• Tidak ada hasil yang ditemukan

The chemical and thermal stability test

Dalam dokumen Soyoung Cho (Halaman 76-86)

Chapter 2. Solution-processed stretchable Ag 2 S semiconductor thin films for wearable self-

2.4 Experimental section

2.4.11 The chemical and thermal stability test

For a thermal stability test, the Ag2S-based RRAM fabricated on the glass substrate was heated on a hot plate for 10 min at the preset temperatures (50, 100, 150, 200, 250 and 300 °C). After cooled down to room temperature, Ion and Ioff were measured at 0.03 V. Likewise, a chemical stability test was examined by measuring the Ion and Ioff after dipping the Ag2S-based RRAM in deionized water, ethanol, methanol, dimethylsulfoxide (DMSO), N-methlyformamide (NMF), dimethylforamide (DMF), hexane, toluene, tetrahydrofuran (THF) and phosphate buffer saline (PBS).

62

Reference

[1] Kim, D. H.; Lu, N.; Ma, R.; Kim, Y. S.; Kim, R. H.; Wang, S.; Wu, J.; Won, S. M.; Tao, H.; Islam, A.; Yu, K. J.; Kim, T. I.; Chowdhury, R.; Ying, M.;

Xu, L.; Li, M.; Chung, H. J.; Keum, H.; McCormick, M.; Liu, P.; Zhang, Y.

W.; Omenetto, F. G.; Huang, Y.; Coleman, T.; Rogers, J. A., Epidermal electronics.

Science 2011, 333 (6044), 838-43.

[2] Xu, J.; Wang, S.; Wang, G. N.; Zhu, C.; Luo, S.; Jin, L.; Gu, X.; Chen, S.;

Feig, V. R.; To, J. W.; Rondeau-Gagne, S.; Park, J.; Schroeder, B. C.; Lu, C.;

Oh, J. Y.; Wang, Y.; Kim, Y. H.; Yan, H.; Sinclair, R.; Zhou, D.; Xue, G.; M urmann, B.; Linder, C.; Cai, W.; Tok, J. B.; Chung, J. W.; Bao, Z., Highly stretch able polymer semiconductor films through the nanoconfinement effect. Science 2017, 35 5 (6320), 59-64.

[3] Park, S.; Heo, S. W.; Lee, W.; Inoue, D.; Jiang, Z.; Yu, K.; Jinno, H.; Hashizume, D.; Sekino, M.; Yokota, T.; Fukuda, K.; Tajima, K.; Someya, T., Self-powered ultra- flexible electronics via nano-grating-patterned organic photovoltaics. Nature 2018, 561 (7724), 516-521.

[4] Choi, C.; Choi, M. K.; Liu, S.; Kim, M. S.; Park, O. K.; Im, C.; Kim, J.; Qin, X.;

Lee, G. J.; Cho, K. W.; Kim, M.; Joh, E.; Lee, J.; Son, D.; Kwon, S. H.; Jeon, N. L.;

Song, Y. M.; Lu, N.; Kim, D. H., Human eye-inspired soft optoelectronic device using high- density MoS2-graphene curved image sensor array. Nat. Commun. 2017, 8 (1), 1664.

[5] Pan, L.; Wang, F.; Cheng, Y.; Leow, W. R.; Zhang, Y. W.; Wang, M.; Cai, P.; Ji, B.; Li, D.; Chen, X., A supertough electro-tendon based on spider silk composites. Nat.

Commun. 2020, 11 (1), 1332.

[6] Kim, Y.; Chortos, A.; Xu, W.; Liu, Y.; Oh, J. Y.; Son, D.; Kang, J.; Foudeh, A. M.;

Zhu, C.; Lee, Y.; Niu, S.; Liu, J.; Pfattner, R.; Bao, Z.; Lee, T. W., A bioinspired flexible organic artificial afferent nerve. Science 2018, 360 (6392), 998-1003.

[7] Choi, M. K.; Yang, J.; Kang, K.; Kim, D. C.; Choi, C.; Park, C.; Kim, S. J.; Chae, S. I.; Kim, T. H.; Kim, J. H.; Hyeon, T.; Kim, D. H., Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing. Nat. Commun. 2015, 6, 7149.

[8] Liu, Y. F.; Liu, Q.; Long, J. F.; Yi, F. L.; Li, Y. Q.; Lei, X. H.; Huang, P.; Du, B.;

Hu, N.; Fu, S. Y., Bioinspired Color-Changeable Organogel Tactile Sensor with Excellent Overall Performance. ACS Appl. Mater. Interfaces 2020, 12 (44), 49866-49875.

[9] Liu, J.; Wang, J.; Zhang, Z.; Molina-Lopez, F.; Wang, G. N.; Schroeder, B. C.; Yan, X.; Zeng, Y.; Zhao, O.; Tran, H.; Lei, T.; Lu, Y.; Wang, Y. X.; Tok, J. B.;

63

Dauskardt, R.; Chung, J. W.; Yun, Y.; Bao, Z., Fully stretchable active-matrix organic light- emitting electrochemical cell array. Nat. Commun. 2020, 11 (1), 3362.

[10] Yu, Z.; Niu, X.; Liu, Z.; Pei, Q., Intrinsically stretchable polymer light-emitting devices using carbon nanotube-polymer composite electrodes. Adv. Mater. 2011, 23 (34), 3989-94.

[11] Sekitani, T.; Nakajima, H.; Maeda, H.; Fukushima, T.; Aida, T.; Hata, K.; Someya, T., Stretchable active-matrix organic light-emitting diode display using printable elastic conductors.

Nat. Mater. 2009, 8 (6), 494-9.

[12] Oh, J. Y.; Son, D.; Katsumata, T.; Lee, Y.; Kim, Y.; Lopez, J.; Wu, H. C.; Kang, J.;

Park, J.; Gu, X.; Mun, J.; Wang, N. G.; Yin, Y.; Cai, W.; Yun, Y.; Tok, J. B.; Bao, Z., Stretchable self-healable semiconducting polymer film for active-matrix strain-sensing array.

Sci. Adv. 2019, 5 (11), eaav3097.

[13] Choi, S.; Han, S. I.; Jung, D.; Hwang, H. J.; Lim, C.; Bae, S.; Park, O. K.;

Tschabrunn, C. M.; Lee, M.; Bae, S. Y.; Yu, J. W.; Ryu, J. H.; Lee, S. W.; Park, K.;

Kang, P. M.; Lee, W. B.; Nezafat, R.; Hyeon, T.; Kim, D. H., Highly conductive, stretchable and biocompatible Ag-Au core-sheath nanowire composite for wearable and implantable bioelectronics. Nat. Nanotechnol. 2018, 13 (11), 1048-1056.

[14] Wang, Y.; Zhu, C.; Pfattner, R.; Yan, H.; Jin, L.; Chen, S.; Molina-Lopez, F.;

Lissel, F.; Liu, J.; Rabiah, N. I.; Chen, Z.; Chung, J. W.; Linder, C.; Toney, M. F.;

Murmann, B.; Bao, Z., A highly stretchable, transparent, and conductive polymer. Sci. Adv. 2017, 3 (3), e1602076.

[15] Wang, H.; Morozov, S. I.; Goddard, W. A.; An, Q., Light irradiation induced brittle-to- ductile and ductile-to-brittle transition in inorganic semiconductors. Phys. Rev. B 2019, 99 (16).

[16] Matsunaga, K.; Hoshino, S.; Ukita, M.; Oshima, Y.; Yokoi, T.; Nakamura, A., Carrier- trapping induced reconstruction of partial-dislocation cores responsible for light-illumination controlled plasticity in an inorganic semiconductor. Acta Mater. 2020, 195, 645-653.

[17] Qian, Y.; Zhang, X.; Xie, L.; Qi, D.; Chandran, B. K.; Chen, X.; Huang, W., Stretchable Organic Semiconductor Devices. Adv. Mater. 2016, 28 (42), 9243-9265.

[18] Okamoto, T.; Mitsui, C.; Yamagishi, M.; Nakahara, K.; Soeda, J.; Hirose, Y.; Miwa, K.; Sato, H.; Yamano, A.; Matsushita, T.; Uemura, T.; Takeya, J., V-shaped organic semiconductors with solution processability, high mobility, and high thermal durability. Adv.

Mater. 2013, 25 (44), 6392-7.

[19] Iino, H.; Usui, T.; Hanna, J., Liquid crystals for organic thin-film transistors. Nat. Commun.

2015, 6, 6828.

64

[20] Locklin, J.; Ling, M. M.; Sung, A.; Roberts, M. E.; Bao, Z., High-Performance Organic Semiconductors Based on Fluorene–Phenylene Oligomers with High Ionization Potentials. Adv.

Mater. 2006, 18 (22), 2989-2992.

[21] Kimura, Y.; Nagase, T.; Kobayashi, T.; Hamaguchi, A.; Ikeda, Y.; Shiro, T.;

Takimiya, K.; Naito, H., Soluble organic semiconductor precursor with specific phase separation for high-performance printed organic transistors. Adv. Mater. 2015, 27 (4), 727-32.

[22] Shi, X.; Chen, H.; Hao, F.; Liu, R.; Wang, T.; Qiu, P.; Burkhardt, U.; Grin, Y.;

Chen, L., Room-temperature ductile inorganic semiconductor. Nat. Mater. 2018, 17 (5), 421-426.

[23] Zhou, W. X.; Wu, D.; Xie, G.; Chen, K. Q.; Zhang, G., alpha-Ag2S: A Ductile Thermoelectric Material with High ZT. ACS Omega 2020, 5 (11), 5796-5804.

[24] Li, G.; An, Q.; Morozov, S. I.; Duan, B.; Goddard, W. A.; Zhang, Q.; Zhai, P.; Snyder, G. J., Ductile deformation mechanism in semiconductor α-Ag2S. npj Comput. Mater. 2018, 4 (1).

[25] Liang, J.; Wang, T.; Qiu, P.; Yang, S.; Ming, C.; Chen, H.; Song, Q.; Zhao, K.;

Wei, T.-R.; Ren, D.; Sun, Y.-Y.; Shi, X.; He, J.; Chen, L., Flexible thermoelectrics: from silver chalcogenides to full-inorganic devices. Energy Environ. Sci. 2019, 12 (10), 2983-2990.

[26] Li, G.; An, Q.; Morozov, S. I.; Duan, B.; Goddard, W. A.; Zhang, Q.; Zhai, P.; Snyder, G. J., Ductile deformation mechanism in semiconductor α-Ag2S. npj Comput. Mater. 2018, 4 (1).

[27] Ehsan, M. A.; Khaledi, H.; Tahir, A. A.; Ming, H. N.; Wijayantha, K. G. U.; Mazhar, M., Synthesis and characterization of silver diethyldithiocarbamate cluster for the deposition of acanthite (Ag2S) thin films for photoelectrochemical applications. Thin Solid Films 2013, 536, 124-129.

[28] Karashanova, D., Crystalline structure and phase composition of epitaxially grown Ag2S thin films. Solid State Ion. 2004, 171 (3-4), 269-275.

[29] Nozaki, H.; Onoda, M.; Yukino, K.; Kurashima, K.; Kosuda, K.; Maki, H.; Hishita, S., Epitaxial growth of Ag2S films on MgO(001). J. Solid State Chem. 2004, 177 (4-5), 1165-1172.

[30] Zahoor, F.; Azni Zulkifli, T. Z.; Khanday, F. A., Resistive Random Access Memory (RRAM):

an Overview of Materials, Switching Mechanism, Performance, Multilevel Cell (mlc) Storage, Modeling, and Applications. Nanoscale Res. Lett. 2020, 15 (1), 90.

[31] Pan, F.; Gao, S.; Chen, C.; Song, C.; Zeng, F., Recent progress in resistive random access memories: Materials, switching mechanisms, and performance. Mater. Sci. R Rep. 2014, 83, 1- 59.

[32] Zidan, M. A.; Strachan, J. P.; Lu, W. D., The future of electronics based on memristive systems.

Nat. Electron. 2018, 1 (1), 22-29.

[33] Valov, I.; Waser, R.; Jameson, J. R.; Kozicki, M. N., Electrochemical metallization memories—fundamentals, applications, prospects. Nanotechnology 2011, 22 (28).

65

[34] Waser, R.; Dittmann, R.; Staikov, G.; Szot, K., Redox-Based Resistive Switching Memories - Nanoionic Mechanisms, Prospects, and Challenges. Adv. Mater. 2009, 21 (25-26), 2632-2663.

[35] Waser, R.; Aono, M., Nanoionics-based resistive switching memories. Nat. Mater. 2007, 6 (11), 833-40.

[36] Morales-Masis, M.; van der Molen, S. J.; Fu, W. T.; Hesselberth, M. B.; van Ruitenbeek, J.

M., Conductance switching in Ag2S devices fabricated by in situ sulfurization. Nanotechnology 2009, 20 (9), 095710.

[37] Liao, Z. M.; Hou, C.; Zhao, Q.; Wang, D. S.; Li, Y. D.; Yu, D. P., Resistive switching and metallic-filament formation in Ag2S nanowire transistors. Small 2009, 5 (21), 2377-81.

[38] Shin, J.; Kim, I.; Biju, K. P.; Jo, M.; Park, J.; Lee, J.; Jung, S.; Lee, W.; Kim, S.;

Park, S.; Hwang, H., TiO2-based metal-insulator-metal selection device for bipolar resistive random access memory cross-point application. J. Appl. Phys. 2011, 109 (3).

[39] Son, D.; Chae, S. I.; Kim, M.; Choi, M. K.; Yang, J.; Park, K.; Kale, V. S.; Koo, J.

H.; Choi, C.; Lee, M.; Kim, J. H.; Hyeon, T.; Kim, D. H., Colloidal Synthesis of Uniform- Sized Molybdenum Disulfide Nanosheets for Wafer-Scale Flexible Nonvolatile Memory. Adv.

Mater. 2016, 28 (42), 9326-9332.

[40] Ji, Y.; Yang, Y.; Lee, S. K.; Ruan, G.; Kim, T. W.; Fei, H.; Lee, S. H.; Kim, D. Y.;

Yoon, J.; Tour, J. M., Flexible Nanoporous WO3-x Nonvolatile Memory Device. ACS Nano 2016, 10 (8), 7598-603.

[41] Liu, P.-H.; Lin, C.-C.; Manekkathodi, A.; Chen, L.-J., Multilevel resistance switching of individual Cu2S nanowires with inert electrodes. Nano Energy 2015, 15, 362-368.

[42] Jang, J.; Pan, F.; Braam, K.; Subramanian, V., Resistance switching characteristics of solid electrolyte chalcogenide Ag2Se nanoparticles for flexible nonvolatile memory applications. Adv.

Mater. 2012, 24 (26), 3573-6.

[43] Cheng, C. H.; Yeh, F. S.; Chin, A., Low-power high-performance non-volatile memory on a flexible substrate with excellent endurance. Adv. Mater. 2011, 23 (7), 902-5.

[44] Kim, S.; Jeong, H. Y.; Kim, S. K.; Choi, S. Y.; Lee, K. J., Flexible memristive memory array on plastic substrates. Nano. Lett. 2011, 11 (12), 5438-42.

[45] Shi, Q.; Wang, J.; Aziz, I.; Lee, P. S., Stretchable and Wearable Resistive Switching Random‐Access Memory. Adv. Intell. Syst. 2020.

[46] Hung, C.-C.; Chiu, Y.-C.; Wu, H.-C.; Lu, C.; Bouilhac, C.; Otsuka, I.; Halila, S.;

Borsali, R.; Tung, S.-H.; Chen, W.-C., Conception of Stretchable Resistive Memory Devices Based on Nanostructure-Controlled Carbohydrate-block-Polyisoprene Block Copolymers. Adv.

Funct. Mater. 2017, 27 (13).

66

[47] Gao, S.; Yi, X.; Shang, J.; Liu, G.; Li, R. W., Organic and hybrid resistive switching materials and devices. Chem. Soc. Rev. 2019, 48 (6), 1531-1565.

[48] Wu, P. H.; Lin, Y. C.; Laysandra, L.; Lee, M. H.; Chiu, Y. C.; Isono, T.; Satoh, T.;

Chen, W. C., Organic-Inorganic Nanocomposite Film for High-Performance Stretchable Resistive Memory Device. Macromol. Rapid Commun. 2020, 41 (3), e1900542.

[49] Baek, I.-J.; Cho, W.-J., Resistive switching characteristics of solution-processed organic- inorganic blended films for flexible memory applications. Solid-State Electron. 2018, 140, 129- 133.

[50] Wang, Z. Q.; Xu, H. Y.; Li, X. H.; Zhang, X. T.; Liu, Y. X.; Liu, Y. C., Flexible Resistive Switching Memory Device Based on Amorphous InGaZnO Film With Excellent Mechanical Endurance. IEEE Electron Device Lett. 2011, 32 (10), 1442-1444.

[51] Jeong, H. Y.; Kim, J. Y.; Kim, J. W.; Hwang, J. O.; Kim, J. E.; Lee, J. Y.; Yoon, T.

H.; Cho, B. J.; Kim, S. O.; Ruoff, R. S.; Choi, S. Y., Graphene oxide thin films for flexible nonvolatile memory applications. Nano Lett. 2010, 10 (11), 4381-6.

[52] Pan, L.; Ji, Z.; Yi, X.; Zhu, X.; Chen, X.; Shang, J.; Liu, G.; Li, R.-W., Metal-Organic Framework Nanofilm for Mechanically Flexible Information Storage Applications. Adv. Funct.

Mater. 2015, 25 (18), 2677-2685.

[53] Webber, D. H.; Brutchey, R. L., Alkahest for V2VI3 chalcogenides: dissolution of nine bulk semiconductors in a diamine-dithiol solvent mixture. J. Am. Chem. Soc. 2013, 135 (42), 15722- 5.

[54] McCarthy, C. L.; Webber, D. H.; Schueller, E. C.; Brutchey, R. L., Solution-Phase Conversion of Bulk Metal Oxides to Metal Chalcogenides Using a Simple Thiol-Amine Solvent Mixture. Angew. Chem. Int. Ed. 2015, 54 (29), 8378-81.

[55] Lin, Z.; He, Q.; Yin, A.; Xu, Y.; Wang, C.; Ding, M.; Cheng, H. C.; Papandrea, B.;

Huang, Y.; Duan, X., Cosolvent approach for solution-processable electronic thin films. ACS Nano 2015, 9 (4), 4398-405.

[56] Jo, S.; Park, S. H.; Shin, H.; Oh, I.; Heo, S. H.; Ban, H. W.; Jeong, H.; Kim, F.;

Choo, S.; Gu, D. H.; Baek, S.; Cho, S.; Kim, J. S.; Kim, B.-S.; Lee, J. E.; Song, S.;

Yoo, J.-W.; Song, J. Y.; Son, J. S., Soluble Telluride-Based Molecular Precursor for Solution- Processed High-Performance Thermoelectrics. ACS Appl. Energy Mater. 2019, 2 (7), 4582-4589.

[57] Heo, S. H.; Jo, S.; Kim, H. S.; Choi, G.; Song, J. Y.; Kang, J. Y.; Park, N. J.; Ban, H. W.; Kim, F.; Jeong, H.; Jung, J.; Jang, J.; Lee, W. B.; Shin, H.; Son, J. S., Composition change-driven texturing and doping in solution-processed SnSe thermoelectric thin films. Nat. Commun. 2019, 10 (1), 864.

67

[58] Jang, D.; Greer, J. R., Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses. Nat. Mater. 2010, 9 (3), 215-9.

[59] Hwang, B.; An, Y.; Lee, H.; Lee, E.; Becker, S.; Kim, Y. H.; Kim, H., Highly Flexible and Transparent Ag Nanowire Electrode Encapsulated with Ultra-Thin Al2O3: Thermal, Ambient, and Mechanical Stabilities. Sci. Rep. 2017, 7, 41336.

[60] Li, P.; Ma, J.; Xu, H.; Xue, X.; Liu, Y., Highly stable copper wire/alumina/polyimide composite films for stretchable and transparent heaters. J. Mater. Chem. C 2016, 4 (16), 3581- 3591.

[61] Dennler, G.; Lungenschmied, C.; Neugebauer, H.; Sariciftci, N. S.; Latrèche, M.;

Czeremuszkin, G.; Wertheimer, M. R., A new encapsulation solution for flexible organic solar cells. Thin Solid Films 2006, 511-512, 349-353.

[62] Park, J.; Yoon, H. R.; Khan, M. A.; Cho, S.; Sung, M. M., Selective Infiltration in Polymer Hybrid Thin Films as a Gas-Encapsulation Layer for Stretchable Electronics. ACS Appl. Mater.

Interfaces 2020, 12 (7), 8817-8825.

[63] Shang, J.; Xue, W.; Ji, Z.; Liu, G.; Niu, X.; Yi, X.; Pan, L.; Zhan, Q.; Xu, X. H.;

Li, R. W., Highly flexible resistive switching memory based on amorphous-nanocrystalline hafnium oxide films. Nanoscale 2017, 9 (21), 7037-7046.

[64] Khurana, G.; Misra, P.; Kumar, N.; Katiyar, R. S., Tunable Power Switching in Nonvolatile Flexible Memory Devices Based on Graphene Oxide Embedded with ZnO Nanorods. J. Phys.

Chem. C 2014, 118 (37), 21357-21364.

[65] Gan, K. J.; Liu, P. T.; Chien, T. C.; Ruan, D. B.; Sze, S. M., Highly durable and flexible gallium-based oxide conductive-bridging random access memory. Sci. Rep. 2019, 9 (1), 14141.

[66] Kim, S.; Jeong, H. Y.; Kim, S. K.; Choi, S. Y.; Lee, K. J., Flexible memristive memory array on plastic substrates. Nano Lett. 2011, 11 (12), 5438-42.

[67] Ji, Y.; Yang, Y.; Lee, S. K.; Ruan, G.; Kim, T. W.; Fei, H.; Lee, S. H.; Kim, D. Y.;

Yoon, J.; Tour, J. M., Flexible Nanoporous WO3-x Nonvolatile Memory Device. ACS Nano 2016, 10 (8), 7598-603.

[68] Wang, Z. Q.; Xu, H. Y.; Li, X. H.; Zhang, X. T.; Liu, Y. X.; Liu, Y. C., Flexible Resistive Switching Memory Device Based on Amorphous InGaZnO Film With Excellent Mechanical Endurance. IEEE Electron Device Lett. 2011, 32 (10), 1442-1444.

[69] Jeong, H. Y.; Kim, J. Y.; Kim, J. W.; Hwang, J. O.; Kim, J. E.; Lee, J. Y.; Yoon, T.

H.; Cho, B. J.; Kim, S. O.; Ruoff, R. S.; Choi, S. Y., Graphene oxide thin films for flexible nonvolatile memory applications. Nano Lett. 2010, 10 (11), 4381-6.

[70] Cheng, C. H.; Yeh, F. S.; Chin, A., Low-power high-performance non-volatile memory on a flexible substrate with excellent endurance. Adv. Mater. 2011, 23 (7), 902-5.

68

[71] Jang, J.; Pan, F.; Braam, K.; Subramanian, V., Resistance switching characteristics of solid electrolyte chalcogenide Ag2Se nanoparticles for flexible nonvolatile memory applications. Adv.

Mater. 2012, 24 (26), 3573-6.

[72] Pan, L.; Ji, Z.; Yi, X.; Zhu, X.; Chen, X.; Shang, J.; Liu, G.; Li, R.-W., Metal-Organic Framework Nanofilm for Mechanically Flexible Information Storage Applications. Adv. Funct.

Mater. 2015, 25 (18), 2677-2685.

[73] Guan, X.; Hu, W.; Haque, M. A.; Wei, N.; Liu, Z.; Chen, A.; Wu, T., Light-Responsive Ion-Redistribution-Induced Resistive Switching in Hybrid Perovskite Schottky Junctions. Adv.

Funct. Mater. 2018, 28 (3).Adv. Funct. Mater. 2017, 28, 1704665.

[74] Yi, X.; Yu, Z.; Niu, X.; Shang, J.; Mao, G.; Yin, T.; Yang, H.; Xue, W.; Dhanapal, P.; Qu, S.; Liu, G.; Li, R.-W., Intrinsically Stretchable Resistive Switching Memory Enabled by Combining a Liquid Metal-Based Soft Electrode and a Metal-Organic Framework Insulator.

Adv. Electron. Mater. 2019, 5 (2).Adv. Eletron. Mater. 2019, 5, 1800655.

[75] Shang, J.; Xue, W.; Ji, Z.; Liu, G.; Niu, X.; Yi, X.; Pan, L.; Zhan, Q.; Xu, X. H.;

Li, R. W., Highly flexible resistive switching memory based on amorphous-nanocrystalline hafnium oxide films. Nanoscale 2017, 9 (21), 7037-7046.

[76] Liu, Y.; Liu, Z.; Zhu, B.; Yu, J.; He, K.; Leow, W. R.; Wang, M.; Chandran, B. K.;

Qi, D.; Wang, H.; Chen, G.; Xu, C.; Chen, X., Stretchable Motion Memory Devices Based on Mechanical Hybrid Materials. Adv. Mater. 2017, 29 (34).

[77] Zou, Y.; Raveendran, V.; Chen, J., Wearable triboelectric nanogenerators for biomechanical energy harvesting. Nano Energy 2020,

[78] Lee, S.; Ko, W.; Oh, Y.; Lee, J.; Baek, G.; Lee, Y.; Sohn, J.; Cha, S.; Kim, J.;

Park, J.; Hong, J., Triboelectric energy harvester based on wearable textile platforms employing various surface morphologies. Nano Energy 2015, 12, 410-418.

[79] Choi, A. Y.; Lee, C. J.; Park, J.; Kim, D.; Kim, Y. T., Corrugated Textile based Triboelectric Generator for Wearable Energy Harvesting. Sci. Rep. 2017, 7, 45583.

[80] Jin, L.; Xiao, X.; Deng, W.; Nashalian, A.; He, D.; Raveendran, V.; Yan, C.; Su, H.;

Chu, X.; Yang, T.; Li, W.; Yang, W.; Chen, J., Manipulating Relative Permittivity for High-Performance Wearable Triboelectric Nanogenerators. Nano Lett. 2020, 20 (9), 6404-6411.

[81] Shi, W. Y.; Chiao, J. C., Contactless hand tremor detector based on an inductive sensor. Analog Integr. Circuits and Signal Process. 2017, 94 (3), 395-403.

[82] Yang, J.-L.; Chang, R.-S.; Chen, F.-P.; Chern, C.-M.; Chiu, J.-H., Detection of hand tremor in patients with Parkinson’s disease using a non-invasive laser line triangulation measurement method. Measurement 2016, 79, 20-28.

69

[83] Sun, R.; Carreira, S. C.; Chen, Y.; Xiang, C.; Xu, L.; Zhang, B.; Chen, M.; Farrow, I.; Scarpa, F.; Rossiter, J., Stretchable Piezoelectric Sensing Systems for Self‐Powered and Wireless Health Monitoring. Adv. Mater. Tech. 2019, 4 (5).

[84] Wu, C.; Kim, T. W.; Park, J. H.; Koo, B.; Sung, S.; Shao, J.; Zhang, C.; Wang, Z. L., Self-Powered Tactile Sensor with Learning and Memory. ACS Nano 2020, 14 (2), 1390-1398.

[85] Liu, R.; Kuang, X.; Deng, J.; Wang, Y. C.; Wang, A. C.; Ding, W.; Lai, Y. C.; Chen, J.; Wang, P.; Lin, Z.; Qi, H. J.; Sun, B.; Wang, Z. L., Shape Memory Polymers for Body Motion Energy Harvesting and Self-Powered Mechanosensing. Adv. Mater. 2018, 30 (8).

[86] Lin, L.; Hu, Y.; Xu, C.; Zhang, Y.; Zhang, R.; Wen, X.; Lin Wang, Z., Transparent flexible nanogenerator as self-powered sensor for transportation monitoring. Nano Energy 2013, 2 (1), 75-81.

[87] Lee, Y.; Oh, J. Y.; Xu, W.; Kim, O.; Kim, T. R.; Kang, J.; Kim, Y.; Son, D.; Tok, J. B.; Park, M. J.; Bao, Z.; Lee, T. W., Stretchable organic optoelectronic sensorimotor synapse. Sci. Adv. 2018, 4 (11), eaat7387.

[88] Sun, Y.; Zheng, X.; Yan, X.; Liao, Q.; Liu, S.; Zhang, G.; Li, Y.; Zhang, Y., Bioinspired Tribotronic Resistive Switching Memory for Self-Powered Memorizing Mechanical Stimuli. ACS Appl. Mater. Interfaces. 2017, 9 (50), 43822-43829.

[89] Lee, T. H.; Hwang, H. G.; Jang, S.; Wang, G.; Han, S.; Kim, D. H.; Kang, C. Y.;

Nahm, S., Low-Temperature-Grown KNbO3 Thin Films and Their Application to Piezoelectric Nanogenerators and Self-Powered ReRAM Device. ACS Appl. Mater. Interfaces. 2017, 9 (49), 43220-43229.

70

Acknowledgement

2018 년 5 월, 떨리는 마음으로 랩에 첫 출근 했을 때가 기억에 생생한데 벌써 졸업을 한다는게 아직도 실감이 나지를 않습니다. 많은 분들의 도움으로 3 년 동안 정말 많은 것을 배우면서 성장한 것 같아 뿌듯합니다. 짧지만 길었던 연구실 생활은 앞으로 살아가는데 있어서 큰 도움이 될 것 같습니다.

우선, 제가 진심으로 존경하는 손재성 교수님께 깊은 감사의 말씀을 전하고 싶습니다. 좋은 연구를 할 수 있는 기회를 주시고, 부족했던 부분을 채울 수 있도록 도와주셨기에 학위기간 동안 아주 큰 상을 받을 수 있었던 것 같습니다.

연구 뿐만 아니라 앞으로 살아감에 있어서 진심어린 조언과 격려의 말씀은 평생 잊지 않고 마음속에 새기겠습니다. 항상 감사한 마음을 가지며 열심히 노력하며 살아가겠습니다.

귀중한 시간 내주시어 저의 학위 논문 심사를 맡아주신 최문기 교수님, 김주영 교수님께 다시한번 감사의 인사를 전합니다. 디펜스 때 주신 귀중한 조언과, 분에 넘치는 칭찬과 격려의 말씀 주셔서 진심으로 감사합니다. 훌륭하신 교수님들의 큰 도움으로 더 멋진 연구를 마무리 할 수 있었던 것 같습니다. 멋진 논문을 쓰는데 큰 도움을 주신 양우정 연구원님, 김시훈 박사님, 황경석 연구원님께도 진심으로 감사의 말씀 드립니다.

NSE 실험실 구성원 들에게도 감사의 인사를 전합니다. 우선 승기오빠께

진심으로 감사의 말씀을 전하고 싶습니다. 처음부터 하나하나 잘 알려주시고 가르쳐주신 덕분에 멋진 연구를 잘 마무리 할 수 있었던 것 같습니다. 형우오빠, 항상 친절하게 뭐든 알려주시고 도와주시는 다휘오빠, XRD 담당 또 다시 맡게 된 추맨 승준이오빠, 같은 팀에서 많은 도움 주신 허선생님, 겉은 차갑지만 마음은 따뜻한 우용이오빠, 키크고 귀도큰 수리수리 정수리오빠, 생일똑같은 친구 양양, 동기 윤캠이 오빠, 같은 팀 정민이언니, 건국이에게 감사의 인사와 응원을 보냅니다. NSE 에 와서 적응 잘 할 수 있게 도와주시고, 항상 무슨일이던 잘 도와주신 성헌이 오빠께 감사의 말씀 드립니다. 앞으로 멋진 앞날이 펼쳐지길 바랍니다. 랩에 처음 온날부터 잘 챙겨주신 민주언니! 하시는 연구 다 잘 되길

Dalam dokumen Soyoung Cho (Halaman 76-86)

Dokumen terkait