Ⅴ. Electrically Tunable Beam Manipulation from Intersubband Polaritonic Metasurfaces
5.6 Conclusion
82
83
Reference
[1] Bliokh, K.; Rodríguez-Fortuño, F. J.; Bekshaev, A.; Kivshar, Y.; Nori, F., Electric-current- induced unidirectional propagation of surface plasmon-polaritons. Optics letters 2018, 43 (5), 963-966.
[2] Juan, M. L.; Righini, M.; Quidant, R., Plasmon nano-optical tweezers. Nature photonics 2011, 5 (6), 349-356.
[3] Adato, R.; Artar, A.; Erramilli, S.; Altug, H., Engineered absorption enhancement and induced transparency in coupled molecular and plasmonic resonator systems. Nano letters 2013, 13 (6), 2584- 2591.
[4] Huck, C.; Vogt, J.; Sendner, M.; Hengstler, D.; Neubrech, F.; Pucci, A., Plasmonic enhancement of infrared vibrational signals: nanoslits versus nanorods. Acs Photonics 2015, 2 (10), 1489-1497.
[5] Jin, X.; Sang, Y.; Shi, Y.; Li, Y.; Zhu, X.; Duan, P.; Liu, M., Optically active upconverting nanoparticles with induced circularly polarized luminescence and enantioselectively triggered photopolymerization. Acs Nano 2019, 13 (3), 2804-2811.
[6] Hwang, I.; Yu, J.; Lee, J.; Choi, J.-H.; Choi, D.-G.; Jeon, S.; Lee, J.; Jung, J.-Y., Plasmon-enhanced infrared spectroscopy based on metamaterial absorbers with dielectric nanopedestals. Acs Photonics 2018, 5 (9), 3492-3498.
[7] Paul, J.; McMeekin, S. G.; Richard, M.; Johnson, N. P., AFM imaging and plasmonic detection of organic thin-films deposited on nanoantenna arrays. Sensors and Actuators A: Physical 2018, 279, 36-45.
[8] Bagheri, S.; Giessen, H.; Neubrech, F., Large‐Area Antenna‐Assisted SEIRA Substrates by Laser Interference Lithography. Advanced Optical Materials 2014, 2 (11), 1050-1056.
[9] Ji, D.; Cheney, A.; Zhang, N.; Song, H.; Gao, J.; Zeng, X.; Hu, H.; Jiang, S.; Yu, Z.;
Gan, Q., Efficient Mid‐Infrared Light Confinement within Sub‐5‐nm Gaps for Extreme Field Enhancement. Advanced Optical Materials 2017, 5 (17), 1700223.
[10] Giordano, M. C.; Tzschoppe, M.; Barelli, M.; Vogt, J.; Huck, C.; Canepa, F.; Pucci, A.;
Buatier de Mongeot, F., Self-Organized Nanorod Arrays for Large-Area Surface-Enhanced Infrared Absorption. ACS applied materials & interfaces 2020, 12 (9), 11155-11162.
[11] Pucci, A.; Neubrech, F.; Weber, D.; Hong, S.; Toury, T.; de La Chapelle, M. L., Surface enhanced infrared spectroscopy using gold nanoantennas. physica status solidi (b) 2010, 247 (8), 2071- 2074.
[12] Hwang, I.; Kim, M.; Yu, J.; Lee, J.; Choi, J. H.; Park, S. A.; Chang, W. S.; Lee, J.;
Jung, J. Y., Ultrasensitive Molecule Detection Based on Infrared Metamaterial Absorber with Vertical Nanogap. Small Methods 2021, 2100277.
[13] Bhattarai, K.; Silva, S.; Song, K.; Urbas, A.; Lee, S. J.; Ku, Z.; Zhou, J., Metamaterial perfect absorber analyzed by a meta-cavity model consisting of multilayer metasurfaces. Scientific reports 2017, 7 (1), 1-9.
84
[14] Landy, N. I.; Sajuyigbe, S.; Mock, J. J.; Smith, D. R.; Padilla, W. J., Perfect metamaterial absorber. Physical review letters 2008, 100 (20), 207402.
[15] Lee, J.; Tymchenko, M.; Argyropoulos, C.; Chen, P.-Y.; Lu, F.; Demmerle, F.; Boehm, G.; Amann, M.-C.; Alu, A.; Belkin, M. A., Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions. Nature 2014, 511 (7507), 65-69.
[16] Ishikawa, A.; Tanaka, T., Metamaterial absorbers for infrared detection of molecular self- assembled monolayers. Scientific reports 2015, 5 (1), 1-7.
[17] Li, Z.; Butun, S.; Aydin, K., Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films. Acs Photonics 2015, 2 (2), 183-188.
[18] Jing, Y. L.; Li, Z. F.; Li, Q.; Chen, X. S.; Chen, P. P.; Wang, H.; Li, M. Y.; Li, N.; Lu, W., Pixel-level plasmonic microcavity infrared photodetector. Scientific reports 2016, 6 (1), 1-8.
[19] Han, Z.; Bozhevolnyi, S. I., Radiation guiding with surface plasmon polaritons. Reports on Progress in Physics 2012, 76 (1), 016402.
[20] Shafiqa, A.; Aziz, A. A.; Mehrdel, B. In Nanoparticle optical properties: size dependence of a single gold spherical nanoparticle, Journal of Physics: Conference Series, IOP Publishing: 2018; p 012040.
[21] Mock, J.; Barbic, M.; Smith, D.; Schultz, D.; Schultz, S., Shape effects in plasmon resonance of individual colloidal silver nanoparticles. The Journal of Chemical Physics 2002, 116 (15), 6755-6759.
[22] Guo, H.; Meyrath, T. P.; Zentgraf, T.; Liu, N.; Fu, L.; Schweizer, H.; Giessen, H., Optical resonances of bowtie slot antennas and their geometry and material dependence. Optics express 2008, 16 (11), 7756-7766.
[23] Ding, X.; Monticone, F.; Zhang, K.; Zhang, L.; Gao, D.; Burokur, S. N.; de Lustrac, A.;
Wu, Q.; Qiu, C. W.; Alu, A., Ultrathin Pancharatnam–Berry metasurface with maximal cross‐
polarization efficiency. Advanced Materials 2015, 27 (7), 1195-1200.
[24] Park, J.; Kang, J.-H.; Kim, S. J.; Liu, X.; Brongersma, M. L., Dynamic reflection phase and polarization control in metasurfaces. Nano letters 2017, 17 (1), 407-413.
[25] Haus, H., Waves and fields in optoelectronics. PRENTICE-HALL, INC., ENGLEWOOD CLIFFS, NJ 07632, USA, 1984, 402 1984.
[26] Fan, S.; Suh, W.; Joannopoulos, J. D., Temporal coupled-mode theory for the Fano resonance in optical resonators. JOSA A 2003, 20 (3), 569-572.
[27] Weber, E. R.; Willardson, R. K.; Liu, H.; Capasso, F., Intersubband transitions in quantum wells: physics and device applications. Academic press: 1999.
[28] Harwit, A.; Harris Jr, J., Observation of Stark shifts in quantum well intersubband transitions.
Applied physics letters 1987, 50 (11), 685-687.
[29] Wu, P. C.; Pala, R. A.; Shirmanesh, G. K.; Cheng, W.-H.; Sokhoyan, R.; Grajower, M.;
Alam, M. Z.; Lee, D.; Atwater, H. A., Dynamic beam steering with all-dielectric electro-optic III–V multiple-quantum-well metasurfaces. Nature communications 2019, 10 (1), 1-9.
[30] Pegolotti, G.; Vasanelli, A.; Todorov, Y.; Sirtori, C., Quantum model of coupled intersubband
85 plasmons. Physical Review B 2014, 90 (3), 035305.
[31] Mäntele, W.; Deniz, E., UV–VIS absorption spectroscopy: Lambert-Beer reloaded. Elsevier: 2017.
[32] Durmaz, H.; Li, Y.; Cetin, A. E., A multiple-band perfect absorber for SEIRA applications.
Sensors and Actuators B: Chemical 2018, 275, 174-179.
[33] Yu, N.; Genevet, P.; Kats, M. A.; Aieta, F.; Tetienne, J.-P.; Capasso, F.; Gaburro, Z., Light propagation with phase discontinuities: generalized laws of reflection and refraction. science 2011, 334 (6054), 333-337.
[34] Cetin, A. E.; Aksu, S.; Turkmen, M.; Etezadi, D.; Altug, H., Theoretical and experimental analysis of subwavelength bowtie-shaped antennas. Journal of Electromagnetic Waves and Applications 2015, 29 (13), 1686-1698.
[35] Pendry, J. B., Negative refraction makes a perfect lens. Physical review letters 2000, 85 (18), 3966.
[36] Smith, D. R.; Pendry, J. B.; Wiltshire, M. C., Metamaterials and negative refractive index.
Science 2004, 305 (5685), 788-792.
[37] Zhang, X.; Liu, Z., Superlenses to overcome the diffraction limit. Nature materials 2008, 7 (6), 435-441.
[38] Klein, M. W.; Enkrich, C.; Wegener, M.; Linden, S., Second-harmonic generation from magnetic metamaterials. Science 2006, 313 (5786), 502-504.
[39] Lassiter, J. B.; Chen, X.; Liu, X.; Ciracì, C.; Hoang, T. B.; Larouche, S.; Oh, S.-H.;
Mikkelsen, M. H.; Smith, D. R., Third-harmonic generation enhancement by film-coupled plasmonic stripe resonators. Acs Photonics 2014, 1 (11), 1212-1217.
[40] Watts, C. M.; Liu, X.; Padilla, W. J., Metamaterial electromagnetic wave absorbers (adv. mater.
23/2012). Advanced Materials 2012, 24 (23), OP181-OP181.
[41] Ogawa, S.; Fujisawa, D.; Hata, H.; Uetsuki, M.; Misaki, K.; Kimata, M., Mushroom plasmonic metamaterial infrared absorbers. Applied Physics Letters 2015, 106 (4), 041105.
[42] Cai, W.; Chettiar, U. K.; Kildishev, A. V.; Shalaev, V. M., Optical cloaking with metamaterials.
Nature photonics 2007, 1 (4), 224-227.
[43] Choi, M.; Lee, S. H.; Kim, Y.; Kang, S. B.; Shin, J.; Kwak, M. H.; Kang, K.-Y.; Lee, Y.-H.; Park, N.; Min, B., A terahertz metamaterial with unnaturally high refractive index. Nature 2011, 470 (7334), 369-373.
[44] Moitra, P.; Yang, Y.; Anderson, Z.; Kravchenko, I. I.; Briggs, D. P.; Valentine, J., Realization of an all-dielectric zero-index optical metamaterial. Nature Photonics 2013, 7 (10), 791- 795.
[45] Suchowski, H.; O’Brien, K.; Wong, Z. J.; Salandrino, A.; Yin, X.; Zhang, X., Phase mismatch–free nonlinear propagation in optical zero-index materials. Science 2013, 342 (6163), 1223- 1226.
[46] Liu, N.; Mesch, M.; Weiss, T.; Hentschel, M.; Giessen, H., Infrared perfect absorber and its application as plasmonic sensor. Nano letters 2010, 10 (7), 2342-2348.
[47] Chen, K.; Adato, R.; Altug, H., Dual-band perfect absorber for multispectral plasmon-enhanced
86 infrared spectroscopy. Acs Nano 2012, 6 (9), 7998-8006.
[48] Li, Y.; Su, L.; Shou, C.; Yu, C.; Deng, J.; Fang, Y., Surface-enhanced molecular spectroscopy (SEMS) based on perfect-absorber metamaterials in the mid-infrared. Scientific reports 2013, 3 (1), 1-8.
[49] Hug, W.; Chalmers, J.; Griffith, P., Handbook of vibrational spectroscopy.)(John Wiley and Son Ltd., Chichester 2002) 2002.
[50] Kawata, S.; Ohtsu, M.; Irie, M., Near-field optics and surface plasmon polaritons. Springer Science & Business Media: 2001; Vol. 81.
[51] Chirumamilla, M.; Toma, A.; Gopalakrishnan, A.; Das, G.; Zaccaria, R. P.; Krahne, R.;
Rondanina, E.; Leoncini, M.; Liberale, C.; De Angelis, F., 3D nanostar dimers with a sub‐10‐nm gap for single‐/few‐molecule surface‐enhanced Raman scattering. Advanced Materials 2014, 26 (15), 2353-2358.
[52] Aroca, R. F.; Ross, D. J.; Domingo, C., Surface-enhanced infrared spectroscopy. Applied spectroscopy 2004, 58 (11), 324A-338A.
[53] Hartstein, A.; Kirtley, J.; Tsang, J., Enhancement of the infrared absorption from molecular monolayers with thin metal overlayers. Physical Review Letters 1980, 45 (3), 201.
[54] Cubukcu, E.; Zhang, S.; Park, Y.-S.; Bartal, G.; Zhang, X., Split ring resonator sensors for infrared detection of single molecular monolayers. Applied Physics Letters 2009, 95 (4), 043113.
[55] Chen, X.; Ciracì, C.; Smith, D. R.; Oh, S.-H., Nanogap-enhanced infrared spectroscopy with template-stripped wafer-scale arrays of buried plasmonic cavities. Nano letters 2015, 15 (1), 107-113.
[56] Huck, C.; Toma, A.; Neubrech, F.; Chirumamilla, M.; Vogt, J.; De Angelis, F.; Pucci, A., Gold nanoantennas on a pedestal for plasmonic enhancement in the infrared. Acs Photonics 2015, 2 (4), 497-505.
[57] Brown, L. V.; Yang, X.; Zhao, K.; Zheng, B. Y.; Nordlander, P.; Halas, N. J., Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA). Nano letters 2015, 15 (2), 1272-1280.
[58] Cetin, A. E.; Etezadi, D.; Altug, H., Accessible nearfields by nanoantennas on nanopedestals for ultrasensitive vibrational spectroscopy. Advanced Optical Materials 2014, 2 (9), 866-872.
[59] Neubrech, F.; Pucci, A.; Cornelius, T. W.; Karim, S.; García-Etxarri, A.; Aizpurua, J., Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection. Physical review letters 2008, 101 (15), 157403.
[60] Le, T. H.; Tanaka, T., Plasmonics–nanofluidics hydrid metamaterial: An ultrasensitive platform for infrared absorption spectroscopy and quantitative measurement of molecules. Acs Nano 2017, 11 (10), 9780-9788.
[61] Cetin, A. E.; Korkmaz, S.; Durmaz, H.; Aslan, E.; Kaya, S.; Paiella, R.; Turkmen, M., Quantification of multiple molecular fingerprints by dual‐resonant perfect absorber. Advanced Optical Materials 2016, 4 (8), 1274-1280.
[62] Chen, K.; Dao, T. D.; Ishii, S.; Aono, M.; Nagao, T., Infrared aluminum metamaterial perfect absorbers for plasmon‐enhanced infrared spectroscopy. Advanced Functional Materials 2015, 25 (42),
87 6637-6643.
[63] Sung, S.; Kim, C.-H.; Lee, J.; Jung, J.-Y.; Jeong, J.-h.; Choi, J.-H.; Lee, E.-S., Advanced metal lift-offs and nanoimprint for plasmonic metal patterns. International Journal of Precision Engineering and Manufacturing-Green Technology 2014, 1 (1), 25-30.
[64] Rumler, M.; Foerthner, M.; Baier, L.; Evanschitzky, P.; Becker, M.; Rommel, M.; Frey, L., Large area manufacturing of plasmonic colour filters using substrate conformal imprint lithography.
Nano Futures 2017, 1 (1), 015002.
[65] Wang, C.; Zhang, Q.; Song, Y.; Chou, S. Y., Plasmonic bar-coupled dots-on-pillar cavity antenna with dual resonances for infrared absorption and sensing: Performance and nanoimprint fabrication. Acs Nano 2014, 8 (3), 2618-2624.
[66] Popenoe, D. D. Theoretical and experimental methods for in situ infrared spectroelectrochemistry of organic monomolecular films. Iowa State University, 1992.
[67] Bain, C. D.; Troughton, E. B.; Tao, Y. T.; Evall, J.; Whitesides, G. M.; Nuzzo, R. G., Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold.
Journal of the American Chemical Society 1989, 111 (1), 321-335.
[68] Porter, M. D.; Bright, T. B.; Allara, D. L.; Chidsey, C. E., Spontaneously organized molecular assemblies. 4. Structural characterization of n-alkyl thiol monolayers on gold by optical ellipsometry, infrared spectroscopy, and electrochemistry. Journal of the American Chemical Society 1987, 109 (12), 3559-3568.
[69] Griffiths, P. R.; Chalmers, J. M., Handbook of vibrational spectroscopy. Wiley Online Library:
2002.
[70] Ataka, K.; Kottke, T.; Heberle, J., Thinner, smaller, faster: IR techniques to probe the functionality of biological and biomimetic systems. Angewandte Chemie International Edition 2010, 49 (32), 5416-5424.
[71] Adato, R.; Aksu, S.; Altug, H., Engineering mid-infrared nanoantennas for surface enhanced infrared absorption spectroscopy. Materials today 2015, 18 (8), 436-446.
[72] Neubrech, F.; Huck, C.; Weber, K.; Pucci, A.; Giessen, H., Surface-enhanced infrared spectroscopy using resonant nanoantennas. Chemical reviews 2017, 117 (7), 5110-5145.
[73] Mayerhöfer, T. G.; Popp, J., Periodic array-based substrates for surface-enhanced infrared spectroscopy. Nanophotonics 2018, 7 (1), 39-79.
[74] Pellegrini, G.; Baldassare, L.; Giliberti, V.; Frigerio, J.; Gallacher, K.; Paul, D. J.; Isella, G.; Ortolani, M.; Biagioni, P., Benchmarking the use of heavily doped Ge for plasmonics and sensing in the mid-infrared. ACS Photonics 2018, 5 (9), 3601-3607.
[75] Yoo, D.; Mohr, D. A.; Vidal-Codina, F.; John-Herpin, A.; Jo, M.; Kim, S.; Matson, J.;
Caldwell, J. D.; Jeon, H.; Nguyen, N.-C., High-contrast infrared absorption spectroscopy via mass- produced coaxial zero-mode resonators with sub-10 nm gaps. Nano letters 2018, 18 (3), 1930-1936.
[76] Yoo, D.; de León-Pérez, F.; Pelton, M.; Lee, I.-H.; Mohr, D. A.; Raschke, M. B.;
Caldwell, J. D.; Martín-Moreno, L.; Oh, S.-H., Ultrastrong plasmon–phonon coupling via epsilon- near-zero nanocavities. Nature Photonics 2021, 15 (2), 125-130.
88
[77] Jung, Y.; Hwang, I.; Yu, J.; Lee, J.; Choi, J.-H.; Jeong, J.-H.; Jung, J.-Y.; Lee, J., Fano metamaterials on nanopedestals for plasmon-enhanced infrared spectroscopy. Scientific reports 2019, 9 (1), 1-8.
[78] Tittl, A.; Leitis, A.; Liu, M.; Yesilkoy, F.; Choi, D.-Y.; Neshev, D. N.; Kivshar, Y. S.;
Altug, H., Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science 2018, 360 (6393), 1105-1109.
[79] Leitis, A.; Tittl, A.; Liu, M.; Lee, B. H.; Gu, M. B.; Kivshar, Y. S.; Altug, H., Angle- multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval. Science advances 2019, 5 (5), eaaw2871.
[80] Mayerhöfer, T. G.; Knipper, R.; Hübner, U.; Cialla-May, D.; Weber, K.; Meyer, H.-G.;
Popp, J. r., Ultra sensing by combining extraordinary optical transmission with perfect absorption. ACS Photonics 2015, 2 (11), 1567-1575.
[81] Barho, F. B.; Gonzalez-Posada, F.; Bomers, M.; Mezy, A.; Cerutti, L.; Taliercio, T., Surface-enhanced thermal emission spectroscopy with perfect absorber metasurfaces. ACS Photonics 2019, 6 (6), 1506-1514.
[82] Brown, L. V.; Zhao, K.; King, N.; Sobhani, H.; Nordlander, P.; Halas, N. J., Surface- enhanced infrared absorption using individual cross antennas tailored to chemical moieties. Journal of the American Chemical Society 2013, 135 (9), 3688-3695.
[83] Liu, X.; Starr, T.; Starr, A. F.; Padilla, W. J., Infrared spatial and frequency selective metamaterial with near-unity absorbance. Physical review letters 2010, 104 (20), 207403.
[84] Jung, J.-Y.; Lee, J.; Choi, D.-G.; Choi, J.-H.; Jeong, J.-H.; Lee, E.-S.; Neikirk, D. P., Wavelength-selective infrared metasurface absorber for multispectral thermal detection. IEEE Photonics Journal 2015, 7 (6), 1-10.
[85] Le, T. H.; Morita, A.; Mawatari, K.; Kitamori, T.; Tanaka, T., Metamaterials-enhanced infrared spectroscopic study of nanoconfined molecules by plasmonics–nanofluidics hydrid device.
ACS Photonics 2018, 5 (8), 3179-3188.
[86] Xu, J.; Ren, Z.; Dong, B.; Liu, X.; Wang, C.; Tian, Y.; Lee, C., Nanometer-scale heterogeneous interfacial sapphire wafer bonding for enabling plasmonic-enhanced nanofluidic mid- infrared spectroscopy. ACS nano 2020, 14 (9), 12159-12172.
[87] Su, D.-S.; Tsai, D. P.; Yen, T.-J.; Tanaka, T., Ultrasensitive and selective gas sensor based on a channel plasmonic structure with an enormous hot spot region. ACS sensors 2019, 4 (11), 2900-2907.
[88] Schreiber, F., Structure and growth of self-assembling monolayers. Progress in surface science 2000, 65 (5-8), 151-257.
[89] Eilers, P. H., A perfect smoother. Analytical chemistry 2003, 75 (14), 3631-3636.
[90] Chen, C. C.; Ishikawa, A.; Tang, Y. H.; Shiao, M. H.; Tsai, D. P.; Tanaka, T., Uniaxial‐
isotropic Metamaterials by Three‐Dimensional Split‐Ring Resonators. Advanced Optical Materials 2015, 3 (1), 44-48.
[91] Moritake, Y.; Tanaka, T., Controlling bi-anisotropy in infrared metamaterials using three- dimensional split-ring-resonators for purely magnetic resonance. Scientific reports 2017, 7 (1), 1-6.
89
[92] Liu, X.; Tyler, T.; Starr, T.; Starr, A. F.; Jokerst, N. M.; Padilla, W. J., Taming the blackbody with infrared metamaterials as selective thermal emitters. Physical review letters 2011, 107 (4), 045901.
[93] Huck, C.; Neubrech, F.; Vogt, J.; Toma, A.; Gerbert, D.; Katzmann, J.; Härtling, T.;
Pucci, A., Surface-enhanced infrared spectroscopy using nanometer-sized gaps. ACS nano 2014, 8 (5), 4908-4914.
[94] Shih, W.-C.; Santos, G. M.; Zhao, F.; Zenasni, O.; Arnob, M. M. P., Simultaneous chemical and refractive index sensing in the 1–2.5 μm near-infrared wavelength range on nanoporous gold disks.
Nano letters 2016, 16 (7), 4641-4647.
[95] Kim, K.-J.; Chong, X.; Kreider, P. B.; Ma, G.; Ohodnicki, P. R.; Baltrus, J. P.; Wang, A.
X.; Chang, C.-H., Plasmonics-enhanced metal–organic framework nanoporous films for highly sensitive near-infrared absorption. Journal of Materials Chemistry C 2015, 3 (12), 2763-2767.
[96] Zhao, F.; Zeng, J.; Shih, W.-C., Nanoporous gold nanocomposites as a versatile platform for plasmonic engineering and sensing. Sensors 2017, 17 (7), 1519.
[97] Garoli, D.; Calandrini, E.; Bozzola, A.; Ortolani, M.; Cattarin, S.; Barison, S.; Toma, A.; De Angelis, F., Boosting infrared energy transfer in 3D nanoporous gold antennas. Nanoscale 2017, 9 (2), 915-922.
[98] Pu, M.; Guo, Y.; Ma, X.; Li, X.; Luo, X., Methodologies for on‐demand dispersion engineering of waves in metasurfaces. Advanced Optical Materials 2019, 7 (14), 1801376.
[99] Arbabi, A.; Horie, Y.; Bagheri, M.; Faraon, A., Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nature nanotechnology 2015, 10 (11), 937-943.
[100] Lee, J.; Jung, S.; Chen, P. Y.; Lu, F.; Demmerle, F.; Boehm, G.; Amann, M. C.; Alù, A.; Belkin, M. A., Ultrafast electrically tunable polaritonic metasurfaces. Advanced Optical Materials 2014, 2 (11), 1057-1063.
[101] Karimi, E.; Schulz, S. A.; De Leon, I.; Qassim, H.; Upham, J.; Boyd, R. W., Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface. Light: Science
& Applications 2014, 3 (5), e167-e167.
[102] Shrestha, S.; Overvig, A. C.; Lu, M.; Stein, A.; Yu, N., Broadband achromatic dielectric metalenses. Light: Science & Applications 2018, 7 (1), 1-11.
[103] Zhang, X.; Deng, R.; Yang, F.; Jiang, C.; Xu, S.; Li, M., Metasurface-based ultrathin beam splitter with variable split angle and power distribution. ACS Photonics 2018, 5 (8), 2997-3002.
[104] Yu, N.; Aieta, F.; Genevet, P.; Kats, M. A.; Gaburro, Z.; Capasso, F., A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano letters 2012, 12 (12), 6328-6333.
[105] Zheng, G.; Mühlenbernd, H.; Kenney, M.; Li, G.; Zentgraf, T.; Zhang, S., Metasurface holograms reaching 80% efficiency. Nature nanotechnology 2015, 10 (4), 308-312.
[106] Lin, D.; Fan, P.; Hasman, E.; Brongersma, M. L., Dielectric gradient metasurface optical elements. science 2014, 345 (6194), 298-302.
[107] Malek, S. C.; Ee, H.-S.; Agarwal, R., Strain multiplexed metasurface holograms on a stretchable
90 substrate. Nano letters 2017, 17 (6), 3641-3645.
[108] Ee, H.-S.; Agarwal, R., Tunable metasurface and flat optical zoom lens on a stretchable substrate.
Nano letters 2016, 16 (4), 2818-2823.
[109] Huang, Y.-W.; Lee, H. W. H.; Sokhoyan, R.; Pala, R. A.; Thyagarajan, K.; Han, S.;
Tsai, D. P.; Atwater, H. A., Gate-tunable conducting oxide metasurfaces. Nano letters 2016, 16 (9), 5319-5325.
[110] Capasso, F.; Sirtori, C.; Cho, A. Y., Coupled quantum well semiconductors with giant electric field tunable nonlinear optical properties in the infrared. IEEE Journal of Quantum Electronics 1994, 30 (5), 1313-1326.
[111] Zanotto, S.; Mezzapesa, F. P.; Bianco, F.; Biasiol, G.; Baldacci, L.; Vitiello, M. S.;
Sorba, L.; Colombelli, R.; Tredicucci, A., Perfect energy-feeding into strongly coupled systems and interferometric control of polariton absorption. Nature Physics 2014, 10 (11), 830-834.
91
Acknowledgement
First of all, I would like to heartily express my gratitude to my parents who have supported and encouraged me during the 5 years in graduate school at UNIST. With the full support and sacrifice of my parents, I was able to successfully complete my research and take a doctorate.
I express appreciation to Prof. Jongwon Lee who is my research advisor during my graduate school since 2016. He has enthusiastically instructed his knowledges for me and generously supported my research. His careful instruction and enlightening advice guided me on the path of optics and photonics.
I will cherish his advice from the bottom of my heart for the rest of my life.
In addition, I would like to appreciate thesis committee, Prof. Min-Suk Kwon, Prof. Il-Sug Chung, Prof. Jiwon Chang, and Dr. Joo-Yun Jung for evaluating and advising my thesis. In particular, I would like to express my gratitude to Dr. Jung who has led my research for me for the past 5 years. Moreover, I express appreciation to Prof. Mikhail A. Belkin (Walter Schottky Institute, Technical University of Munich, Germany) for providing MQW wafers epitaxial-grown for my electrically tunable metasurface studies.
Also, I would like to show my gratitude to all lab members, Jaeyeon Yu, Seongjin Park, Daeik Kim, Hyeongju Chung, Mingyun Kim, and Jeongwoo Son, including alumni member, Yongseok Jung.
Especially, I will remember Jaeyeon Yu, who supported my research. Furthermore, I will keep in mind a good relationship with Prof. Min-Suk Kwon and his students, Yonghan Kim, Jungsan Kim, Quoc Viet Vuong, Seongho Yoo, Jungwoo Lee, and Jihoon Seo.
Besides, I would like to express appreciation to my great friends, Sung-Min Won, Taeryeong Choi, Jongho Park, Su-Jeong Noh, Changhyun Yoon, Inhyung Lee, Daeyoung Choi, Jeonggu Heo, Hyelim Yun, and Eunji Lim who have encouraged my graduate school life.
Lastly, I would like to express my gratitude to my brothers, Jungyoung Kim, and Yeongil Lee for making good memories, and blissful time together in Ulsan.
Inyong Hwang Ulsan National Institute of Science and Technology December 2021