt% ASR 비산재와 40 wt% 모래의 배합설 계비에서 구조적 및 환경적으로 최적화 고형화 조건을 보여주었다. 최적화 조건에 서 고화시료는 54.9 MPa의 높은 압축 강도를 나타내었고, 중금속 용출은 각각 0.0078 mg/L Pb, 0.0260 mg/L Cr, 0.0007 mg/L Cd, 0.0020 mg/L Cu, 0.1027 mg/L Fe, 0.0046 mg/L Ni, 0.0920 mg/L Zn으로 국내의 기준(지정폐기물의 중간처리 및 매 립방법을 결정하는 기준)보다 낮게 나타나 환경적으로도 안전한 것으로 나타났다.

이러한 결과는 Thiomer가 포틀랜트 시멘트를 바인더로 사용하는 시멘트고형화와 비 교하였을 때, 우수한 강도와중금속 용출에 대한 엄격한 환경규제를 만족시켜, 시멘 트를 대체하는 혁신적인 친환경 건설재료로 활용될 수 있음을 보여주었다.

* Research paper based on this chapter : “Baek, J. W., Choi, A. E. S., &Park, H. S. (2017).

Solidification/stabilization of ASR fly ash using Thiomer material: Optimization of compressive strength and heavy metals leaching. Waste Management, 70, 139-148.”