4. Experimental Section
4.5 Calculation of rate constant
The rate constant (k0, cm/s) of PF6- anion intercalation reaction was calculated using the peak potential gap (ΔEp) at 1 mV/s scan rate. The Ψ parameter used in Nicholson method was collected in literature from ΔEp values.52 The diffusivity value and transfer coefficient (α = 0.5) of PF6 anion in graphite was
30
assumed same for NG@LiF and NG within the range of reported data.53
31
Reference
[1] Armand, M., and J. M. Tarascon. "Issues and challenges facing rechargeable lithium batteries." Nature 414.6861 (2001): 359-367
[2] Nishi, Yoshio. "Lithium ion secondary batteries; past 10 years and the future." Journal of Power Sources 100.1-2 (2001): 101-106.
[3] Yoshino, Akira. "The birth of the lithium‐ion battery." Angewandte Chemie International Edition 51.24 (2012):
5798-5800.
[4] Linden, D., and T. B. Reddy. "Handbook of batteries third ed." (2002).
[5] Zu, Chen-Xi, and Hong Li. "Thermodynamic analysis on energy densities of batteries." Energy &
Environmental Science 4.8 (2011): 2614-2624.
[6] Goodenough, John B., and Kyu-Sung Park. "The Li-ion rechargeable battery: a perspective." Journal of the American Chemical Society 135.4 (2013): 1167-1176.
[7] Deng, Da, et al. "Green energy storage materials: Nanostructured TiO 2 and Sn-based anodes for lithium-ion batteries." Energy & Environmental Science 2.8 (2009): 818-837.
[8] Mizushima, K. J. P. C., et al. "LixCoO2 (0< x<-1): A new cathode material for batteries of high energy density." Materials Research Bulletin 15.6 (1980): 783-789.
[9] Tarascon, J. M., et al. "Synthesis conditions and oxygen stoichiometry effects on Li insertion into the spinel LiMn2 O 4." Journal of The Electrochemical Society 141.6 (1994): 1421.
[10] Noel, M., and R. Santhanam. "Electrochemistry of graphite intercalation compounds." Journal of Power Sources 72.1 (1998): 53-65.
[11] T. Ishihara, M. Koga, H. Matsumoto, M. Yoshio, Electrochemical intercalation of hexafluorophosphate anion into various carbons for cathode of dual-carbon rechargeable battery, Electrochem. Solid-State Lett., 10 (2007).
[12] T. Placke, O. Fromm, S.F. Lux, P. Bieker, S. Rothermel, H.-W. Meyer, S. Passerini, M. Winter, Reversible intercalation of bis(trifluoromethanesulfonyl)imide anions from an ionic liquid electrolyte into graphite for high performance dual-ion cells, J. Electrochem. Soc., 159 (2012) A1755-A1765.
[13] J.A. Read, A.V. Cresce, M.H. Ervin, K. Xu, Dual-graphite chemistry enabled by a high voltage electrolyte, Energy Environ. Sci., 7 (2014) 617-620.
[14] D. Guerard, A. Herold, Intercalation of lithium into graphite and other carbons, Carbon, 13 (1975) 337-345.
[15] S. Basu, C. Zeller, P.J. Flanders, C.D. Fuerst, W.D. Johnson, J.E. Fischer, Synthesis and properties of lithium- graphite intercalation compounds, Mater. Sci. Eng., 38 (1979) 275-283.
[16] E. Peled, C. Menachem, D. Bar‐Tow, A. Melman, Improved graphite anode for lithium‐ion batteries chemically: Bonded solid electrolyte interface and nanochannel formation, J. Electrochem. Soc., 143 (1996) L4- L7.
[17] J.R. Dahn, A.K. Sleigh, H. Shi, J.N. Reimers, Q. Zhong, B.M. Way, Dependence of the electrochemical intercalation of lithium in carbons on the crystal structure of the carbon, Electrochim. Acta, 38 (1993) 1179-1191.
[18] J.R. Dahn, R. Fong, M.J. Spoon, Suppression of staging in lithium-intercalated carbon by disorder in the host, Phys. Rev. B, 42 (1990) 6424-6432.
[19] D. Liu, Y. Wang, Y. Xie, L. He, J. Chen, K. Wu, R. Xu, Y. Gao, On the stress characteristics of graphite anode
32
in commercial pouch lithium-ion battery, J. Power Sources, 232 (2013) 29-33.
[20] R. Kostecki, F. McLarnon, Microprobe study of the effect of li intercalation on the structure of graphite, J.
Power Sources, 119-121 (2003) 550-554.
[21] J.B. Goodenough, Evolution of strategies for modern rechargeable batteries, Acc. Chem. Res., 46 (2013) 1053-1061.
[22] B. Dunn, H. Kamath, J.-M. Tarascon, Electrical energy storage for the grid: A battery of choices, Science, 334 (2011) 928.
[23] J.A. Seel, J.R. Dahn, Electrochemical intercalation of pf[sub 6] into graphite, J. Electrochem. Soc., 147 (2000) 892.
[24] X. Qi, B. Blizanac, A. DuPasquier, P. Meister, T. Placke, M. Oljaca, J. Li, M. Winter, Investigation of pf6(-) and tfsi(-) anion intercalation into graphitized carbon blacks and its influence on high voltage lithium ion batteries, Phys Chem Chem Phys, 16 (2014) 25306-25313.
[25] R.T. Carlin, H.C. De Long, J. Fuller, P.C. Trulove, Dual intercalating molten electrolyte batteries, J.
Electrochem. Soc., 141 (1994) L73-L76.
[26] P. Tobias, B. Peter, L. Simon Franz, F. Olga, M. Hinrich-Wilhelm, P. Stefano, W. Martin, Dual-ion cells based on anion intercalation into graphite from ionic liquid-based electrolytes, Z. Phys. Chem., 226 (2012) 391-407.
[27] B. Scrosati, Lithium rocking chair batteries: An old concept?, J. Electrochem. Soc., 139 (1992) 2776-2781.
[28] M. Wang, Y. Tang, A review on the features and progress of dual-ion batteries, Adv. Energy Mater., 8 (2018).
[29] T. Placke, A. Heckmann, R. Schmuch, P. Meister, K. Beltrop, M. Winter, Perspective on performance, cost, and technical challenges for practical dual-ion batteries, Joule, 2 (2018) 2528-2550.
[30] Y. Sui, C. Liu, R.C. Masse, Z.G. Neale, M. Atif, M. AlSalhi, G. Cao, Dual-ion batteries: The emerging alternative rechargeable batteries, Energy Storage Materials, 25 (2020) 1-32.
[31] J.A. Read, In-situ studies on the electrochemical intercalation of hexafluorophosphate anion in graphite with selective cointercalation of solvent, J. Phys. Chem. C, 119 (2015) 8438-8446.
[32] B. Heidrich, A. Heckmann, K. Beltrop, M. Winter, T. Placke, Unravelling charge/discharge and capacity fading mechanisms in dual-graphite battery cells using an electron inventory model, Energy Storage Materials, 21 (2019) 414-426.
[33] N. Li, Y. Xin, H. Chen, S. Jiao, H. Jiang, W.-L. Song, D. Fang, Thickness evolution of graphite-based cathodes in the dual ion batteries via in operando optical observation, Journal of Energy Chemistry, 29 (2019) 122-128.
[34] R. Yivlialin, G. Bussetti, L. Brambilla, C. Castiglioni, M. Tommasini, L. Duò, M. Passoni, M. Ghidelli, C.S.
Casari, A. Li Bassi, Microscopic analysis of the different perchlorate anions intercalation stages of graphite, J.
Phys. Chem. C, 121 (2017) 14246-14253.
[35] A. Zhou, Q. Liu, Y. Wang, W. Wang, X. Yao, W. Hu, L. Zhang, X. Yu, J. Li, H. Li, Al2o3 surface coating on licoo2 through a facile and scalable wet-chemical method towards high-energy cathode materials withstanding high cutoff voltages, J. Mater. Chem. A, 5 (2017) 24361-24370.
[36] H. Ota, Y. Sakata, A. Inoue, S. Yamaguchi, Analysis of vinylene carbonate derived sei layers on graphite anode, J. Electrochem. Soc., 151 (2004) A1659.
[37] O. Chusid, E. Ein Ely, D. Aurbach, M. Babai, Y. Carmeli, Electrochemical and spectroscopic studies of carbon
33
electrodes in lithium battery electrolyte systems, J. Power Sources, 43 (1993) 47-64.
[38] J. Vetter, P. Novák, M.R. Wagner, C. Veit, K.C. Möller, J.O. Besenhard, M. Winter, M. Wohlfahrt-Mehrens, C. Vogler, A. Hammouche, Ageing mechanisms in lithium-ion batteries, J. Power Sources, 147 (2005) 269-281.
[39] Y. Kida, A. Kinoshita, K. Yanagida, A. Funahashi, T. Nohma, I. Yonezu, Study on capacity fade factors of lithium secondary batteries using lini0.7co0.3o2 and graphite–coke hybrid carbon, Electrochim. Acta, 47 (2002) 4157-4162.
[40] J. Wang, L. Liao, H.R. Lee, F. Shi, W. Huang, J. Zhao, A. Pei, J. Tang, X. Zheng, W. Chen, Y. Cui, Surface- engineered mesoporous silicon microparticles as high-coulombic-efficiency anodes for lithium-ion batteries, Nano Energy, 61 (2019) 404-410.
[41] W.-H. Li, Q.-L. Ning, X.-T. Xi, B.-H. Hou, J.-Z. Guo, Y. Yang, B. Chen, X.-L. Wu, Highly improved cycling stability of anion de-/intercalation in the graphite cathode for dual-ion batteries, Adv. Mater., 31 (2019) 1804766.
[42] X. Han, G. Xu, Z. Zhang, X. Du, P. Han, X. Zhou, G. Cui, L. Chen, An in situ interface reinforcement strategy achieving long cycle performance of dual-ion batteries, Adv. Energy Mater., 9 (2019) 1804022.
[43] S.J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure, D.L. Wood, The state of understanding of the lithium-ion- battery graphite solid electrolyte interphase (sei) and its relationship to formation cycling, Carbon, 105 (2016) 52- 76.
[44] X. Han, J. Sun, Design of a lif-rich solid electrolyte interface layer through salt-additive chemistry for boosting fast-charging phosphorus-based lithium ion battery performance, Chem. Commun., 56 (2020) 6047-6049.
[45] E. Peled, D. Golodnitsky, G. Ardel, Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes, J. Electrochem. Soc., 144 (1997) L208-L210.
[46] C. Monroe, J. Newman, The effect of interfacial deformation on electrodeposition kinetics, J. Electrochem.
Soc., 151 (2004) A880.
[47] J. Xie, L. Liao, Y. Gong, Y. Li, F. Shi, A. Pei, J. Sun, R. Zhang, B. Kong, R. Subbaraman, J. Christensen, Y.
Cui, Stitching h-bn by atomic layer deposition of lif as a stable interface for lithium metal anode, Science Advances, 3 (2017) eaao3170.
[48] M. He, R. Guo, G.M. Hobold, H. Gao, B.M. Gallant, The intrinsic behavior of lithium fluoride in solid electrolyte interphases on lithium, Proc. Natl. Acad. Sci. U. S. A., 117 (2020) 73.
[49] X.-Q. Zhang, X. Chen, R. Xu, X.-B. Cheng, H.-J. Peng, R. Zhang, J.-Q. Huang, Q. Zhang, Columnar lithium metal anodes, Angew. Chem. Int. Ed., 56 (2017) 14207-14211.
[50] S. Miyoshi, H. Nagano, T. Fukuda, T. Kurihara, M. Watanabe, S. Ida, T. Ishihara, Dual-carbon battery using high concentration lipf6in dimethyl carbonate (dmc) electrolyte, J. Electrochem. Soc., 163 (2016) A1206-A1213.
[51] M. Itagaki, K. Honda, Y. Hoshi, I. Shitanda, In-situ eis to determine impedance spectra of lithium-ion rechargeable batteries during charge and discharge cycle, J. Electroanal. Chem., 737 (2015) 78-84.
[52] I. Lavagnini, R. Antiochia, F. Magno, An extended method for the practical evaluation of the standard rate constant from cyclic voltammetric data, Electroanal., 16 (2004) 505-506.
[53] S. Miyoshi, T. Akbay, T. Kurihara, T. Fukuda, A.T. Staykov, S. Ida, T. Ishihara, Fast diffusivity of pf6– anions in graphitic carbon for a dual-carbon rechargeable battery with superior rate property, J. Phys. Chem. C, 120 (2016) 22887-22894.
34
[54] L. Terborg, S. Nowak, S. Passerini, M. Winter, U. Karst, P.R. Haddad, P.N. Nesterenko, Ion chromatographic determination of hydrolysis products of hexafluorophosphate salts in aqueous solution, Anal. Chim. Acta, 714 (2012) 121-126.
[55] S. Kumar, P. Bhauriyal, B. Pathak, Computational insights into the working mechanism of the lipf6–graphite dual-ion battery, J. Phys. Chem. C, 123 (2019) 23863-23871.
[56] R.S. Nicholson, Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics, Anal. Chem., 37 (1965) 1351-1355.
[57] S.S. Zhang, K. Xu, T.R. Jow, Eis study on the formation of solid electrolyte interface in li-ion battery, Electrochim. Acta, 51 (2006) 1636-1640.
[58] Y. Ko, Y.-G. Cho, H.-K. Song, Programming galvanostatic rates for fast-charging lithium ion batteries: A graphite case, RSC Adv., 4 (2014) 16545-16550.
[59] G.-C. Chung, H.-J. Kim, S.-I. Yu, S.-H. Jun, J.-w. Choi, M.-H. Kim, Origin of graphite exfoliation an investigation of the important role of solvent cointercalation, J. Electrochem. Soc., 147 (2000) 4391.
[60] X. Su, Q. Wu, J. Li, X. Xiao, A. Lott, W. Lu, B.W. Sheldon, J. Wu, Silicon-based nanomaterials for lithium- ion batteries: A review, Adv. Energy Mater., 4 (2014) 1300882.
[61] C.R. Yang, J.Y. Song, Y.Y. Wang, C.C. Wan, Impedance spectroscopic study for the initiation of passive film on carbon electrodes in lithium ion batteries, J. Appl. Electrochem., 30 (2000) 29-34.
[62] Pinca, Justin R., William G. Duborg, and Ryan Jorn. "Ion Association and Electrolyte Structure at Surface Films in Lithium-Ion Batteries." The Journal of Physical Chemistry C 125.13 (2021): 7054-7066.
[63] Raguette, Lauren, and Ryan Jorn. "Ion solvation and dynamics at solid electrolyte interphases: a long way from bulk?." The Journal of Physical Chemistry C 122.6 (2018): 3219-3232.
[64] Zhang, Bingkai, et al. "The stability and reaction mechanism of a LiF/electrolyte interface: insight from density functional theory." Journal of Materials Chemistry A 8.5 (2020): 2613-2617.
[65] Li, Yuqi, et al. "Intercalation chemistry of graphite: alkali metal ions and beyond." Chemical Society Reviews 48.17 (2019): 4655-4687.
[66] V. Eshkenazi, E. Peled, L. Burstein, D. Golodnitsky, Xps analysis of the sei formed on carbonaceous materials, Solid State Ionics, 170 (2004) 83-91.
[67] H.-H. Lee, Y.-Y. Wang, C.-C. Wan, M.-H. Yang, H.-C. Wu, D.-T. Shieh, The function of vinylene carbonate as a thermal additive to electrolyte in lithium batteries, J. Appl. Electrochem., 35 (2005) 615-623.
[68] P. Verma, P. Maire, P. Novák, A review of the features and analyses of the solid electrolyte interphase in li- ion batteries, Electrochim. Acta, 55 (2010) 6332-6341.
[69] S. You, B. Sundqvist, A.V. Talyzin, Enormous lattice expansion of hummers graphite oxide in alcohols at low temperatures, ACS Nano, 7 (2013) 1395-1399.
[70] T.-H. Kim, E.K. Jeon, Y. Ko, B.Y. Jang, B.-S. Kim, H.-K. Song, Enlarging the d-spacing of graphite and polarizing its surface charge for driving lithium ions fast, J. Mater. Chem. A, 2 (2014) 7600-7605.
[71] J. Holoubek, Y. Yin, M. Li, M. Yu, Y.S. Meng, P. Liu, Z. Chen, Exploiting mechanistic solvation kinetics for dual-graphite batteries with high power output at extremely low temperature, Angew. Chem. Int. Ed., 58 (2019) 18892-18897.