To a mixture of 1,3-dichloro-2-ethynylbenzene (0.05 g, 0.29 mmol), Pd(PPh3)2Cl2 (4.0 mg, 0.01 mmol), CuI (2.0 mg, 0.01 mmol) in Et3N (2.0 mL) was added 1b (0.12 mL, 0.35 mmol) under argon atmosphere. The reaction mixture was stirred at 70 °C for 3 h. After cooling the reaction mixture to room temperature, the solvent was removed in vacuo. The resulting mixture was dissolved in EtOAc.
The organic layer was washed with brine, dried over Na2SO4, and concentrated. The crude product was purified by column chromatography (eluent: 100/0 to 95/5 hexanes/CH2Cl2) over silica gel to give 2d as a yellow solid (0.10 g, 95% yield). 1H NMR (400.2 MHz, CDCl3) ppm, δ; 7.59 (d, J = 7.6 Hz, 1H), 7.45 (dd, J = 8.0, 2 Hz, 1H), 7.41 (dd, J = 8.0, 2 Hz, 1H), 7.34 (d, J = 8.4 Hz, 2H), 7.28–7.23 (m, 2H), 7.21–7.14 (m, 2H), 6.96–6.89 (m, 3H); 13C NMR (100.6 MHz, CDCl3) ppm, δ; 144.1, 138.6, 136.8, 133.2, 130.21, 130.19, 129.0, 127.5, 127.3, 124.7, 123.2, 122.7, 120.4, 119.6, 114.8, 110.9, 96.3, 89.9;
HRMS m/z calcd for C20H13Cl3N [M + H]+ 372.0108, found 372.0112 (Δ = 1.1 ppm).
O. 4-Bromo-1-(2-chlorophenyl)-3-(2,6-dichlorophenyl)-2-phenyl-1,2-
dihydrobenzo[e][1,2]azaborinine (3f).
To a 100 mL Schlenk flack filled argon gas were added 2d (0.83 g, 2.2 mmol), PhBF3K (0.82 mg, 2.6 mmol) and n-Bu4NBr (2.2 g, 6.6 mmol) in 1,2,4-trichlorobenzene (10 mL), and the reaction mixture was subjected to degas and backfill with argon for three times. Then, SiCl4 (0.40 mL, 2.2 mmol) and Et3N (0.30 mL, 1.7 mmol) were added to the flask sequentially. The reaction mixture was stirred at 220 °C for 20 h. After cooling the reaction mixture to room temperature, the solvent was removed in vacuo. The crude product was purified by column chromatography (eluent: 100/0 to 80/20 hexanes/CH2Cl2)over silica gel to give 3f as a white solid (1.0 g, Br : Cl = 6 : 1). 1H NMR (400.2 MHz, CDCl3) ppm, δ; 8.50–8.44 (m, 1H), 7.46–7.35 (m, 3H), 7.24–7.19 (m, 5H), 7.12–7.08 (m, 2H), 7.05–
39
7.01 (m, 1H), 6.96–6.87 (m, 3H), 6.81–6.79 (m, 1H); 13C NMR (100.6 MHz, CDCl3) ppm, δ; 142.1, 142.0, 140.8, 140.6, 134.1, 134.0, 133.1, 131.2, 131.1, 130.9, 130.3, 130.2, 129.0, 128.4, 127.8, 127.6, 127.5, 127.2, 126.5, 124.6, 122.8, 117.4; HRMS m/z calcd for C26H17BBrCl3N [M + H]+ 539.9679, found 539.9690 (Δ = 2.0 ppm).
P. 1-(2-Chlorophenyl)-3-(2,6-dichlorophenyl)-2-phenyl-4-(p-tolyl)-1,2-
dihydrobenzo[e][1,2]azaborinine (4f).
To a mixture of 3f (88 mg, 0.16 mmol), p-tolylboronic acid (44 mg, 0.32 mmol), and Pd(PPh3)4
(9.0 mg, 0.01 mmol) in toluene (8.0 mL) were added K3PO4 (69 mg, 0.33 mmol) in H2O (0.2 mL) under argon atmosphere. The reaction mixture was refluxed for 17 h. After cooling the reaction mixture to room temperature, the solvent was removed in vacuo. The crude product was purified by column chromatography (100/0 to 80/20 hexanes/CH2Cl2) over silica gel to give compound 4f as a white solid (72 mg, 70% yield starting from compound 2d, 0.10 g). 1H NMR (400.2 MHz, CDCl3) ppm, δ; 7.48 (dd, J = 8.0, 2 Hz, 1H), 7.41–7.39 (m, 1H), 7.36–7.26 (m, 4H), 7.23–7.10 (m, 5H), 7.07 (t, J = 8.4 Hz, 2H), 6.96–6.92 (m, 2H), 6.90–6.84 (m, 4H), 6.73 (t, J = 8.4 Hz, 1H), 2.30 (s, 3H); 13C NMR (100.6 MHz, CDCl3) ppm, δ; 153.5, 141.8, 141.6, 141.5, 136.8, 136.3, 134.5, 134.1, 133.2, 131.3, 130.2, 129.6, 128.8, 128.7, 128.57, 128.55, 128.3, 128.2, 127.6, 127.4, 127.1, 127.0, 126.7, 126.3, 121.6, 117.1, 21.4;
HRMS m/z calcd for C33H24BCl3N [M + H]+ 550.1068, found 550.1071 (Δ = 0.6 ppm).
40
Compiled NMR characterization data
Figure S1. The 1H NMR spectrum obtained for compound 2b.
41 Figure S2. The 13C NMR spectrum obtained for compound 2b.
42 Figure S3. The 1H NMR spectrum obtained for compound 3a.
43 Figure S4. The 13C NMR spectrum obtained for compound 3a.
44 Figure S5. The 1H NMR spectrum obtained for compound 3b.
45 Figure S6. The 13C NMR spectrum obtained for compound 3b.
.
46 Figure S7. The 1H NMR spectrum obtained for compound 3c.
47 Figure S8. The 13C NMR spectrum obtained for compound 3c.
48 Figure S9. The 1H NMR spectrum obtained for compound 4a.
49 Figure S10. The 13C NMR spectrum obtained for compound 4a.
50 Figure S11. The 1H NMR spectrum obtained for compound 4b.
51 Figure S12. The 13C NMR spectrum obtained for compound 4b.
52 Figure S13. The 1H NMR spectrum obtained for compound 2c.
53 Figure S14. The 13C NMR spectrum obtained for compound 2c.
54 Figure S15. The 1H NMR spectrum obtained for compound 3d.
55 Figure S16. The 13C NMR spectrum obtained for compound 3d.
56 Figure S17. The 1H NMR spectrum obtained for compound 3e.
57 Figure S18. The 13C NMR spectrum obtained for compound 3e.
58 Figure S19. The 1H NMR spectrum obtained for compound 4c.
59 Figure S20. The 13C NMR spectrum obtained for compound 4c.
60 Figure S21. The 1H NMR spectrum obtained for compound 4d.
61 Figure S22. The 13C NMR spectrum obtained for compound 4d.
62 Figure S23. The 1H NMR spectrum obtained for compound 4e.
63 Figure S24. The 13C NMR spectrum obtained for compound 4e.
64 Figure S25. The 1H NMR spectrum obtained for compound 1b.
65 Figure S26. The 13C NMR spectrum obtained for compound 1b.
66 Figure S27. The 1H NMR spectrum obtained for compound 2d.
67 Figure S28. The 13C NMR spectrum obtained for compound 2d.
68 Figure S29. The 1H NMR spectrum obtained for compound 3f.
69 Figure S30. The 13C NMR spectrum obtained for compound 3f.
70 Figure S31. The 1H NMR spectrum obtained for compound 4f.
71 Figure S32. The 13C NMR spectrum obtained for compound 4f.
72 Figure S33. The 1H NMR spectrum obtained for compound 6.
73 Figure S34. The 13C NMR spectrum obtained for compound 6.
74
Crystallographic data collection and structure refinement of compound 4a
A crystal of compound 4a was coated with paratone-N oil and loaded on 200 μm loop. The single- crystal diffraction data was collected at 2D SMC with a silicon (111) double crystal monochromator using synchrotron radiation (λ = 0.70000 Å) on an ADSC Quantum-210 detector at Pohang Accelerator Laboratory (PAL), Korea. Data collection and processing such as cell refinement, reduction and absorption correction was performed using PAL BL2D-SMDC program3 and HKL3000.4 The crystal structure of 4a was solved by the direct method and refined by full-matrix least-squares calculations using the SHELX program.5 Crystallographic Information File (CIF) of compound 4a (CCDC 1916967) was included in supporting information.
Table S1. Crystallographic data for compound 4a.
Complex
4aEmpirical formula C
33H
26BCl
2N
Formula weight 518.26
Temperature (K) 100(2)
Wavelength (Å ) 0.70000
Crystal system Orthorhombic
Space group Pbcn
a (Å )
9.1180(18)
b (Å )
14.940(3)
c (Å )
19.747(4)
α (°)
90
V (Å3
) 2690.0(9)
Z
4
ρcalc
(g/cm
3) 1.280
μ (mm-1
) 0.250
Goodness-of-fit on F
21.093
R1, I > 2σ(I)
0.0676
wR2, I > 2σ(I)
0.1806
R1, all data
0.0697
wR2, all data
0.1825
75
Figure S35. Molecular structure of compound 4a from single-crystal X-ray diffraction. C, grey; N, blue; B, red;
H, white (Displacement ellipsoids are shown at 50 % probability).
76 Table S2. Crystal data and structure refinement for Pbcn.
Identification code Pbcn
Empirical formula C33H26BCl2N
Formula weight 518.26
Temperature 100(2) K
Wavelength 0.700 Å
Crystal system Orthorhombic
Space group Pbcn
Unit cell dimensions a = 9.1180(18) Å a = 90°.
b = 14.940(3) Å b = 90°.
c = 19.747(4) Å g = 90°.
Volume 2690.0(9) Å3
Z 4
Density (calculated) 1.280 Mg/m3
Absorption coefficient 0.250 mm-1
F(000) 1080
Crystal size 0.360 x 0.200 x 0.075 mm3
Theta range for data collection 2.577 to 29.864°.
Index ranges -12<=h<=12, -21<=k<=21, -27<=l<=28
Reflections collected 23327
Independent reflections 4015 [R(int) = 0.0979]
Completeness to theta = 24.835° 98.4%
Absorption correction Semi-empirical from equivalents Max. and min. transmission 0.981 and 0.915
Refinement method Full-matrix least-squares on F2 Data / restraints / parameters 4015 / 0 / 169
Goodness-of-fit on F2 1.093
Final R indices [I>2sigma(I)] R1 = 0.0676, wR2 = 0.1806
R indices (all data) R1 = 0.0697, wR2 = 0.1825
Extinction coefficient n/a
Largest diff. peak and hole 1.304 and -1.148 e.Å-3
77
Table S3. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2 x 103) for Pbcn. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.
________________________________________________________________________________
x y z U(eq)
________________________________________________________________________________
C(1) 9959(2) 3388(1) 6703(1) 21(1)
C(2) 11219(2) 3921(1) 6744(1) 23(1)
C(3) 11360(2) 4700(1) 6362(1) 27(1)
C(4) 10225(2) 4972(1) 5939(1) 29(1)
C(5) 8951(2) 4463(1) 5903(1) 29(1)
C(6) 8824(2) 3680(1) 6280(1) 26(1)
C(7) 9471(2) 1636(1) 6055(1) 22(1)
C(8) 10646(2) 1688(1) 5608(1) 30(1)
C(9) 10391(2) 1641(1) 4913(1) 38(1)
C(10) 8982(2) 1538(1) 4665(1) 34(1)
C(11) 7811(2) 1481(1) 5109(1) 29(1)
C(12) 8057(2) 1531(1) 5804(1) 25(1)
C(13) 9835(2) 865(1) 7148(1) 21(1)
C(14) 9665(2) 37(1) 6814(1) 24(1)
C(15) 9824(2) -762(1) 7156(1) 26(1)
N(1) 9729(2) 1691(1) 6789(1) 21(1)
B(1) 9896(2) 2517(1) 7112(1) 20(1)
C(16) 9729(2) 1691(1) 6789(1) 21(1)
C(17) 9896(2) 2517(1) 7112(1) 20(1)
C(1D) 5000 1214(2) 7500 33(1)
Cl(1D) 3674(1) 1873(1) 7097(1) 59(1)
________________________________________________________________________________
78 Table S4. Bond lengths [Å ] and angles [°] for Pbcn.
_____________________________________________________
C(1)-C(6) 1.399(2)
C(1)-C(2) 1.401(2)
C(1)-C(17) 1.5323(19)
C(1)-B(1) 1.5323(19)
C(2)-C(3) 1.392(2)
C(3)-C(4) 1.391(2)
C(4)-C(5) 1.390(3)
C(5)-C(6) 1.391(2)
C(7)-C(12) 1.390(2)
C(7)-C(8) 1.390(2)
C(7)-C(16) 1.4720(18)
C(7)-N(1) 1.4720(18)
C(8)-C(9) 1.392(2)
C(9)-C(10) 1.384(3)
C(10)-C(11) 1.384(3)
C(11)-C(12) 1.393(2)
C(13)-C(14) 1.4105(18)
C(13)-C(13)#1 1.421(3)
C(13)-N(1) 1.4262(18)
C(13)-C(16) 1.4262(18)
C(14)-C(15) 1.380(2)
C(15)-C(15)#1 1.397(3)
N(1)-B(1) 1.3970(18)
B(1)-B(1)#1 1.545(3)
C(16)-C(17) 1.3970(18)
C(17)-C(17)#1 1.545(3) C(1D)-Cl(1D)#2 1.7505(14)
C(1D)-Cl(1D) 1.7505(14)
C(6)-C(1)-C(2) 117.61(13) C(6)-C(1)-C(17) 123.48(14) C(2)-C(1)-C(17) 118.91(13) C(6)-C(1)-B(1) 123.48(14) C(2)-C(1)-B(1) 118.91(13) C(3)-C(2)-C(1) 121.31(14)
79 C(4)-C(3)-C(2) 120.11(15)
C(5)-C(4)-C(3) 119.42(14) C(4)-C(5)-C(6) 120.17(14) C(5)-C(6)-C(1) 121.35(15) C(12)-C(7)-C(8) 119.69(13) C(12)-C(7)-C(16) 120.33(13) C(8)-C(7)-C(16) 119.98(14) C(12)-C(7)-N(1) 120.33(13) C(8)-C(7)-N(1) 119.98(14) C(7)-C(8)-C(9) 119.58(16) C(10)-C(9)-C(8) 120.64(16) C(9)-C(10)-C(11) 119.91(14) C(10)-C(11)-C(12) 119.78(16) C(7)-C(12)-C(11) 120.39(14) C(14)-C(13)-C(13)#1 118.74(8) C(14)-C(13)-N(1) 121.21(12) C(13)#1-C(13)-N(1) 120.02(7) C(14)-C(13)-C(16) 121.21(12) C(13)#1-C(13)-C(16) 120.02(7) C(15)-C(14)-C(13) 121.24(13) C(14)-C(15)-C(15)#1 120.01(8) B(1)-N(1)-C(13) 122.02(12) B(1)-N(1)-C(7) 121.07(12) C(13)-N(1)-C(7) 116.89(11) N(1)-B(1)-C(1) 120.92(12) N(1)-B(1)-B(1)#1 117.75(8) C(1)-B(1)-B(1)#1 121.24(7) C(17)-C(16)-C(13) 122.02(12) C(17)-C(16)-C(7) 121.07(12) C(13)-C(16)-C(7) 116.89(11) C(16)-C(17)-C(1) 120.92(12) C(16)-C(17)-C(17)#1 117.75(8) C(1)-C(17)-C(17)#1 121.24(7) Cl(1D)#2-C(1D)-Cl(1D) 111.55(13)
_____________________________________________________________
Symmetry transformations used to generate equivalent atoms:
#1 -x+2, y, -z+3/2 #2 -x+1, y, -z+3/2
80
Table S5. Anisotropic displacement parameters (Å2 x 103) for Pbcn. The anisotropic displacement factor exponent takes the form: -2p2[ h2 a*2U11 + ... + 2 h k a* b* U12].
______________________________________________________________________________
U11 U22 U33 U23 U13 U12
______________________________________________________________________________
C(1) 30(1) 19(1) 14(1) -2(1) -1(1) 2(1)
C(2) 30(1) 21(1) 19(1) -1(1) -2(1) 2(1)
C(3) 36(1) 19(1) 25(1) 0(1) 4(1) 1(1)
C(4) 46(1) 19(1) 21(1) 2(1) 2(1) 6(1)
C(5) 42(1) 25(1) 21(1) 0(1) -7(1) 7(1)
C(6) 34(1) 23(1) 21(1) -1(1) -6(1) 2(1)
C(7) 32(1) 18(1) 15(1) -1(1) 1(1) -1(1)
C(8) 33(1) 36(1) 21(1) -6(1) 2(1) -3(1)
C(9) 43(1) 48(1) 21(1) -6(1) 8(1) -6(1)
C(10) 50(1) 35(1) 16(1) -2(1) -1(1) -6(1)
C(11) 40(1) 27(1) 21(1) 1(1) -7(1) -4(1)
C(12) 32(1) 24(1) 19(1) 0(1) 0(1) -3(1)
C(13) 29(1) 17(1) 16(1) 0(1) -2(1) 0(1)
C(14) 34(1) 19(1) 19(1) -2(1) -3(1) 0(1)
C(15) 35(1) 18(1) 24(1) -2(1) -1(1) -1(1)
N(1) 29(1) 19(1) 14(1) 0(1) -1(1) -1(1)
B(1) 27(1) 18(1) 16(1) 0(1) -2(1) 0(1)
C(16) 29(1) 19(1) 14(1) 0(1) -1(1) -1(1)
C(17) 27(1) 18(1) 16(1) 0(1) -2(1) 0(1)
C(1D) 46(1) 24(1) 28(1) 0 -8(1) 0
Cl(1D) 59(1) 28(1) 90(1) -9(1) -41(1) 9(1)
______________________________________________________________________________
81
Table S6. Hydrogen coordinates (x 104) and isotropic displacement parameters (Å2 x 103) for Pbcn.
________________________________________________________________________________
x y z U(eq)
________________________________________________________________________________
H(2) 11993 3748 7038 28
H(3) 12232 5045 6390 32
H(4) 10320 5502 5676 35
H(5) 8165 4650 5621 35
H(6) 7950 3337 6250 31
H(8) 11617 1755 5775 36
H(9) 11192 1680 4607 45
H(10) 8819 1506 4190 40
H(11) 6843 1408 4940 35
H(12) 7253 1493 6109 30
H(14) 9436 30 6345 29
H(15) 9695 -1313 6923 31
H(1D1) 4517 825 7839 39
H(1D2) 5483 825 7161 39
________________________________________________________________________________
82
HRMS spectra
Figure S36. HRMS spectra obtained for compound 2b.
Figure S37. HRMS spectra obtained for compound 3a.
83 Figure S38. HRMS spectra obtained for compound 3b.
Figure S39. HRMS spectra obtained for compound 3c.
84 Figure S40. HRMS spectra obtained for compound 4a.
Figure S41. HRMS spectra obtained for compound 4b.
85 Figure S42. HRMS spectra obtained for compound 2c.
Figure S43. HRMS spectra obtained for compound 3d.
86 Figure S44. HRMS spectra obtained for compound 3e.
Figure S45. HRMS spectra obtained for compound 4c.
87 Figure S46. HRMS spectra obtained for compound 4d.
Figure S47. HRMS spectra obtained for compound 4e.
88 Figure S48. HRMS spectra obtained for compound 1b.
Figure S49. HRMS spectra obtained for compound 2d.
89 Figure S50. HRMS spectra obtained for compound 3f.
Figure S51. HRMS spectra obtained for compound 4f.
90 Figure S52. HRMS spectra obtained for compound 7.
91
References
1. I. Melnika, K. Bringis, M. Katkevics, Chem. Heterocycl. Compd. 2013, 49, 529–539.
2. J. H. Park, E. Kim, Y. K. Chung, Org. Lett. 2008, 10, 4719–4721.
3. J. W. Shin, K. Eom, D. Moon, J. Synchrotron Radiat. 2016, 23, 369–373.
4. Z. Otwinowski, W. Minor, Methods Enzymol. 1997, 276, 307–326.
5. G. M. Sheldrick, Acta Crystallogr., Sect. C 2015, 71, 3–8.
92