• Tidak ada hasil yang ditemukan

DPP-TVT-0 DPP-TVT-1 DPP-TVT-2

Chapter Ⅵ. Chapter Ⅵ. References

58

59

Thieno[3,2-b]thiophene-Bridged D−π–A Polymer Semiconductor Based on Benzo[1,2-b:4,5- b′]dithiophene and Benzoxadiazole. Macromolecules 2013, 46 (12), 4805-4812; (b) Dou, L.; Gao, J.;

Richard, E.; You, J.; Chen, C.-C.; Cha, K. C.; He, Y.; Li, G.; Yang, Y., Systematic Investigation of Benzodithiophene- and Diketopyrrolopyrrole-Based Low-Bandgap Polymers Designed for Single Junction and Tandem Polymer Solar Cells. J. Am. Chem. Soc. 2012, 134 (24), 10071-10079.

10. Yau, C. P.; Wang, S.; Treat, N. D.; Fei, Z.; Tremolet de Villers, B. J.; Chabinyc, M. L.;

Heeney, M., Investigation of Radical and Cationic Cross-Linking in High-Efficiency, Low Band Gap Solar Cell Polymers. Advanced Energy Materials 2014, n/a-n/a.

11. Zhou, E.; Cong, J.; Hashimoto, K.; Tajima, K., Introduction of a conjugated side chain as an effective approach to improving donor-acceptor photovoltaic polymers. Energy & Environmental Science 2012, 5 (12), 9756-9759.

12. Hendriks, K. H.; Heintges, G. H. L.; Gevaerts, V. S.; Wienk, M. M.; Janssen, R. A. J., High- Molecular-Weight Regular Alternating Diketopyrrolopyrrole-based Terpolymers for Efficient Organic Solar Cells. Angew. Chem. Int. Ed. 2013, 52 (32), 8341-8344.

13. Park, J. H.; Jung, E. H.; Jung, J. W.; Jo, W. H., A Fluorinated Phenylene Unit as a Building Block for High-Performance n-Type Semiconducting Polymer. Adv. Mater. 2013, 25 (18), 2583-2588.

14. Bürgi, L.; Turbiez, M.; Pfeiffer, R.; Bienewald, F.; Kirner, H.-J.; Winnewisser, C., High- Mobility Ambipolar Near-Infrared Light-Emitting Polymer Field-Effect Transistors. Adv. Mater. 2008, 20 (11), 2217-2224.

15. Zhou, H.; Yang, L.; You, W., Rational Design of High Performance Conjugated Polymers for Organic Solar Cells. Macromolecules 2012, 45 (2), 607-632.

16. Liu, S.; Zhang, K.; Lu, J.; Zhang, J.; Yip, H.-L.; Huang, F.; Cao, Y., High-Efficiency Polymer Solar Cells via the Incorporation of an Amino-Functionalized Conjugated Metallopolymer as a Cathode Interlayer. J. Am. Chem. Soc. 2013, 135 (41), 15326-15329.

17. Li, Y.; Sonar, P.; Singh, S. P.; Soh, M. S.; van Meurs, M.; Tan, J., Annealing-Free High- Mobility Diketopyrrolopyrrole−Quaterthiophene Copolymer for Solution-Processed Organic Thin Film Transistors. J. Am. Chem. Soc. 2011, 133 (7), 2198-2204.

18. (a) Huang, H.; Zhou, N.; Ortiz, R. P.; Chen, Z.; Loser, S.; Zhang, S.; Guo, X.; Casado, J.;

López Navarrete, J. T.; Yu, X.; Facchetti, A.; Marks, T. J., Alkoxy-Functionalized Thienyl-Vinylene Polymers for Field-Effect Transistors and All-Polymer Solar Cells. Adv. Funct. Mater. 2014, 24 (19), 2782-2793; (b) McCulloch, I.; Heeney, M.; Chabinyc, M. L.; DeLongchamp, D.; Kline, R. J.; Cölle,

60

M.; Duffy, W.; Fischer, D.; Gundlach, D.; Hamadani, B.; Hamilton, R.; Richter, L.; Salleo, A.;

Shkunov, M.; Sparrowe, D.; Tierney, S.; Zhang, W., Semiconducting Thienothiophene Copolymers:

Design, Synthesis, Morphology, and Performance in Thin-Film Organic Transistors. Adv. Mater. 2009, 21 (10-11), 1091-1109; (c) Murphy, A. R.; Fréchet, J. M. J., Organic semiconducting oligomers for use in thin film transistors. Chem. Rev. 2007, 107 (4), 1066-1096; (d) Zaumseil, J.; Sirringhaus, H., Electron and Ambipolar Transport in Organic Field-Effect Transistors. Chem. Rev. 2007, 107 (4), 1296-1323; (e) Boudreault, P.-L. T.; Najari, A.; Leclerc, M., Processable Low-Bandgap Polymers for Photovoltaic Applications†. Chem. Mater. 2010, 23 (3), 456-469; (f) Kim, J.; Lim, B.; Baeg, K.-J.;

Noh, Y.-Y.; Khim, D.; Jeong, H.-G.; Yun, J.-M.; Kim, D.-Y., Highly Soluble Poly(thienylenevinylene) Derivatives with Charge-Carrier Mobility Exceeding 1 cm2V–1s–1. Chem. Mater. 2011, 23 (21), 4663-4665; (g) Beaujuge, P. M.; Fréchet, J. M. J., Molecular Design and Ordering Effects in pi- Functional Materials for Transistor and Solar Cell Applications. J. Am. Chem. Soc. 2011, 133 (50), 20009-20029; (h) Boudinet, D.; Benwadih, M.; Altazin, S.; Verilhac, J.-M.; De Vito, E.; Serbutoviez, C.; Horowitz, G.; Facchetti, A., Influence of Substrate Surface Chemistry on the Performance of Top- Gate Organic Thin-Film Transistors. J. Am. Chem. Soc. 2011, 133 (26), 9968-9971; (i) Chen, M. S.;

Lee, O. P.; Niskala, J. R.; Yiu, A. T.; Tassone, C. J.; Schmidt, K.; Beaujuge, P. M.; Onishi, S. S.; Toney, M. F.; Zettl, A.; Fréchet, J. M. J., Enhanced Solid-State Order and Field-Effect Hole Mobility through Control of Nanoscale Polymer Aggregation. J. Am. Chem. Soc. 2013, 135 (51), 19229-19236; (j) Kim, G.; Kang, S.-J.; Dutta, G. K.; Han, Y.-K.; Shin, T. J.; Noh, Y.-Y.; Yang, C., A Thienoisoindigo- Naphthalene Polymer with Ultrahigh Mobility of 14.4 cm2/V·s That Substantially Exceeds Benchmark Values for Amorphous Silicon Semiconductors. J. Am. Chem. Soc. 2014; (k) Kline, R. J.;

McGehee, M. D.; Kadnikova, E. N.; Liu, J.; Fréchet, J. M. J.; Toney, M. F., Dependence of Regioregular Poly(3-hexylthiophene) Film Morphology and Field-Effect Mobility on Molecular Weight. Macromolecules 2005, 38 (8), 3312-3319; (l) Chua, L.-L.; Zaumseil, J.; Chang, J.-F.; Ou, E.

C. W.; Ho, P. K. H.; Sirringhaus, H.; Friend, R. H., General observation of n-type field-effect behaviour in organic semiconductors. Nature 2005, 434 (7030), 194-199.

19. (a) Hong, W.; Sun, B.; Guo, C.; Yuen, J.; Li, Y.; Lu, S.; Huang, C.; Facchetti, A., Dipyrrolo[2,3-b:2[prime or minute],3[prime or minute]-e]pyrazine-2,6(1H,5H)-dione based conjugated polymers for ambipolar organic thin-film transistors. Chem. Commun. 2013, 49 (5), 484- 486; (b) Kim, J.; Baeg, K.-J.; Khim, D.; James, D. T.; Kim, J.-S.; Lim, B.; Yun, J.-M.; Jeong, H.-G.;

Amegadze, P. S. K.; Noh, Y.-Y.; Kim, D.-Y., Optimal Ambipolar Charge Transport of Thienylenevinylene-Based Polymer Semiconductors by Changes in Conformation for High- Performance Organic Thin Film Transistors and Inverters. Chem. Mater. 2013, 25 (9), 1572-1583; (c) Li, J.; Zhao, Y.; Tan, H. S.; Guo, Y.; Di, C. A.; Yu, G.; Liu, Y.; Lin, M.; Lim, S. H.; Zhou, Y.; Su, H.;

61

Ong, B. S., A stable solution-processed polymer semiconductor with record high-mobility for printed transistors. Sci. Report 2012, 2, 754.

20. (a) Lee, J.; Han, A. R.; Hong, J.; Seo, J. H.; Oh, J. H.; Yang, C., Inversion of Dominant Polarity in Ambipolar Polydiketopyrrolopyrrole with Thermally Removable Groups. Adv. Funct.

Mater. 2012, 22 (19), 4128-4138; (b) Chen, Z.; Lee, M. J.; Shahid Ashraf, R.; Gu, Y.; Albert-Seifried, S.; Meedom Nielsen, M.; Schroeder, B.; Anthopoulos, T. D.; Heeney, M.; McCulloch, I.; Sirringhaus, H., High-Performance Ambipolar Diketopyrrolopyrrole-Thieno[3,2-b]thiophene Copolymer Field- Effect Transistors with Balanced Hole and Electron Mobilities. Adv. Mater. 2012, 24 (5), 647-652; (c) Chen, M. S.; Niskala, J. R.; Unruh, D. A.; Chu, C. K.; Lee, O. P.; Fréchet, J. M. J., Control of Polymer-Packing Orientation in Thin Films through Synthetic Tailoring of Backbone Coplanarity.

Chem. Mater. 2013, 25 (20), 4088-4096; (d) Guo, X.; Zhou, N.; Lou, S. J.; Hennek, J. W.; Ponce Ortiz, R.; Butler, M. R.; Boudreault, P.-L. T.; Strzalka, J.; Morin, P.-O.; Leclerc, M.; López Navarrete, J. T.;

Ratner, M. A.; Chen, L. X.; Chang, R. P. H.; Facchetti, A.; Marks, T. J., Bithiopheneimide–

Dithienosilole/Dithienogermole Copolymers for Efficient Solar Cells: Information from Structure–

Property–Device Performance Correlations and Comparison to Thieno[3,4-c]pyrrole-4,6-dione Analogues. J. Am. Chem. Soc. 2012, 134 (44), 18427-18439; (e) Lei, T.; Dou, J.-H.; Ma, Z.-J.; Yao, C.-H.; Liu, C.-J.; Wang, J.-Y.; Pei, J., Ambipolar Polymer Field-Effect Transistors Based on Fluorinated Isoindigo: High Performance and Improved Ambient Stability. J. Am. Chem. Soc. 2012, 134 (49), 20025-20028.

21. Holliday, S.; Donaghey, J. E.; McCulloch, I., Advances in Charge Carrier Mobilities of Semiconducting Polymers Used in Organic Transistors. Chem. Mater. 2014, 26 (1), 647-663.

22. (a) Kang, I.; An, T. K.; Hong, J.-a.; Yun, H.-J.; Kim, R.; Chung, D. S.; Park, C. E.; Kim, Y.- H.; Kwon, S.-K., Effect of Selenophene in a DPP Copolymer Incorporating a Vinyl Group for High- Performance Organic Field-Effect Transistors. Adv. Mater. 2013, 25 (4), 524-528; (b) Chen, H.; Guo, Y.; Mao, Z.; Yu, G.; Huang, J.; Zhao, Y.; Liu, Y., Naphthalenediimide-Based Copolymers Incorporating Vinyl-Linkages for High-Performance Ambipolar Field-Effect Transistors and Complementary-Like Inverters under Air. Chem. Mater. 2013, 25 (18), 3589-3596.

23. Matthews, J. R.; Niu, W.; Tandia, A.; Wallace, A. L.; Hu, J.; Lee, W.-Y.; Giri, G.; Mannsfeld, S. C. B.; Xie, Y.; Cai, S.; Fong, H. H.; Bao, Z.; He, M., Scalable Synthesis of Fused Thiophene- Diketopyrrolopyrrole Semiconducting Polymers Processed from Nonchlorinated Solvents into High Performance Thin Film Transistors. Chem. Mater. 2013, 25 (5), 782-789.

24. Wang, E.; Ma, Z.; Zhang, Z.; Vandewal, K.; Henriksson, P.; Inganäs, O.; Zhang, F.;

62

Andersson, M. R., An Easily Accessible Isoindigo-Based Polymer for High-Performance Polymer Solar Cells. J. Am. Chem. Soc. 2011, 133 (36), 14244-14247.

25. (a) Dutta, G. K.; Han, A. R.; Lee, J.; Kim, Y.; Oh, J. H.; Yang, C., Visible-Near Infrared Absorbing Polymers Containing Thienoisoindigo and Electron-Rich Units for Organic Transistors with Tunable Polarity. Adv. Funct. Mater. 2013, 23 (42), 5317-5325; (b) Bijleveld, J. C.; Verstrijden, R.

A. M.; Wienk, M. M.; Janssen, R. A. J., Copolymers of diketopyrrolopyrrole and thienothiophene for photovoltaic cells. J. Mater. Chem. 2011, 21 (25), 9224-9231; (c) Ma, Z.; Wang, E.; Jarvid, M. E.;

Henriksson, P.; Inganas, O.; Zhang, F.; Andersson, M. R., Synthesis and characterization of benzodithiophene-isoindigo polymers for solar cells. J. Mater. Chem. 2012, 22 (5), 2306-2314; (d) Lei, T.; Cao, Y.; Fan, Y.; Liu, C.-J.; Yuan, S.-C.; Pei, J., High-Performance Air-Stable Organic Field-Effect Transistors: Isoindigo-Based Conjugated Polymers. J. Am. Chem. Soc. 2011, 133 (16), 6099-6101.

26. (a) Bijleveld, J. C.; Shahid, M.; Gilot, J.; Wienk, M. M.; Janssen, R. A. J., Copolymers of Cyclopentadithiophene and Electron-Deficient Aromatic Units Designed for Photovoltaic Applications. Adv. Funct. Mater. 2009, 19 (20), 3262-3270; (b) Lei, T.; Cao, Y.; Zhou, X.; Peng, Y.;

Bian, J.; Pei, J., Systematic Investigation of Isoindigo-Based Polymeric Field-Effect Transistors:

Design Strategy and Impact of Polymer Symmetry and Backbone Curvature. Chem. Mater. 2012, 24 (10), 1762-1770.

27. (a) Natali, D.; Caironi, M., Charge Injection in Solution-Processed Organic Field-Effect Transistors: Physics, Models and Characterization Methods. Adv. Mater. 2012, 24 (11), 1357-1387; (b) Sirringhaus, H., Device Physics of Solution-Processed Organic Field-Effect Transistors. Adv. Mater.

2005, 17 (20), 2411-2425.

28. Xu, Y.; Minari, T.; Tsukagoshi, K.; Chroboczek, J. A.; Ghibaudo, G., Direct evaluation of low-field mobility and access resistance in pentacene field-effect transistors. J. Appl. Phys. 2010, 107 (11), 114507.

29. (a) McCulloch, I.; Heeney, M.; Bailey, C.; Genevicius, K.; MacDonald, I.; Shkunov, M.;

Sparrowe, D.; Tierney, S.; Wagner, R.; Zhang, W.; Chabinyc, M. L.; Kline, R. J.; McGehee, M. D.;

Toney, M. F., Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat.

Mater. 2006, 5 (4), 328-333; (b) Sirringhaus, H.; Brown, P. J.; Friend, R. H.; Nielsen, M. M.;

Bechgaard, K.; Langeveld-Voss, B. M. W.; Spiering, A. J. H.; Janssen, R. A. J.; Meijer, E. W.; Herwig, P.; de Leeuw, D. M., Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 1999, 401 (6754), 685-688.

30. Hindeleh, A. M.; Hosemann, R., Paracrystals representing the physical state of matter. J.

63 Phys. C: Solid State Phys. 1988, 21 (23), 4155-4170.

31. Hynes, R. C.; Le Page, Y., Sucrose, a convenient test crystal for absolute structures. J. Appl.

Cryst. 1991, 24 (4), 352-354.

32. (a) Cebeci, F. Ç.; Geyik, H.; Sezer, E.; Sezai Sarac, A., Synthesis, electrochemical characterization and impedance studies on novel thiophene-nonylbithiazole-thiophene comonomer. J.

Electroanal. Chem. 2007, 610 (2), 113-121; (b) Bilge, A.; Zen, A.; Forster, M.; Li, H.; Galbrecht, F.;

Nehls, B. S.; Farrell, T.; Neher, D.; Scherf, U., Swivel-cruciform oligothiophene dimers. J. Mater.

Chem. 2006, 16 (31), 3177-3182.

64

Chapter . Summary & Outlook

In conclusion, we successfully synthesized three kinds of DPP-based polymers which are applied electronic devices; OPVs, OFETs. It is demonstrated that these employed polymers has enormous potential for electronic active materials through UV-Vis-NIR spectroscopy, Cyclic voltammetry, Grazing incidence X-ray diffraction, Atomic force microscopy and so on.

Firstly, we have synthesized PDPP-BZ, PDPP-FBZ polymers inspired by previous reported literature.4a, 13 We studied the OPVs characteristics by introducing electron withdrawing fluorine atom which affects Voc value in one of efficiency factors. Thereby, we expected that PDPP-FBZ has higher performance due to the increased Voc . Contrary to our expectation, it has shown a little bit lower efficiency in comparison with PDPP-BZ. Therefore, we will need to do further investigation of surface analysis and the effects of the additives to active layer in device.

Secondly, PDPP-Hg, PDPP-DA polymers were synthesized via unusual synthetic methods not a general for conjugated polymers synthesis. Regarding these polymers, It was not done any analysis except synthetic and optical characterizations. We will have to study to optimize the molecular weight and additional properties of triple bonds and mercury metal.

And finally, the family of DPP-TVT-n polymers were synthesized via normal Stille polymerization.

This study has shown that not only the role of the densely packed crystalline structures also the effects of intrinsic paracrystalline property and plane distribution influence the charge transfer.

65

Acknowledgements

유니스트에 입학 한 지가 엊그제 같은데 벌써 2년이 지나 졸업을 할 시간이 되었다니 시간 참 빠르게 느껴집니다. 대학원에 입학하여 합성 실험을 하며, 힘들었던 적도 많았지만 실험실 선, 후배들이 많이 도와주고 그들에게 많이 의지하여 이렇게 졸업을 할 수 있게 되어 정말로 감사하게 생각합니다. 이런 글을 적는 것이 처음이라 시상식에 상 받으러 나온 배우들처럼 말을 잘 할 수는 없지만, 간단히 적겠습니다. 우선 2년 동안 부족한 저를 잘 지도 해 주신 교수님께 감사 드립니다. 교수님 덕분에 좋은 저널에 논문도 낼 수 있게 되었고, 이렇게 마무리하며 좋은 결과를 얻어 나갈 수 있게 된 점 다시 한번 감사 인사 드립니다. 그리고, 실험실에 처음 들어와 랩 매니저 역할을 하시며 수고 해주신 규철이 형, 조금은 터프 하지만 배울 점 많은 정훈이형, 모두에게 친절하게 대해 주신 아는 것 많으신 경식이 형에게 감사 드립니다. 또한 저와 함께 졸업을 하시게 된 차장님께도 졸업 정말 정말 축하 드리며 감사의 말씀을 드립니다. 대학교 2학년 때부터 알게 된 문미진 처음에 와서 내가 많이 구박하고 놀리기도 하고 했는데 네가 여기 와서 했던 고생만큼 나중에 다 실력으로 커 나가리라 생각하고 많이 의지 할 수 있어서 고마웠고, 말없는 부산여자 강효진 내가 뭐라 할 입장은 아니지만! 답답하게 말 안 하는 것만 고치면 정말로 좋겠는데.. 또한 장차 ATOMS LAB의 두 기둥으로 성장 할 정호와 상면이 에게도 앞으로 많이 배우고 성장하여 훌륭한 과학자가 되라는 말을 해주고 싶습니다. 그리고 우리 랩의 학부생들 소희, 유진이, 병규, 용준이 에게도 성격 고약한 오빠, 형 비위 맞춰 준다고 수고 많았다고 말 해 주고 싶고, 특히 소희와 유진이는 대학원 입학해서 잘 생활 하라고 말 해주고 싶고, 병규는 얼른 완쾌해서 다시 복귀할 수 있기를 바랄게~ 마지막으로 우리 외국인 내 친구 Chen, 처음 입학해서는 많이 다퉜지만 어느새 친한 친구가 될 수 있어서 좋았고, 졸업하는데 중국을 가버려서 못 보는 건 아쉽지만 앞으로 조금 만 더 열심히 해서 성과 낼 수 있으면 좋겠어, 이제 정말로 마지막으로 저의 편에서 항상 서서 응원해주시고 지지 해주신 아버지 어머니께 감사 드립니다. 이 밖에도 2년간 대학원 생활 하며 저를 도와 주신 모든 분들께 감사 드립니다.

감사합니다.

Dokumen terkait