• Tidak ada hasil yang ditemukan

3. Results & Discussion

3.6. Computational study for sensing mechanism (MD and DFT)

- 58 -

Figure 3-24. Statistical comparisons of the sensing results for the liquid-phase analytes (โ–ก) and calculated induced dipole moments of calix[8]arene/liquid-phase analytes (โ—‡).29 S indicates average value of ID/IBASE and the error bar represents the one standard deviation.

10

-1

10

0

10

1

10

2

10

3

S

1

n -H ex an e

To lu en e

DI w ate r

Et ha no l

Me th an

ol 1 2 3 4 5 6

7 (debye ) Induced Di pole Moment

- 60 -

Figure 3-25. Calculated charge transfers (CT) and binding energies (BE) of calix[8]arene for various liquid-phase analytes. Charge density field mappings of right side represent deformation (def.) density field for methanol, ethanol, DI water and total charge density field for toluene and n-hexane, respectively. The atomic charges are labeled on each atom and the direction of charge migration is presented in figure as arrow.30

Methanol

Ethanol

DI water

Toluene

n-Hexane

Table 3. Summary of sensing demonstration and the results of computational study

Sensing Solvent

Order of ID / IBASE

Molecular Structure

Available Interaction with C[8]A

Relative Polarity [๐‘ฌ๐“๐]a)

Simulation Resultb)

Lipo -philic (๐ถโˆ’๐ปโ‹ฏฯ€)

Hydro -philic (๐‘‚โˆ’๐ปโ‹ฏ๐‘‚)

Molecular Dipole Moment [debye]c)

Relative Molecular

Polarityd)

Induced Dipole Moment [debye]e)

Methanol 1 O O 0.762 1.736 (1.70) 0.923 4.751

Ethanol 2 O O 0.654 1.685 (1.69) 0.896 4.476

DI water 3 X O 1.000 1.881 (1.85) 1.000 4.117

Toluene 4 O X 0.099 0.406 (0.36) 0.216 2.203

n-Hexane 5 O X 0.009 0.001 (0.00) 0.001 1.838

a) Normalized ๐ธTN ; the scale of ๐ธTN ranges from 0.000 for tetramethylsilane (TMS), the least polar solvent, to 1.000 for water, the most polar solvent.31

b) The results of computational study were done by student Gwan Yeong Jung (research advisor: Prof. Sang Kyu Kwak, UNIST).

c) The values in parentheses refer to molecular dipole moments from the reference.32

d) Relative molecular polarity is calculated by relative molecular dipole moments on the basis of value of DI water.

e) Induced dipole moment is the averaged molecular dipole moment of calix[8]arene from MD simulation.

- 62 -

4. Conclusion

In conclusion, we demonstrated novel solvent-resistant OFETs by using cross-linkable azide functional groups. P3HT-azide copolymer showed high solvent resistance as well as excellent electrical performance. Photo-crosslinking method provides solvent resistance without disturbing molecular packing structure of the semiconducting layer, showing maintained electrical properties after cross- linking. Solvent resistance of the OFETs has been investigated by washing the devices with organic solvents, exhibiting excellent electrical characteristics with stable operation comparing with pristine P3HT-based OFETs. Air-stability of the cross-linked P3HT-azide was higher than that of the pristine P3HT.

Furthermore, solvent-resistant OFET-based sensor that detects liquid-phase analytes has been demonstrated. C[8]A, a calixarene derivative, was introduced to enhance sensitivity and selectivity of the OFET-based sensors. The sensing demonstrations of the sensors for various liquid-phase analytes and pH solutions have been conducted and well-defined sensing results were demonstrated based on combined effects between the sensors and liquid-phase analytes; enhanced electron-withdrawing /donating characteristics depending on the analytes and binding events between C[8]A and the molecules of analytes. The sensitivity of the sensors with C[8]A showed lower detection limits comparing to those of without C[8]A layer. Selectivity test of the sensors has also been carried out by alternate injection of different organic solvents, showing distinct response toward each solvent. The sensors with cross-linked P3HT-azide copolymer also showed rather higher reusability than those with non-cross-linked copolymer. The low-voltage operating and flexible sensors were fabricated using polymer dielectric and polymer substrate. The trend of the sensing results agreed with computational studies at the atomistic level. This report provides a feasible methodology for the fabrication of the OFET-based sensor for liquid-phase organic solvents.

5. Reference

1. (a) Braga, D.; Horowitz, G., High-Performance Organic Field-Effect Transistors. Adv.

Mater. 2009, 21 (14-15), 1473-1486; (b) Kang, B.; Jang, M.; Chung, Y.; Kim, H.; Kwak, S. K.; Oh, J. H.; Cho, K., Enhancing 2D growth of organic semiconductor thin films with macroporous structures via a small-molecule heterointerface. Nat. Commun.

2014,

5, 4752; (c) Knopfmacher, O.; Hammock, M. L.; Appleton, A. L.; Schwartz, G.; Mei, J.; Lei, T.; Pei, J.; Bao, Z., Highly stable organic polymer field-effect transistor sensor for selective detection in the marine environment. Nat. Commun. 2014, 5, 2954; (d) Dimitrakopoulos, C. D.; Mascaro, D. J., Organic thin-film transistors: A review of recent advances. Ibm Journal of Research and Development 2001, 45 (1), 11-27.

2. Kim, J.; Han, A.; Seo, J.; Oh, J.; Yang, C., beta-Alkyl substituted Dithieno[2,3-d;2 ',3 '-d ']benzo[1,2-b;4,5-b ']dithiophene Semiconducting Materials and Their Application to Solution-Processed Organic Transistors. Chem. Mater. 2012, 24 (17), 3464-3472.

3. (a) Oh, J. H.; Lee, H. W.; Mannsfeld, S.; Stoltenberg, R. M.; Jung, E.; Jin, Y. W.; Kim, J.

M.; Yoo, J.-B.; Bao, Z., Solution-processed, high-performance n-channel organic microwire transistors. Proceedings of the National Academy of Sciences

2009, 106 (15),

6065-6070; (b) Yu, H.; Bao, Z.; Oh, J. H., High-Performance Phototransistors Based on Single-Crystalline n-Channel Organic Nanowires and Photogenerated Charge-Carrier Behaviors. Adv. Funct. Mater. 2013, 23 (5), 629-639; (c) Yu, H.; Joo, P.; Lee, D.; Kim, B.- S.; Oh, J. H., Photoinduced Charge-Carrier Dynamics of Phototransistors Based on Perylene Diimide/Reduced Graphene Oxide Core/Shell pโ€“n Junction Nanowires. Advanced Optical Materials 2014.

4. (a) Mushrush, M.; Facchetti, A.; Lefenfeld, M.; Katz, H. E.; Marks, T. J., Easily Processable Phenyleneโˆ’Thiophene-Based Organic Field-Effect Transistors and Solution- Fabricated Nonvolatile Transistor Memory Elements. J. Am. Chem. Soc.

2003, 125 (31),

9414-9423; (b) Baeg, K.-J.; Khim, D.; Kim, J.; Yang, B.-D.; Kang, M.; Jung, S.-W.; You, I.-K.; Kim, D.-Y.; Noh, Y.-Y., High-Performance Top-Gated Organic Field-Effect Transistor Memory using Electrets for Monolithic Printed Flexible NAND Flash Memory.

Adv. Funct. Mater. 2012, 22 (14), 2915-2926; (c) Baeg, K. J.; Noh, Y. Y.; Ghim, J.; Kang, S. J.; Lee, H.; Kim, D. Y., Organic Non-Volatile Memory Based on Pentacene Field-Effect Transistors Using a Polymeric Gate Electret. Adv. Mater. 2006, 18 (23), 3179-3183.

5. (a) Torsi, L.; Magliulo, M.; Manoli, K.; Palazzo, G., Organic field-effect transistor sensors:

a tutorial review. Chem. Soc. Rev. 2013, 42 (22), 8612-8628; (b) Khan, H. U.; Roberts, M.

E.; Johnson, O.; Knoll, W.; Bao, Z., The effect of pH and DNA concentration on organic thin-film transistor biosensors. Org. Electron.

2012, 13 (3), 519-524; (c) Lipomi, D. J.;

Vosgueritchian, M.; Tee, B. C. K.; Hellstrom, S. L.; Lee, J. A.; Fox, C. H.; Bao, Z., Skin- like pressure and strain sensors based on transparent elastic films of carbon nanotubes.

Nature Nanotechnology 2011, 6 (12), 788-792; (d) Sokolov, A. N.; Roberts, M. E.; Bao, Z., Fabrication of low-cost electronic biosensors. Mater. Today 2009, 12 (9), 12-20.

6. (a) McCarthy, M. A.; Liu, B.; Donoghue, E. P.; Kravchenko, I.; Kim, D. Y.; So, F.; Rinzler, A. G., Low-Voltage, Low-Power, Organic Light-Emitting Transistors for Active Matrix Displays. Science

2011,

332 (6029), 570-573; (b) Dinelli, F.; Capelli, R.; Loi, M. A.;

Murgia, M.; Muccini, M.; Facchetti, A.; Marks, T. J., High-Mobility Ambipolar Transport

- 64 -

7. Tsao, H. N.; Cho, D.; Andreasen, J. W.; Rouhanipour, A.; Breiby, D. W.; Pisula, W.;

Mรผllen, K., The Influence of Morphology on High-Performance Polymer Field-Effect Transistors. Adv. Mater. 2009, 21 (2), 209-212.

8. (a) Roberts, M. E.; Mannsfeld, S. C. B.; Tang, M. L.; Bao, Z., Influence of Molecular Structure And Film Properties on the Water-Stability and Sensor Characteristics of Organic Transistors. Chem. Mater.

2008,

20 (23), 7332-7338; (b) Torsi, L.; Farinola, G. M.;

Marinelli, F.; Tanese, M. C.; Omar, O. H.; Valli, L.; Babudri, F.; Palmisano, F.; Zambonin, P. G.; Naso, F., A sensitivity-enhanced field-effect chiral sensor. Nat. Mater. 2008, 7 (5), 412-417; (c) Someya, T.; Dodabalapur, A.; Huang, J.; See, K. C.; Katz, H. E., Chemical and Physical Sensing by Organic Field-Effect Transistors and Related Devices. Adv. Mater.

2010, 22 (34), 3799-3811.

9. (a) Mabeck, J. T.; Malliaras, G. G., Chemical and biological sensors based on organic thin- film transistors. Anal. Bioanal. Chem. 2006, 384 (2), 343-353; (b) Roberts, M. E.; Sokolov, A. N.; Bao, Z., Material and device considerations for organic thin-film transistor sensors.

J. Mater. Chem.

2009,

19 (21), 3351-3363; (c) Lin, P.; Yan, F., Organic Thin-Film Transistors for Chemical and Biological Sensing. Adv. Mater. 2012, 24 (1), 34-51; (d) Liao, C.; Yan, F., Organic Semiconductors in Organic Thin-Film Transistor-Based Chemical and Biological Sensors. Polym. Rev. 2013, 53 (3), 352-406.

10. (a) Roberts, M. E.; Mannsfeld, S. C. B.; Queralto, N.; Reese, C.; Locklin, J.; Knoll, W.;

Bao, Z., Water-stable organic transistors and their application in chemical and biological sensors. Proc. Natl. Acad. Sci. U. S. A.

2008,

105 (34), 12134-12139; (b) Sessolo, M.;

Rivnay, J.; Bandiello, E.; Malliaras, G. G.; Bolink, H. J., Ion-Selective Organic Electrochemical Transistors. Adv. Mater. 2014, 26 (28), 4803-4807.

11. Hammock, M. L.; Knopfmacher, O.; Naab, B. D.; Tok, J. B.-H.; Bao, Z., Investigation of Protein Detection Parameters Using Nanofunctionalized Organic Field-Effect Transistors.

ACS Nano 2013, 7 (5), 3970-3980.

12. Guo, Y.; Du, C.; Yu, G.; Di, C.-a.; Jiang, S.; Xi, H.; Zheng, J.; Yan, S.; Yu, C.; Hu, W.;

Liu, Y., High-Performance Phototransistors Based on Organic Microribbons Prepared by a Solution Self-Assembly Process. Adv. Funct. Mater. 2010, 20 (6), 1019-1024.

13. (a) Mannsfeld, S. C. B.; Tee, B. C.-K.; Stoltenberg, R. M.; Chen, C. V. H.-H.; Barman, S.;

Muir, B. V. O.; Sokolov, A. N.; Reese, C.; Bao, Z., Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 2010, 9 (10), 859-864;

(b) Ramuz, M.; Tee, B. C.-K.; Tok, J. B.-H.; Bao, Z., Transparent, Optical, Pressure- Sensitive Artificial Skin for Large-Area Stretchable Electronics. Adv. Mater. 2012, 24 (24), 3223-3227.

14. Schwartz, G.; Tee, B. C.-K.; Mei, J.; Appleton, A. L.; Kim, D. H.; Wang, H.; Bao, Z., Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat. Commun. 2013, 4, 1859.

15. (a) Sokolov, A. N.; Roberts, M. E.; Johnson, O. B.; Cao, Y.; Bao, Z., Induced Sensitivity and Selectivity in Thin-Film Transistor Sensors via Calixarene Layers. Adv. Mater. 2010, 22 (21), 2349-2353; (b) Magliulo, M.; Mallardi, A.; Mulla, M. Y.; Cotrone, S.; Pistillo, B.

R.; Favia, P.; Vikholm-Lundin, I.; Palazzo, G.; Torsi, L., Electrolyte-Gated Organic Field- Effect Transistor Sensors Based on Supported Biotinylated Phospholipid Bilayer. Adv.

Mater.

2013,

25 (14), 2090-2094; (c) Huang, W.; Besar, K.; LeCover, R.; Rule, A. M.;

Breysse, P. N.; Katz, H. E., Highly Sensitive NH3 Detection Based on Organic Field-Effect

Transistors with Tris(pentafluorophenyl)borane as Receptor. J. Am. Chem. Soc. 2012, 134

(36), 14650-14653.

16. Khan, H. U.; Roberts, M. E.; Knoll, W.; Bao, Z., Pentacene Based Organic Thin Film Transistors as the Transducer for Biochemical Sensing in Aqueous Media. Chem. Mater.

2011, 23 (7), 1946-1953.

17. (a) Kim, B. J.; Miyamoto, Y.; Ma, B.; Frechet, J. M. J., Photocrosslinkable Polythiophenes for Efficient, Thermally Stable, Organic Photovoltaics. Adv. Funct. Mater. 2009, 19 (14), 2273-2281; (b) Kim, H. J.; Han, A.-R.; Cho, C.-H.; Kang, H.; Cho, H.-H.; Lee, M. Y.;

Frechet, J. M. J.; Oh, J. H.; Kim, B. J., Solvent-Resistant Organic Transistors and Thermally Stable Organic Photovoltaics Based on Cross-linkable Conjugated Polymers. Chem. Mater.

2012, 24 (1), 215-221.

18. Drees, M.; Hoppe, H.; Winder, C.; Neugebauer, H.; Sariciftci, N. S.; Schwinger, W.;

Schaffler, F.; Topf, C.; Scharber, M. C.; Zhu, Z.; Gaudiana, R., Stabilization of the nanomorphology of polymer-fullerene "bulk heterojunction'' blends using a novel polymerizable fullerene derivative. J. Mater. Chem. 2005, 15 (48), 5158-5163.

19. Li, L.; Gao, P.; Baumgarten, M.; Mรผllen, K.; Lu, N.; Fuchs, H.; Chi, L., High Performance Field-Effect Ammonia Sensors Based on a Structured Ultrathin Organic Semiconductor Film. Adv. Mater. 2013, 25 (25), 3419-3425.

20. Kim, B. J.; Miyamoto, Y.; Ma, B.; Frรฉchet, J. M. J., Photocrosslinkable Polythiophenes for Efficient, Thermally Stable, Organic Photovoltaics. Adv. Funct. Mater.

2009,

19 (14), 2273-2281.

21. Synthesis of P3HT-azide copolymer was done by Hyeong Jun Kim (research advisor: Prof.

Bumjoon J. Kim, KAIST)

22. Synthetic characterizations of the P3HT-azide copolymer were performed by Hyeong Jun Kim (research advisor: Prof. Boomjun J. Kim, KAIST)

23. Synthetic characterizations of the P3HT-azide copolymer were performed by Hyeong Jun Kim (research advisor: Prof. Boomjun J. Kim, KAIST)

24. Ito, Y.; Virkar, A. A.; Mannsfeld, S.; Oh, J. H.; Toney, M.; Locklin, J.; Bao, Z., Crystalline Ultrasmooth Self-Assembled Monolayers of Alkylsilanes for Organic Field-Effect Transistors. J. Am. Chem. Soc. 2009, 131 (26), 9396-9404.

25. (a) Kazarinoff, P. D.; Shamburger, P. J.; Ohuchi, F. S.; Luscombe, C. K., OTFT performance of air-stable ester-functionalized polythiophenes. J. Mater.Chem.

2010,

20 (15), 3040-3045; (b) Drees, M.; Hoppe, H.; Winder, C.; Neugebauer, H.; Sariciftci, N. S.;

Schwinger, W.; Schaffler, F.; Topf, C.; Scharber, M. C.; Zhu, Z. G.; Gaudiana, R., Stabilization of the nanomorphology of polymer-fullerene "bulk heterojunction'' blends using a novel polymerizable fullerene derivative. J. Mater.Chem. 2005, 15 (48), 5158-5163.

26. Majewski, L. A.; Kingsley, J. W.; Balocco, C.; Song, A. M., Influence of processing conditions on the stability of poly(3-hexylthiophene)-based field-effect transistors. Appl.

Phys. Lett. 2006, 88 (22).

27. (a) Hutchison, G. R.; Ratner, M. A.; Marks, T. J.; Naaman, R., Adsorption of Polar Molecules on a Molecular Surface. J. Phys. Chem. B 2001, 105 (15), 2881-2884; (b) Li, B.; Sauvรฉ, G.; Iovu, M. C.; Jeffries-EL, M.; Zhang, R.; Cooper, J.; Santhanam, S.; Schultz, L.; Revelli, J. C.; Kusne, A. G.; Kowalewski, T.; Snyder, J. L.; Weiss, L. E.; Fedder, G. K.;

McCullough, R. D.; Lambeth, D. N., Volatile Organic Compound Detection Using Nanostructured Copolymers. Nano Lett. 2006, 6 (8), 1598-1602; (c) Li, B.; Lambeth, D.

N., Chemical Sensing Using Nanostructured Polythiophene Transistors. Nano Lett. 2008,

- 66 -

Dodabalapur, A., Nanoscale chemical sensor based on organic thin-film transistors. Appl.

Phys. Lett. 2004, 85 (26), 6386-6388.

29. The induced dipole moments of calix[8]arene/liquid-phase analytes (โ—‡) were calculated by student Gwan Yeong Jung (research advisor: Prof. Sang Kyu Kwak, UNIST).

30. The calculations about charge tansfer (CT) by density functional theory (DFT) were done by student Gwan Yeong Jung (research advisor: Prof. Sang Kyu Kwak, UNIST).

31. Reichardt, C.; Welton, T., Solvents and Solvent Effects in Organic Chemistry, 4th Ed. 4th ed. ed.; Wiley-VCH: Weinheim, Germany, 2010.

32. Haynes, W. M., CRC Handbook of Chemistry and Physics: a Ready-Reference Book of

Chemical and Physical Data , 95th Ed. CRC Press: Boca Raton, Florida, 2014.

6. Acknowledgements ( ๊ฐ์‚ฌ์˜ ๊ธ€ )

๋จผ์ €, ํ•ญ์ƒ ์ €๋ฅผ ์ „์ ์œผ๋กœ ๋ฏฟ์–ด์ฃผ์‹œ๊ณ  ์ง€์›์„ ์•„๋ผ์ง€ ์•Š๋Š” ์šฐ๋ฆฌ ๊ฐ€์กฑ์—๊ฒŒ ๊ฐ์‚ฌ์˜ ๋ง์”€์„ ๋“œ๋ฆฝ๋‹ˆ๋‹ค. ํ•ญ์ƒ ์•„๋“ค์„ ์ตœ๊ณ ๋ผ๊ณ  ๋ฏฟ์–ด ์˜์‹ฌ์น˜ ์•Š์œผ์‹œ๋Š” ์•„๋ฒ„์ง€, ์ œ๊ฒŒ ์–ธ์ œ๋‚˜ ๊ธฐ๋Œˆ ์ˆ˜ ์žˆ๋Š” ๋ฒ„ํŒ€๋ชฉ์ด ๋˜์–ด์ฃผ์‹ฌ์— ๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค. ์•„๋“ค์ƒ๊ฐ์— ํ•˜๋ฃจํ•˜๋ฃจ ์ฆ๊ฒ๊ฒŒ ์ƒํ™œํ•˜์‹œ๋Š” ์–ด๋จธ๋‹ˆ, ์•„๋“ค ์ž˜ ์ƒํ™œํ•˜๊ณ  ์žˆ์œผ๋‹ˆ ๊ฑฑ์ • ๋ถ™๋“ค์–ด ๋งค์…”๋„ ๋  ๊ฒƒ ๊ฐ™์Šต๋‹ˆ๋‹ค. ํ•ญ์ƒ ๋‚˜๋ฅผ ํ˜•์œผ๋กœ์„œ ์กด์ค‘ํ•ด์ฃผ๊ณ  ํ˜• ๋Œ€์‹  ๋ถ€๋ชจ๋‹˜ ๊ฐ€๊นŒ์ด์„œ ๆ˜ๅฎšๆ™จ็œํ•˜๋Š” ๊ณ ๋งˆ์šด ์šฐ๋ฆฌ ์ฐฝ๋ ฌ์ด, ํ•ญ์ƒ ๊ณ ๋ง™๋‹ค.

ํ•ญ์ƒ ์กฐ์นด ๋งŽ์ด ์ƒ๊ฐํ•ด ์ฃผ์‹œ๊ณ  ์ฑ™๊ฒจ์ฃผ์‹œ๋Š” ์ž‘์€์•„๋ฒ„์ง€, ์ž‘์€์–ด๋จธ๋‹ˆ๊ป˜๋„ ๊ฐ์‚ฌ์˜ ๋ง์”€์„ ๋“œ๋ฆฝ๋‹ˆ๋‹ค. ํ•˜๋А๋‹˜์˜ ์€์ด ์•„๋ž˜ ํ–‰๋ณตํ•˜๊ฒŒ ์ƒํ™œํ•˜๋Š” ์šฐ๋ฆฌ ์‹๊ตฌ๊ฐ€ ์žˆ๊ธฐ์— ํž˜๋‚ด์„œ ์—ฐ๊ตฌ ์ƒํ™œํ•  ์ˆ˜ ์žˆ์—ˆ๋˜ ๊ฒƒ ๊ฐ™์Šต๋‹ˆ๋‹ค.

ํ•™๋ถ€ 3 ํ•™๋…„๋•Œ๋ถ€ํ„ฐ ์œ ๋‹ˆ์ŠคํŠธ ์œ ๊ธฐ์ „์ž์—ฐ๊ตฌ์‹ค์—์„œ ์—ฐ๊ตฌ์‹ค ์ƒํ™œ์„ ์‹œ์ž‘ํ–ˆ์Šต๋‹ˆ๋‹ค.

์ด๊ณณ์—์„œ ์—ฐ๊ตฌ๋ผ๋Š” ๊ฒƒ์ด ๋ฌด์—‡์ธ๊ฐ€๋ฅผ ๋ฐฐ์šฐ๊ฒŒ ๋˜์—ˆ๊ณ , ์œ ๊ธฐ์ „์ž์—ฐ๊ตฌ์‹ค์˜ ์ดˆ์„์„ ๋‹ค์ง€๋Š”๋ฐ ์ผ์กฐํ•˜๊ฒ ๋‹ค๋Š” ๋งˆ์Œ์œผ๋กœ ์—ฐ๊ตฌ์‹ค ์„ ๋ฐฐ, ๋™๊ธฐ, ํ›„๋ฐฐ๋‹˜๋“ค๊ณผํ•จ๊ป˜ ๋งŽ์€ ์šฐ์—ฌ๊ณก์ ˆ์„ ๊ฒช์œผ๋ฉด์„œ ์ƒํ™œํ•˜๋‹ค ๋ณด๋‹ˆ ์–ด๋А๋ง ์„์‚ฌ๊ณผ์ • ์—ฐ๊ตฌ๋ฅผ ๋งˆ๋ฌด๋ฆฌํ•˜๊ฒŒ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ์ €์˜ ์„์‚ฌ๊ณผ์ • ์—ฐ๊ตฌ๋ฅผ ๋งˆ๋ฌด๋ฆฌ ํ•  ์ˆ˜ ์žˆ๋„๋ก ๋ฌผ์‹ฌ์–‘๋ฉด์œผ๋กœ ๋„์™€์ฃผ์‹  ๋งŽ์€ ๋ถ„๋“ค๊ป˜ ๊ฐ์‚ฌ์˜ ๋งˆ์Œ์„ ์ด๋ ‡๊ฒŒ ๊ธ€๋กœ๋‚˜๋งˆ ์ „ํ•ฉ๋‹ˆ๋‹ค.

์œ ๊ธฐ์ „์ž์— ๋Œ€ํ•œ ์ง€์‹์ด ๋งŽ์ด ๋ถ€์กฑํ•˜๋˜ ํ•™๋ถ€์ƒ ์‹œ์ ˆ๋ถ€ํ„ฐ ์—ฐ๊ตฌ์‹ค ์ƒํ™œ์„ ํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐํšŒ๋ฅผ ์ฃผ์‹œ๊ณ  ์—ฐ๊ตฌ์ž๋กœ์„œ์˜ ์ž์„ธ์— ๋Œ€ํ•ด์„œ ์ง„์‹ฌ์„ ๋‹คํ•ด ์ง€๋„ํ•ด ์ฃผ์‹  ์˜ค์ค€ํ•™ ๊ต์ˆ˜๋‹˜๊ป˜ ๊ฐ์‚ฌ์˜ ๋ง์”€์„ ๋“œ๋ฆฝ๋‹ˆ๋‹ค. ์•„์ง๋„ ๋งŽ์ด ๋ถ€์กฑํ•˜์ง€๋งŒ ๊ต์ˆ˜๋‹˜์˜ ํ›Œ๋ฅญํ•˜์‹  ์ง€๋„ ์•„๋ž˜ ์—ฐ๊ตฌ์ž๋กœ์„œ์˜ ๋ชจ์Šต์„ ๊ฐ–์ถ”์–ด ๊ฐ€๋Š” ๊ฒƒ ๊ฐ™์Šต๋‹ˆ๋‹ค. ์•ž์œผ๋กœ๋„ ์—ฐ๊ตฌ์ƒํ™œ ์—ด์‹ฌํžˆ, ๊ทธ๋ฆฌ๊ณ  ์ž˜ ํ•ด์„œ ๊ต์ˆ˜๋‹˜๊ป˜์„œ ์ž๋ž‘์Šค๋Ÿฌ์›Œ ํ•˜์‹ค ์ˆ˜ ์žˆ๋Š” ์ œ์ž๊ฐ€ ๋˜๋„๋ก ํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค. ๋˜ํ•œ ์—ฐ๊ตฌ์‹ค ์ด์ „ ๊ฑด์—์„œ ์‰ฝ์ง€ ์•Š์€ ๋„์›€์„ ์ฃผ์‹  ๊น€๋ณ‘์ˆ˜ ๊ต์ˆ˜๋‹˜, ๋ฐ”์˜์‹  ์™€์ค‘์—๋„ ์„์‚ฌ ์กธ์—… ๋…ผ๋ฌธ committee ๊ฐ€ ๋˜์–ด์ฃผ์‹  ๊ณ ํ˜„ํ˜‘ ๊ต์ˆ˜๋‹˜๊ป˜๋„ ๊ฐ์‚ฌ์˜ ๋ง์”€์„ ๋“œ๋ฆฝ๋‹ˆ๋‹ค. ์ „์šฉ์„ ๊ต์ˆ˜๋‹˜, ๋ฐ•์ข…๋‚จ ๊ต์ˆ˜๋‹˜๊ป˜๋„ ๊ฐ์‚ฌ์˜ ๋งˆ์Œ์„ ์ „ํ•ฉ๋‹ˆ๋‹ค.

๋งŽ์€ ์šฐ์—ฌ๊ณก์ ˆ์ด ์žˆ์—ˆ์ง€๋งŒ ๅŒ่‹ฆๅŒ๏ฅœํ•˜๋ฉด์„œ ํƒ„ํƒ„ํ•œ ์ „์šฐ์• ๋ฅผ ํ‚ค์›Œ๋‚˜๊ฐ„ ์—ฐ๊ตฌ์‹ค ์„ ๋ฐฐ, ๋™๊ธฐ, ํ›„๋ฐฐ๋‹˜๋“ค์—๊ฒŒ ์ •๋ง ๊ฐ์‚ฌ๋ฅผ ๋“œ๋ฆฝ๋‹ˆ๋‹ค. ์—ฌ๋Ÿฌ๋ถ„๋“ค์ด ์žˆ๊ธฐ์— ์—ฐ๊ตฌ์‹ค ์ƒํ™œ์ด ์ฆ๊ฒ๊ณ  ํ–‰๋ณตํ–ˆ์Šต๋‹ˆ๋‹ค. ์—ฐ๊ตฌ์‹ค ์ดˆ์ฐฝ๊ธฐ์— ๋ฐฉ์žฅ์„ ๋งก์œผ์‹œ๋ฉด์„œ ์—ฐ๊ตฌ์‹ค์˜ ๊ธฐํ‹€์„ ์žก์•„๋‚˜๊ฐ€์‹  ์•„๋ฆ„๋ˆ„๋‚˜, ํ•ญ์ƒ ๋ฐ์€ ๋ชจ์Šต์œผ๋กœ ํ›„๋ฐฐ๋“ค์„ ๋Œ€ํ•ด์ฃผ์‹œ๊ณ  ๊ถ‚์€์ผ ๋งˆ๋‹ค ์•Š๊ณ  ์†”์„ ์ˆ˜๋ฒ”

Dokumen terkait