[1] Alitalo, K., T. Tammela, and T. V Petrova, Lymphangiogenesis in development and human disease.Nature, 2005.438(7070):p. 946–953.
[2] Stacker, S. A., et al., Lymphangiogenesis and lymphatic vessel remodelling in cancer. Nature Reviews Cancer, 2014. 14(3):p. 159–172.
[3] Karaman, S. and M. Detmar, Mechanisms of lymphatic metastasis. Journal of Clinical Investigation, 2014.124(3):p. 922.
[4] Beasley, G. and D. Tyler, In-transit Melanoma Metastases: Incidence, Prognosis, and the Role of Lymphadenectomy.Annals of Surgical Oncology, 2015.22(2):p. 358–360.
[5] Kataru, R. P., Y. G. Lee, and G. Y. Koh, Interactions of immune cells and lymphatic vessels. Developmental Aspects of the Lymphatic Vascular System, 2014:p. 107–118.
[6] Lee, E., N. B. Pandey, and A. S. Popel, Lymphatic endothelial cells support tumor growth in breast cancer. Scientific Reports, 2014. 4:p. 5853
[7] Shah, T., et al.,Lymphatic endothelial cells actively regulate prostate cancer cell invasion. NMR in Biomedicine, 2016.29(7):p. 904–911.
[8] Li, Y. H. and C. Zhu, A modified Boyden chamber assay for tumor cell transendothelial migration in vitro. Clinical and Experimental Metastasis,
25 1999.17(5):p. 423–429.
[9] Dong, C., et al.,In vitro characterization and micromechanics of tumor cell chemotactic protrusion, locomotion, and extravasation. Annuals of
Biomedical Engineering, 2002.30(3):p. 344–355.
[10] Chotard-Ghodsnia, R., et al.,Morphological analysis of tumor cell/
endothelial cell interactions under shear flow. Journal of Biomechanics, 2007. 40(2):p. 335–344.
[11] Chrobak, K. M., D. R. Potter, and J. Tien, Formation of perfused, functional microvascular tubes in vitro. Microvascular Research, 2006. 71(3):p. 185–
196.
[12] Bogorad, M. I., et al.,in vitro microvessel models. Lab on a Chip, 2015.
15(22):p. 4242–4255.
[13] Zheng, Y., et al.,In vitro microvessels for the study of angiogenesis and thrombosis. Proceedings of the National Academy of Sciences, 2012.
109(24):p. 9342–9347.
[14] Li, X., et al., In vitro recapitulation of functional microvessels for the study of endothelial shear response, nitric oxide and [Ca2+] I. PLoS One, 2015.
10(5):p. e0126797.
[15] Miller, J. S., et al., Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nature Materials, 2012.
11(9):p. 768–774.
[16] Heintz, K. A., et al.,Fabrication of 3D biomimetic microfluidic networks in hydrogels. Advanced Healthcare Materials, 2016.5(17):p. 2153–2160.
[17] Zhang, B., et al., Biodegradable scaffold with built-in vasculature for
26
organ-on-a-chip engineering and direct surgical anastomosis. Nature Materials, 2016.15(6):p. 669–678.
[18] Whisler, J. A., M. B. Chen, and R. D. Kamm, Control of perfusable microvascular network morphology using a multiculture microfluidic system. Tissue Enineering Part C: Methods, 2012.20(7):p. 543–552.
[19] Kim, S., et al.,Engineering of functional, perfusable 3D microvascular networks on a chip. Lab on a Chip, 2013.13(8):p. 1489–1500.
[20] Moya, M. L., et al.,In vitro perfused human capillary networks. Tissue Enineering Part C: Methods, 2013.19(9):p. 730–737.
[21] Jeon, J. S., et al., Generation of 3D functional microvascular networks with human mesenchymal stem cells in microfluidic systems. Integrative Biology, 2014.6(5):p. 555–563.
[22] Jeon, J. S., et al., Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation. Proceedings of the National Academy of Sciences, 2015. 112(1):p. 214–219.
[23] Sobrino, A., et al., 3D microtumors in vitro supported by perfused vascular networks. Scientific Reports, 2016. 6.
[24] Hikimoto, D., et al., High-Throughput Blood- and Lymph-Capillaries with Open-Ended Pores Which Allow the Transport of Drugs and Cells.
Advanced Healthcare Materials, 2016.5(15):p. 1969–1978.
[25] Sato, M., et al.,Microcirculation-on-a-chip: A microfluidic platform for assaying blood-and lymphatic-vessel permeability. PLoS One, 2015.
10(9):p. 1–18.
[26] Pisano, M., et al.,An in vitro model of the tumor–lymphatic
27
microenvironment with simultaneous transendothelial and luminal flows reveals mechanisms of flow enhanced invasion. Integative Biology, 2015.
7(5):p. 525–533.
[27] Xiong, Y., et al., A robust in vitro model for trans-lymphatic endothelial migration. Scientific Reports, 2017.7(1):p. 1633.
[28] Price, G. M., K. M. Chrobak, and J. Tien, Effect of cyclic AMP on barrier function of human lymphatic microvascular tubes. Microvascular Research, 2008.76(1):p. 46–51.
[29] Marino, D., et al.,Bioengineering Dermo-Epidermal Skin Grafts with Blood and Lymphatic Capillaries. Science Translational Medicine, 2014.6(221):p.
221ra14-221ra14.
[30] Takeda, K., et al., Adipose-derived stem cells promote proliferation, migration, and tube formation of lymphatic endothelial cells in vitro by secreting lymphangiogenic factors. Annals of Plastic Surgery, 2015.74(6):p.
728–36.
[31] Strassburg, S., et al., Adipose-Derived Stem Cells Support Lymphangiogenic Parameters In Vitro. Journal of Cellular Biochemistry, 2016. 117(11):p.
2620–2629.
[32] Gibot, L., et al., Cell-based approach for 3D reconstruction of lymphatic capillaries in vitro reveals distinct functions of HGF and VEGF-C in lymphangiogenesis. Biomaterials, 2016. 78:p. 129–139.
[33] Knezevic, L., et al., Engineering Blood and Lymphatic Microvascular Networks in Fibrin Matrices. Frontiers in Bioengineering and
Biotechnology, 2017.5.
28
[34] Kim, S., et al.,Three-dimensional biomimetic model to reconstitute sprouting lymphangiogenesis in vitro. Biomaterials, 2016. 78:p. 115–128.
[35] Chary, S. R., and R. K. Jain, Direct measurement of interstitial convection and diffusion of albumin in normal and neoplastic tissues by fluorescence photobleaching. Proceedings of the National Academy of Sciences, 1989.
86(14):p. 5385–5389.
[36] Ng, C. P., B. Hinz, and M. A. Swartz, Interstitial fluid flow induces myofibroblast differentiation and collagen alignment in vitro. Journal of Cell Science, 2005. 118(20):p. 4731–4739.
[37] Kelley, J., et al.,Cytokine signaling in lung: transforming growth factor- beta secretion by lung fibroblasts.American Journal of Physiology-Lung Cellular and Molecular Physiology, 1991.260(2):p. L123–L128 .
[38] Wang, R., et al., Hypertrophic scar tissues and fibroblasts produce more transforming growth factor β1 mRNA and protein than normal skin and ‐ cells. Wound Repair and Regeneration, 2000. 8(2):p. 128–137.
[39] Clavin, N. W., et al.,TGF-β 1 is a negative regulator of lymphatic
regeneration during wound repair. American Journal of Physiology-Heart and Circulatory Physiology, 2008. 295(5):p. H2113–H2127,.
[40] Oka, M., et al., Inhibition of endogenous TGF-β signaling enhances lymphangiogenesis. Blood, 2008. 111(9):p. 4571–4579.
29
초 록
림프계의 구성 요소인 림프관은 암세포와 면역세포의 주요 이동 통로로, 염증이나 전이와 같은 여러 질병들과 밀접하게 연결되어 있다. 하지만 지금까지 복잡한 체내 림프관 환경을 모사하는 적절한 체외 림프관 모델의 부재로 인하여 암의 전이 상황에서 림프관 기능의 기제를 밝히는데 어려움이 많았다. 따라서 이 연구에서는 미세 유세 소자를 이용해 관류가능한 관으로 이루어진 3차원 림프 전이 모델을 제시한다.
사람 유래의 림프내피세포와 섬유아세포, 그리고 림프 세포의 성장을 촉진시키는 여러 성장 인자들을 이용하면 미세 유체 소자 내에서 림프관이 만들어졌다. 또한 림프관 형성은 수압차에 의해 유도되는 적절한 속력의 유동에 의해 더욱 촉진되었다. 림프관은 림프내피세포와 섬유아세포가 각각 다른 채널에 패터닝될 때만 관류되었으며, 관류된 림프관은 기저막 구성 등 체내 림프관의 기본적인 특징들을 갖고 있음이 확인되었다. 림프관은 관류된 이후 성장 인자가 없는 배지에서도 5일 이상 기존의 상태를 유지했으며, 미세 유체 소자에 주입된 암세포는 관류된 림프관 내로 들어가 내벽에 안정적으로 달라붙었다. 이 연구는